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Simple Summary: Diabetic retinopathy is a severe complication of diabetes that can lead to vision
loss due to the abnormal growth of blood vessels in the retina. This study investigates how two
traditional medicinal plants, Solanum xanthocarpum and Plumbago zeylanica, might be used to treat this
condition. We focused on identifying the active compounds in these plants and understanding how
they interact with proteins related to diabetic retinopathy. Using advanced computer simulations,
we found that these plant compounds effectively bind to and influence key proteins involved in
the progression of the disease. Specifically, our research highlighted that compounds from Solanum
xanthocarpum and Plumbago zeylanica could target several crucial pathways and proteins associated
with diabetic retinopathy. These findings suggest that these plant-derived compounds have significant
potential as therapeutic agents for diabetic retinopathy. By offering a new approach to treatment, this
research could help improve the vision and overall quality of life of individuals suffering from this
challenging condition.

Abstract: (1) Background: Diabetic retinopathy (DR) is a major complication of diabetes, marked by
abnormal angiogenesis, microaneurysms, and retinal hemorrhages. Traditional Ayurvedic medicine
advocates multi-target strategies for DR management. However, the mechanisms by which Solanum
xanthocarpum (SX) and Plumbago zeylanica (PZ) exert therapeutic effects are not well understood;
(2) Methods: To investigate these mechanisms, we employed network pharmacology and molecular
docking techniques. Phytochemicals from SX and PZ were identified using the IMPPAT database and
Swiss Target Prediction tool. DR-related protein targets were sourced from the GeneCards database,
and common targets were identified through Venn diagram analysis. STRING and Cytoscape
were used to construct and analyze protein–protein interaction networks. Pathway enrichment
was performed with Gene Ontology and KEGG databases; (3) Results: We identified 28 active
phytoconstituents, targeting proteins such as EGFR, SRC, STAT3, AKT1, and HSP90AA1. Molecular
docking and dynamics simulations confirmed the strong binding affinities of these compounds to
their targets; (4) Conclusions: The study highlights the multi-target activity of SX and PZ, particularly
in pathways related to EGFR tyrosine kinase inhibitor resistance and PI3K–AKT signaling. These
findings provide valuable insights into their therapeutic potential for DR, suggesting the effective
modulation of key molecular pathways involved in the disease.
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1. Introduction

Diabetic retinopathy (DR) is a critical microvascular complication of diabetes that
can lead to progressive vision loss and, ultimately, blindness if not effectively managed.
As the prevalence of diabetes continues to rise globally, the incidence of DR is expected
to follow suit, presenting substantial health and economic challenges [1]. The Global
Burden of Disease Study has reported that DR is a leading microvascular complication
associated with diabetes, with projections indicating a global prevalence of 22.27% by
2045 [2]. This trend highlights the urgent need for innovative therapeutic strategies to
prevent and treat DR.

Existing treatments, such as anti-vascular endothelial growth factor therapies, laser
photocoagulation, and corticosteroids, while beneficial, have limitations including adverse
effects and incomplete efficacy [3]. Anti-diabetic medications are essential for managing
diabetes and influencing DR progression, but they also pose challenges like hypoglycemia,
weight gain, and cardiovascular risks [4]. Therefore, exploring new treatments that can
effectively manage DR while minimizing adverse effects is imperative.

Plumbago zeylanica (PZ) and Solanum xanthocarpum (SX) are two medicinal plants
traditionally used in Ayurvedic medicine, renowned for their diverse pharmacological
properties [5,6]. The selection of SX and PZ for investigating DR is justified by their signifi-
cant pharmacological effects, which are directly relevant to managing the disease. PZ is
recognized for its potent anti-inflammatory and antioxidant activities. These properties
are beneficial for DR, as chronic inflammation and oxidative stress play critical roles in
the disease’s progression. PZ’s anti-inflammatory effects help to reduce chronic retinal
inflammation, which exacerbates DR. Moreover, plumbagin, a key compound in PZ, has
strong antioxidant effects that combat oxidative stress and influence angiogenesis path-
ways. This helps in preventing abnormal blood vessel formation, a hallmark of DR [7].
Plumbagin from PZ has been found to reduce oxidative stress and interfere with the an-
giogenesis pathways mediated by vascular endothelial growth factor receptor 2 [8]. SX is
noted for its anti-diabetic and antioxidant properties. Its anti-diabetic effects help regulate
blood glucose levels, addressing one of the primary risk factors for DR by stabilizing
hyperglycemia. This is crucial for preventing the onset and progression of the disease.
Additionally, SX’s antioxidant properties are essential in mitigating oxidative stress, which
contributes to retinal damage in DR. Compounds such as apigenin and scopoletin within
SX have demonstrated effectiveness in their anti-diabetic and antioxidant properties [9] of
neutralizing free radicals, thereby protecting the retinal cells from oxidative damage and
reducing the inflammation associated with DR [10]. Overall, the pharmacological effects of
SX and PZ, including their roles in blood glucose regulation, oxidative stress reduction, and
inflammation modulation, make them promising candidates for alternative treatments and
underscore their potential in advancing DR management. Research into the bioactive com-
pounds of these plants has shown promising results. Despite these promising findings, the
precise pharmacological mechanisms of PZ and SX in DR treatment remain underexplored.

Advanced methodologies like network pharmacology, molecular docking, and molec-
ular dynamics (MD) simulation provide powerful tools to investigate the complex interac-
tions between bioactive compounds and their biological targets. Network pharmacology
helps us understand the multi-target interactions within biological networks, offering
insights into the therapeutic effects of medicinal plants. Molecular docking predicts the
binding affinity and orientation of bioactive compounds with specific protein targets, while
MD simulation provides a dynamic view of these interactions, offering deeper insights into
the stability and behavior of drug–target complexes.
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This study aims to explore the pharmacological mechanisms of PZ and SX in DR treat-
ment using an integrated approach combining network pharmacology, molecular docking,
and MD simulation. By identifying the key bioactive compounds, the potential molecular
targets, and the underlying pathways, this research seeks to elucidate the therapeutic
potential of these medicinal plants in DR management. The findings could contribute
to developing novel, multi-targeted therapeutic strategies for DR, integrating traditional
medicinal knowledge with modern pharmacological techniques.

2. Materials and Methods
2.1. Active Phytoconstituents of SX and PZ and Their Related Target Screening

The Indian Medicinal Plants, Phytochemistry, and Therapeutics 2.0 (IMPPAT, https:
//cb.imsc.res.in/imppat/home, accessed on 11 April 2024) database was searched using
the terms “Solanum virginianum/Solanum xanthocarpum” and “Plumbago zeylanica” to iden-
tify the chemicals in these plants [11]. The bioavailability score (BS) determines a drug’s
absorption into the bloodstream, while drug-likeness (DL) reflects how closely a compound
resembles an approved drug in terms of structure and biology. Based compounds with a
BS of ≥0.30 [12] and DL of ≥0.18 [13] were selected based on Lipinski’s rule-of-five and
quantitative drug-likeness criteria. Swiss Target Prediction (www.swisstargetprediction.ch,
accessed on 12 April 2024) [14] was used to retrieve targets, with the gene symbols and in-
formation sourced from UniProt (https://www.uniprot.org, accessed on 13 April 2024) [15].

2.2. Network Construction of Active Phytoconstituents and Related Targets

Cytoscape 3.10.2 (https://www.cytoscape.org, accessed on 14 April 2024) is free
software used to organize, analyze, and construct networks from imported data with
flexibility. Using this tool, a network was built to predict the interaction between proteins
and active phytoconstituents [16].

2.3. Collection of Potential DR-Associated Targets

Collecting disease-related genes is crucial for understanding the mechanisms of
herbs and their active phytoconstituents. DR-associated targets were obtained from the
GeneCards database (https://genecards.org, accessed on 15 April 2024) using the keyword
“diabetic retinopathy” [17].

2.4. Screening Phytoconstituent-Disease Overlapping Targets

The screened data of the SX and PZ phytoconstituent-related targets and the targets for
DR were imported to Venny 2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/, accessed
on 15 April 2024) to construct the Venn diagram [18]. This Venn diagram expressed the
intersection of the screened targets of SX and PZ and the disease DR.

2.5. Network Construction of Phytoconstituent–Disease Common Targets

The STRING tool (https://string-db.org/, accessed on 15 April 2024) [19] was used
to generate a protein–protein interaction (PPI) network, showing functional connections
between the proteins. The PPI setup included selecting Homo sapiens proteins, confidence-
based network edges, experimental interaction sources, and a minimum interaction score of
0.400 (medium confidence) [20]. Data from STRING was imported into Cytoscape 3.10.2 for
further analysis [21]. The CytoHubba plug-in, using the Degree method, ranked the top ten
target proteins with the shortest paths [22]. Molecular docking and the phytoconstituents–
targets–pathways network further guided the selection of key targets.

2.6. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway
Enrichment Analysis

In a computational analysis, the GO and KEGG pathways were used to precisely
characterize core biological activities in the human cells [23]. Enrichment analysis was
performed using the bioinformatics platform (http://www.bioinformatics.com.cn, accessed

https://cb.imsc.res.in/imppat/home
https://cb.imsc.res.in/imppat/home
www.swisstargetprediction.ch
https://www.uniprot.org
https://www.cytoscape.org
https://genecards.org
https://bioinfogp.cnb.csic.es/tools/venny/
https://string-db.org/
http://www.bioinformatics.com.cn
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on 16 April 2024) [24]. The GO analysis categorized genes into biological processes (BPs),
cellular components (CCs), and molecular functions (MFs). KEGG enrichment highlighted
significantly enriched BPs, CCs, and MFs with a p-value <0.05 and an enrichment factor
>1.5 [25]. The results of GO and KEGG enrichment analyses were visualized as bub-
ble charts.

2.7. Construction of PZ and SX Phytoconstituents–Targets–Pathways Network

The software “Cytoscape version 3.10.2” was used to create a network of phytocon-
stituents, targets, and pathways that described the mechanism of action of SX and PZ
for DR. The nodes and edges, which can be represented as phytoconstituents, targets, or
disease-related routes and links, were present in a network.

2.8. Molecular Docking

Molecular docking was performed using Schrödinger® (Maestro, Version 12.8, 2021-2,
Windows-x64) [26]. Docking was executed with extra precision (XP), and the proteins
were prepared with restrained minimization using the OPLS4 force field. Grid sites were
generated using the Glide® receptor grid generator, with a 20 Å docking box centered on
the target protein’s active residues. Phytoconstituent 3D structures were obtained from
PubChem (https://pubchem.ncbi.nlm.nih.gov, accessed on 18 April 2024) and prepared
with OPLS4 for a pH of 7.0 ± 2.0 [27]. The propensity for spontaneous binding between
the receptor and ligand was assessed based on docking scores, with more negative values
indicating better binding affinity. A docking score below −5 kcal/mol was considered
indicative of excellent binding activity [28]. Visualization of the results, including 3D
and 2D diagrams of the docked target–ligand complexes, was carried out using PyMOL
3.0 (https://pymol.org/, accessed on 26 April 2024) [29] and Discovery Studio BIOVIA
2024 (https://discover.3ds.com/, accessed on 26 April 2024) [30]. The top docking re-
sults, with the compounds from SX and PZ binding to the key potential targets, were
selected for subsequent MD simulations and compared with the reference ligands bound
to the receptors.

Ligand Efficiency = GlideScore/N

where N is the number of heavy (non-hydrogen) atoms in the ligand.

2.9. MD Simulation

To assess the stability of the most promising docked complexes, MD simulations were
conducted using Gromacs 2020.4 [31], running on a workstation equipped with an Intel
Xeon E3-1245 processor (8 cores at 3.50 GHz), 32 GB RAM, and an NVIDIA Quadro P5000
GPU [32]. The protein topology was generated using the CHARMM36 all-atom force
field [33], and solvation was accomplished with TIP3P water molecules [34] via the ‘gmx
solvate’ command in GROMACS. Ligand topology was created using the CHARMM Gen-
eral Force Field (CGenFF) [35]. The MD simulation was performed within a dodecahedron
box, ensuring that the protein–ligand complex was centrally located with at least a 10 Å
distance from the box boundaries. Sodium chloride (NaCl) was added to a concentration
of 150 mM to replicate physiological conditions [36,37]. The parameters for Na+ were as
follows: charge = +1.0 e, Lennard-Jones parameters: σ = 2.58 Å, and ε = 0.4184 kJ/mol.
For Cl−, the parameters were as follows: charge = −1.0 e, Lennard–Jones parameters:
σ = 4.40 Å, and ε = 0.4184 kJ/mol [38]. The system underwent energy minimization using
the steepest descent method, with a maximum of 50,000 steps. Following minimization,
isothermal–isochoric (NVT) and isothermal–isobaric (NPT) ensembles were simulated
at 300 K and 1.0 bar pressure, respectively, using the Berendsen thermostat [39] and the
Parrinello–Rahman barostat [40]. A production run of 200 ns was executed after equilibra-
tion, employing a 2 fs time step with the leapfrog integrator [41]. The LINCS algorithm
was used to constrain the bond lengths during the NVT, NPT, and production phases [42].
The MD simulation results were analyzed for the root mean square deviation (RMSD), root
mean square fluctuation (RMSF), radius of gyration (Rg), and solvent accessible surface

https://pubchem.ncbi.nlm.nih.gov
https://pymol.org/
https://discover.3ds.com/
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area (SASA). Each simulation was independently conducted in triplicate, and the results
were presented as mean values with standard errors.

2.10. Free Energy Calculation (MM-GBSA)

The free energy of protein–ligand complex formation was determined using the
Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method, as previously
described [43]. First, the docked complexes were optimized using the Molecular Mechanics
(MM) approach. Next, energy minimization was carried out with the OPLS4 force field
in conjunction with the Generalized Born Surface Area (GBSA) continuum solvent model.
The binding free energies of the protein–ligand complexes were then calculated using the
following equations:

∆GBind = ∆EMM + ∆GSolv_GB + ∆GSA

where ∆GBind, ∆EMM, ∆G(Solv_GB), ∆GSA were the binding free energy between a ligand
and its target, molecular mechanical energy, solvation free energy calculated using the
Generalized Born (GB) model, non-polar solvation free energy, respectively.

∆EMM = Ecomplex −
(

Eprotein + Eligand

)
where ELigand, EProtein, and EComplex were the minimized energies of the ligand, protein,
and protein–ligand complex, respectively.

∆Gsolv_GB = GsolvGB(complex) − GsolvGB(protein)
+ Gsolv_GB(ligand)

where GSolv_GB (Ligand), GSolv_GB (Protein), and GSolv_GB (Complex) were the free energies
of solvation of the ligand, protein, and protein–ligand complex, respectively.

∆GSA = GSA(compelx) − GSA(protein) + GSA(ligand)

where, GSA (Ligand), GSA (Protein), and GSA (Complex), were the surface area energies of
the ligand, protein, and protein–ligand complex, respectively.

The free energy, in the Prime-MM/GBSA method, is calculated as follows:

∆GBind = ∆GCoulomb + ∆GvdW + ∆GCovalent + ∆GH−bond + ∆GSol_Lipo + ∆GSolv_GB

+∆GPacking + ∆GSel f−contact

where ∆GCoulomb, ∆GvdW, ∆GCovalent, ∆G(H-bond), ∆G(Sol_Lipo), ∆G(Solv_GB), ∆GPacking,
∆G(Self-contact), were Coulombic (electrostatic) contribution, van der Waals contribution,
hydrogen bond contribution to the binding free energy between the ligand and its receptor,
lipophilic (hydrophobic) contribution to solvation free energy, polar solvation free energy
by GB model, packing free energy contribution, self-contact free energy or self-energy of
a molecule.

2.11. Principal Component Analysis (PCA)

The collective motion of proteins along with their respective ligands was measured
by employing the PCA approach using the Bio3D package [44]. In this method, the initial
step involved removing the translational and rotational movements of the protein. Next,
the covariance matrix and its eigenvectors were determined by aligning the protein’s
atomic coordinates with a reference structure. The symmetric matrix was then diagonalized
through an orthogonal transformation, resulting in a matrix of eigenvalues. The covariance
matrix (C) is computed using the following formula.

Cij =
〈
(xi − ⟨xi⟩)

(
xj −

〈
xj
〉)〉

i, j = 1, 2, 3, . . . .., 3N
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where N, xi/j and <xi/j> represent the number of Cα-atom, the Cartesian coordinate of the
ith/jth Cα-atom, and time average of all the conformations, respectively.

3. Results
3.1. Active Phytoconstituents of SX and PZ

Using the IMPPAT database, the active phytochemical constituents of SX and PZ were
selected. Up to 16 compounds of SX and 12 compounds of PZ were chosen after additional
research was performed based on the specific properties of thresholds of BS ≥ 0.3 and
DL ≥ 0.18; Table 1 also shows the molecular weight (kcal/mol), hydrogen bond acceptor
(HBA), hydrogen bond donor (HBD), total polar surface area (TPSA), gastrointestinal
absorption (GIA), and Log P for each compound.

Table 1. Information of selected phytoconstituents of SX and PZ.

Imppat ID Compound DL BS Molecular Weight
(kcal/mol)

Number
Heavy Atoms HBA HBD TPSA

(Å²) GIA Log
P

IMPHY003411 Scopolin 0.51 0.55 354.31 25 9 4 138.82 Low 1.34

IMPHY003656 Soladulcamaridine 0.53 0.55 413.64 30 3 2 41.49 High 4.15

IMPHY003952 Cycloartanol 0.47 0.55 428.73 31 1 1 20.23 Low 5.26

IMPHY004033 Solasodine 0.53 0.55 413.64 30 3 2 41.49 High 4.26

IMPHY004661 Apigenin 0.63 0.55 270.24 20 5 3 90.90 High 1.89

IMPHY005620 Esculin 0.43 0.55 340.28 24 9 5 149.82 Low 1.33

IMPHY006300 Cholesterol 0.49 0.55 386.65 28 1 1 20.23 Low 4.89

IMPHY011518 Esculetin 0.47 0.55 178.14 13 4 2 70.67 High 1.25

IMPHY011541 Scopoletin 0.7 0.55 192.17 14 4 1 59.67 High 1.86

IMPHY011642 Cycloartenol 0.45 0.55 426.72 31 1 1 20.23 Low 5.16

IMPHY011933 Caffeic acid 0.47 0.56 180.16 13 4 3 77.76 High 0.97

IMPHY012402 Campesterol 0.47 0.55 400.68 29 1 1 20.23 Low 4.97

IMPHY014836 beta-Sitosterol 0.44 0.55 414.71 30 1 1 20.23 Low 5.05

IMPHY014842 Stigmasterol 0.46 0.55 412.69 30 1 1 20.23 Low 5.08

IMPHY015071 Sitosteryl glucoside 0.26 0.55 576.85 41 6 4 99.38 Low 5.17

IMPHY015079 Stigmasteryl
glucoside 0.28 0.55 574.83 41 6 4 99.38 High 5.24

IMPHY000398 Isozeylanone 0.84 0.55 374.34 28 6 2 108.74 High 2.02

IMPHY000467 Plumbazeylanone 0.37 0.55 576.55 43 9 3 163.11 Low 2.74

IMPHY001191 Plumbagin 0.67 0.55 188.18 14 3 1 54.37 High 1.79

IMPHY002828 Elliptinone 0.79 0.55 374.34 28 6 2 108.74 High 2.58

IMPHY003551 3-chloroplumbagin 0.73 0.55 222.62 15 3 1 54.37 High 1.89

IMPHY004515 Zeylanone 0.73 0.55 374.34 28 6 2 108.74 High 2.13

IMPHY004866 Droserone 0.63 0.85 204.18 15 4 2 74.60 High 1.35

IMPHY007957 Chitranone 0.79 0.55 374.34 28 6 2 108.74 High 2.58

IMPHY008637 Maritinone 0.79 0.55 374.34 28 6 2 108.74 High 2.45

IMPHY013935 Methylnaphthazarin 0.63 0.55 204.18 15 4 2 74.60 High 1.82

IMPHY014893 D-Glucose 0.29 0.55 180.16 12 6 5 110.3 Low 0.35

IMPHY014916 D-Fructose 0.29 0.55 180.16 12 6 5 110.38 Low 0.61
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3.2. Phytoconstituent–Target Network Construction

To show the relationships between the SX and PZ phytoconstituents and their re-
spective targets, a network known as the phytoconstituent–target network was created
(Figure S1). A total of 28 phytoconstituents were mapped to 955 potential targets in the
network, which has 401 nodes and 983 edges. The SX and PZ phytoconstituents are shown
in the blue and green rounded rectangles, respectively, in the network, whereas the pu-
tative targets were depicted as pink circles. The phytoconstituents of SX as Apigenin,
Beta-sitosterol, Campesterol, Cholesterol, Sitosteryl glucoside, Stigmasterol, Stigmasteryl
glucoside, Cycloartenol, Soladulcamaridine, Solasodine, Scopolin, Cycloartanol, Esculin,
Caffeic acid, Esculetin, and Scopoletin, relate to targets 100, 44, 58, 56, 26, 41, 29, 26, 32, 32,
34, 35, 38, 52, 61 and 61, respectively. The phytoconstituents of PZ as 3-chloroplumbagin,
Chitranone, D-Fructose, D-Glucose, Droserone, Elliptinone, Isozeylanone, Maritinone,
Methylnaphthazarin Plumbagin, Plumbazeylanone, and Zeylanone related to the targets
20, 14, 11, 13, 15, 10, 64, 26, 16, 9, 26, and 45, respectively.

3.3. Predicting DR-Related Targets

The information was compiled by extracting relevant targets associated with DR
from the GeneCards database. A total of 5181 potential DR-related target genes were
identified from the GeneCards database. The results of a Venn diagram analysis, shown
in Figure 1, reveal that 217 probable target genes are found among the 5181 DR genes
and the 371 potential targets of the active phytoconstituents in SX and PZ after removing
the duplicates.
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3.4. Common Targets PPI Network

A total of 217 putative target genes common to SX and PZ were imported into the
STRING database for analysis and the formation of a PPI network. The network construc-
tion considered only experimental interaction sources with high-confidence network edges.
As shown in Figure S2, a medium confidence score of 0.400 was selected. This resulted in a
network comprising 217 nodes and 364 edges, with an average node degree of 3.35. The PPI
enrichment p-value was less than 1.0 × 10−16. The data were then imported into Cytoscape
for further analysis and network visualization (Figure S3). In this graphical representation,
the nodes represent the target genes, the edges indicate interactions between two potential
targets, and the extent value shows the strength of these interactions. CytoHubba was used
to extract the core PPI network. Using the degree method, the top 10 nodes with the shortest
paths were identified. Consequently, the core targets selected, in descending order, were
EGFR, SRC, STAT3, EP300, AKT1, ESR1, HSP90AB1, CTNNB1, PIK3R1, and HSP90AA1 (as
shown in Figure 2). These primary targets were chosen for the phytoconstituents–targets–
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pathways network and for molecular docking with the main phytoconstituents of SX and
PZ in the context of DR treatment. All 217 target genes identified through the PPI study
were also compiled for pathway enrichment analysis.
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3.5. GO and KEGG Enrichment Analyses

Based on the specific criteria (p < 0.05 and enrichment factor >1.5), the analysis focused
on the top ten significantly enriched BPs, CCs, and MFs. The bubble chart illustrates the
ratio of target genes to all annotated genes within each functional pathway, with the size
of the dot representing the number of target genes associated with each pathway. The
analysis identified 4644 enriched BPs, 371 CCs, and 242 MFs. For BPs, the three most
significantly enriched terms related to key targets were GO:0006979 response to oxidative
stress, GO:0043405 regulation of MAP kinase activity, and GO:0071902 positive regulation
of protein serine/threonine kinase activity (Figure S4A). In terms of CCs, the top three
significantly enriched terms were GO:0045121 membrane raft, GO:0098857 membrane
microdomain, and GO:0098589 membrane region (Figure S4B). For MFs, the top three sig-
nificant enrichments were GO:0004674 protein serine/threonine kinase activity, GO:0004713
protein tyrosine kinase activity, and GO:0019902 phosphatase binding (Figure S4C). Under-
standing these mechanisms is essential for grasping how SX and PZ act in the treatment of
DR. The KEGG enrichment analysis further identified the interactions between SX and PZ
and the pathways relevant to DR treatment. The top ten significant signaling pathways
(p < 0.05), based on their enrichment scores (−log10(p-value)), are shown in Figure S4D and
Table 2. The top three pathways identified were hsa01521 EGFR tyrosine kinase inhibitor
resistance, hsa04066 HIF-1 signaling pathway, and hsa05205 Proteoglycans in cancer. A
total of 282 pathways were discovered, suggesting that SX and PZ may help mitigate EGFR
tyrosine kinase inhibitor resistance in DR treatment.
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Table 2. Top 10 highly enriched pathways from KEGG pathways enrichment analysis with ID,
P-value, genes involved, and gene count.

ID Pathway Name p-Value GeneIDs Count

hsa01521 EGFR tyrosine kinase
inhibitor resistance 5.3115 × 10−23

PRKCG/PRKCA/PRKCB/PIK3CA/VEGFA/
FGF2/BRAF/BCL2/BCL2L1/EGFR/IGF1R/

KDR/MET/AXL/PIK3R1/SRC/AKT1/ERBB2/
MAPK1/PIK3CB/STAT3/PDGFRB/AKT2/

AKT3/MAP2K1/JAK2

26

hsa04066 HIF-1 signaling
pathway 2.17615 × 10−21

EP300/EGLN1/PRKCG/PRKCA/PRKCB/
PIK3CA/VEGFA/FLT1/NOS2/BCL2/PDK1/
PFKFB3/EGFR/IGF1R/PIK3R1/AKT1/TLR4/

ERBB2/MAPK1/PIK3CB/STAT3/INSR/
TEK/GAPDH/HK1/AKT2/AKT3/MAP2K1

28

hsa05205 Proteoglycans in cancer 2.29832 × 10−17

PRKCG/PRKCA/PRKCB/PIK3CA/VEGFA/FGF2/
HPSE/TNF/BRAF/CTNNB1/ESR1/MMP9/

MMP2/EGFR/IGF1R/KDR/MET/PIK3R1/SRC/
PTK2/AKT1/PTPN6/SHH/TLR4/ERBB2/MAPK1/
PIK3CB/STAT3/MAPK14/AKT2/AKT3/MAP2K1

32

hsa04151 PI3K-Akt signalling
pathway 3.08738 × 10−17

PRKCA/PIK3CA/PRKAA1/HSP90AA1/VEGFA/
FGF1/FGF2/HSP90AB1/MCL1/FLT1/SGK1/CDK2/
CDK4/HSP90B1/PIK3CG/BCL2/BCL2L1/CDK6/
SYK/EGFR/IGF1R/KDR/MET/PIK3R1/PTK2/
AKT1/TLR4/ERBB2/MAPK1/NGFR/PIK3CB/
PDGFRB/FLT4/INSR/TEK/IL2/AKT2/AKT3/

MAP2K1/JAK2/CSF1R

41

hsa04015 Rap1 signaling
pathway 4.77529 × 10−17

PRKCG/PRKCA/PRKCB/PIK3CA/VEGFA/FGF1/
FGF2/FLT1/BRAF/CTNNB1/ADORA2A/EGFR/
IGF1R/KDR/MET/PIK3R1/SRC/AKT1/DRD2/
MAPK1/NGFR/PIK3CB/CNR1/PDGFRB/FLT4/
INSR/TEK/MAPK14/AKT2/AKT3/MAP2K1/CSF1R

32

hsa05215 Prostate cancer 6.97404 × 10−17

EP300/PIK3CA/HSP90AA1/HSP90AB1/MMP3/
BRAF/CDK2/HSP90B1/BCL2/AR/CTNNB1/MMP9/

EGFR/IGF1R/PIK3R1/AKT1/ERBB2/MAPK1/
PIK3CB/PDGFRB/AKT2/AKT3/MAP2K1

23

hsa04933
AGE-RAGE signalling

pathway in diabetic
complications

1.44583 × 10−16

PRKCA/PRKCB/PIK3CA/NOX4/VEGFA/MAPK8/
TNF/CDK4/BCL2/PRKCD/MMP2/PIK3R1/AKT1/

MAPK1/PIK3CB/F3/STAT3/MAPK14/AKT2/
AKT3/JAK2/TGFBR1/MAPK9

23

hsa01522 Endocrine resistance 1.19061 × 10−15

PIK3CA/MAPK8/BRAF/CDK4/BCL2/ESR1/MMP9/
MMP2/EGFR/IGF1R/PIK3R1/SRC/PTK2/AKT1/

ERBB2/MAPK1/PIK3CB/MAPK14/AKT2/
AKT3/MAP2K1/MAPK9

22

hsa05207
Chemical

carcinogenesis receptor
activation

4.00274 × 10−15

PRKCG/PRKCA/PRKCB/PIK3CA/HSP90AA1/
VEGFA/FGF2/HSP90AB1/CYP1B1/HSP90B1/BCL2/
AR/CHRNA7/ESR1/AHR/EGFR/PIK3R1/SRC/
AKT1/VDR/MAPK1/PIK3CB/CYP1A2/CYP3A4/

STAT3/PPARA/AKT2/AKT3/MAP2K1/JAK2

30

hsa05417 Lipid and
atherosclerosis 5.91259 × 10−15

PRKCA/PIK3CA/HSP90AA1/HSP90AB1/MMP1/
MMP3/MAPK8/TNF/HSP90B1/BCL2/BCL2L1/
MMP9/PIK3R1/SRC/PTK2/AKT1/TLR4/MAPK1/
PIK3CB/CYP2C9/NFE2L2/STAT3/PPARG/HSPA8/

HSPA5/MAPK14/AKT2/AKT3/JAK2/MAPK9

30
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3.6. SX and PZ Phytoconstituents–Targets–Pathways Network Construction

Cytoscape software was used to import the data from the KEGG analysis of target path-
ways to construct a network graph showing the connections between phytoconstituents,
targets, and pathways. The purpose of this network graph was to make it obvious which
phytoconstituent interacts with which targets and which pathways each target is a member
of. The SX and PZ phytoconstituents–targets–pathways network is shown in Figure S5,
which includes 551 edges connecting 130 nodes (1 SX, 1 PZ, 28 phytoconstituents, 90 targets,
and 10 pathways). The network analysis revealed that at least two target genes interact
with various SX and PZ phytoconstituents (except Droserone from PZ). The top ten tar-
geted genes from the core PPI network were used to generate the network in Figure 3.
Additionally, five targets (EGFR, STAT3, SRC, AKT1, HSP90AA1) were identified as po-
tentially involved in DR-related pathways. Many of these target genes were influenced
by a substantial number of active phytoconstituents. The network analysis revealed var-
ious characteristics of SX and PZ phytoconstituents and their targets in the context of
DR therapy.
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Figure 3. The SX and PZ phytoconstituents–top 10 targets–pathways network is illustrated as
follows: Green elliptical nodes represent SX and PZ, purple hexagon nodes indicate SX and PZ
phytoconstituents, orange diamond nodes denote target proteins/genes, and blue round rectangle
nodes signify pathways. The edges in the network illustrate the interactions between these nodes.

3.7. Molecular Docking Simulation of Phytoconstituents and Targets

Molecular docking was used to evaluate the active phytoconstituents and targets
identified in the phytoconstituents–top 10 targets–pathways network analysis, specifi-
cally targeting EGFR (5UGB), STAT3 (6NJS), SRC (2BDJ), AKT1 (3O96), and HSP90AA1
(4BQG). The absorption, distribution, metabolism, and excretion properties of the 28 se-
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lected phytoconstituents were assessed using the SwissADME web-based program (http:
//www.swissadme.ch/index.php, accessed on 18 April 2024). The free binding energies
(in kcal/mol) of the key targets and active phytoconstituents obtained from molecular
docking simulations are presented in Table 3. Visualization of the docking outcomes was
performed using PyMOL 3.0 and Discovery Studio BIOVIA 2024. A lower binding energy
indicates a stronger interaction between the ligand and receptor [28]. An affinity less than
−4.25 kcal/mol suggests a definite interaction, less than −7.0 kcal/mol indicates strong
binding activity, and less than −5.0 kcal/mol indicates good binding activity [45].

Table 3. Molecular docking scores, free binding energies (kcal/mol) and in the bracket glide ligand
efficiency (kcal/mol per heavy atom) of key targets and active phytoconstituents.

Phytoconstituent Name
(PubChem ID) EGFR STAT3 SRC AKT1 HSP90AA1

Scopolin (439514) −6.588 (−0.264) −4.505 (−0.180) −8.420 (−0.337) _ −10.264 (−0.411)

Soladulcamaridine
(91871142) −3.365 ( −0.112) −2.659 (−0.089) −1.827 (−0.061) _ −2.865 (−0.095)

Cycloartanol (12760132) −2.837 (−0.092) _ −1.455 (−0.047) _ −1.906 (−0.061)

Solasodine (442985) −3.704 (−0.123) −2.061 (−0.069) −2.306 (−0.077) _ −2.568 (−0.086)

Apigenin (5280443) −7.648 (−0.382) −5.383 (−0.269) −9.127 (−0.456) −3.504 (−0.175) −8.808 (−0.440)

Esculin (5281417) −9.283 (−0.387) −4.641 (−0.193) −7.067 (−0.294) −7.116 (−0.296) −10.618 (−0.442)

Cholesterol (5997) −3.574 (−0.128) _ −2.079 (−0.074) _ −4.643 (−0.166)

Esculetin (5281416) −3.826 (−0.294) −4.124 (−0.317) −5.571 (−0.429) −3.086 (−0.237) −8.845 (−0.680)

Scopoletin (5280460) −6.210 (−0.444) −2.788 (−0.199) −5.792 (−0.414) −3.891 (−0.278) −8.317 (−0.594)

Cycloartenol (92110) −2.219 (−0.072) −1.309 (−0.042) −1.586 (−0.051) _ −4.014 (−0.129)

Caffeic acid (689043) −4.200 (−0.323) −3.903 (−0.300) −7.016 (−0.540) −4.569 (−0.351) −7.172 (−0.552)

Campesterol (173183) −4.021 (−0.139) −2.198 (−0.076) −2.656 (−0.092) _ −6.608 (−0.228)

Beta-Sitosterol (222284) −3.850 (−0.128) _ −2.872 (−0.096) _ −6.621 (−0.221)

Stigmasterol (5280794) −3.873 (−0.129) _ −2.950 (−0.098) _ −6.595 (−0.220)

Sitosteryl glucoside
(70699351) −5.998 (−0.146) −4.970 (−0.121) −0.067 (−0.002) _ −3.174 (−0.077)

Stigmasteryl glucoside
(70699355) −5.316 ( −0.130) _ _ _ _

Isozeylanone (100947536) −5.085 ( −0.182) −3.472 (−0.124) −5.396 (−0.193) _ −10.126 (−0.362)

Plumbazeylanone
(100947539) −2.564 (−0.060) _ −3.568 (−0.083) _ −2.814 (−0.065)

Plumbagin (10205) −6.645 (−0.475) −3.552 (−0.254) −6.604 (−0.472) −3.336 (−0.238) −7.421 (−0.530)

Elliptinone (146680) −5.731 (−0.205) −3.283 (−0.117) −6.358 (−0.227) _ −8.926 (−0.319)

3-chloroplumbagin (338719) −6.096 (−0.406) −3.132 (−0.209) −6.390 (−0.426) _ −7.556 (−0.504)

Zeylanone (5276618) −5.072 (−0.181) −4.041 (−0.144) −3.791 (−0.135) _ −8.794 (−0.314)

Droserone (442739) −6.278 (−0.419) −3.252 (−0.217) −4.828 (−0.322) −2.235 (−0.149) −6.633 (−0.442)

Chitranone (633072) −5.521 (−0.197) −1.999 (−0.071) −8.361 (−0.299) _ −8.287 (−0.296)

Maritinone (633024) −5.921 (−0.211) −3.702 (−0.1329) −3.562 (−0.127) _ −9.810 (−0.350)

Methylnaphthazarin
(271296) −6.589 (−0.439) −4.281 (−0.285) −7.300 (−0.487) −3.210 (−0.214) −7.406 (−0.494)

D-Glucose (5793) −6.010 (−0.501) −5.141 (−0.451) −7.354 (−0.613) −4.873 (−0.406) −5.195 (−0.433)

D-Fructose (2723872) −5.005 (−0.417) −5.641 (−0.470) −7.712 (−0.643) −5.094 (−0.424) −5.589 (−0.466)

http://www.swissadme.ch/index.php
http://www.swissadme.ch/index.php
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The phytoconstituents–top 10 targets–pathways network and molecular docking score
data were combined to select the best ligand for the targets. The findings identified EGFR,
STAT3, SRC, AKT1, and HSP90AA1 as the main therapeutic targets. Apigenin, chlorogenic
acid, and stigmasterol glucoside were identified as potential active phytoconstituents of
SX and PZ for treating DR. Apigenin showed better binding affinity to EGFR, STAT3, SRC,
and AKT1, with docking scores of −7.648 kcal/mol, −5.383 kcal/mol, −9.127 kcal/mol,
and −3.504 kcal/mol, respectively. Isozeylanone bound strongly to HSP90AA1 with a
docking score of −10.126 kcal/mol, confirmed by the phytoconstituents–top 10 targets–
pathways network. Additionally, Scopolin interacted strongly with EGFR (docking score:
−6.588 kcal/mol), while Maritinone showed potential binding to HSP90AA1 (docking
score: −9.810 kcal/mol). Sitosteryl glucoside had a docking score of −4.970 kcal/mol with
STAT3, and Scopoletin had a docking score of −5.792 kcal/mol with SRC, confirming its
potential binding.

Based on data from the KEGG pathway, the SX and PZ phytoconstituents–top 10 targets–
pathways network, and the molecular docking results, SRC and HSP90AA1 were con-
cluded to be key targets in disease treatment. These targets are inhibited by Apigenin and
Isozeylanone, which likely function through multi-target and multi-pathway mechanisms.
Consequently, these targets were selected for MD simulation analysis.

From the results, it is indicated that Apigenin can occupy the central cavity of SRC, a site
also occupied by the control inhibitor AP23464 (3-[2-(2-cyclopentyl-6-{[4-(dimethylphosphoryl)
phenyl]amino}-9H-purin-9-yl)ethyl]phenol) as shown in Figure S6A,B. The docking energy of
the control inhibitor AP23464 towards SRC was estimated to be −10.0 kcal/mol, whereas the
docking energy for Apigenin was calculated to be −9.127 kcal/mol. The control (AP23464)
interacted with SRC through two conventional hydrogen bonds with MET341:O, along
with one carbon–hydrogen bond with GLU339:O. Also, the control formed one electro-
static interaction and Pi–Donor hydrogen bond with LYS295:HZ2 (Figure 4A, Table S1).
Further, the control–SRC complex was stabilized by eight hydrophobic interactions with
LEU273:CD2, THR338:CD2, LEU393:CD2, VAL281 (two interactions), LEU273, ALA293,
and LYS295. Additionally, the control inhibitor formed van der Waals interactions with
various residues of SRC, including GLY274, GLN275, GLY310, VAL323, ILE336, GLU339,
TYR340, SER342, LYS343, GLY344, SER345, ALA403, and ASP404, as shown in Figure 4A.
Conversely, the Apigenin–SRC complex was stabilized by two conventional hydrogen
bonds with MET341:HN and MET341:O, along with one electrostatic interaction with
LYS295:NZ, and one Pi–Sulfur interaction with MET314:SD (Figure 4B, Table S1). Moreover,
Apigenin formed four Pi–Sigma hydrophobic interactions with VAL281CG1, THR338:CG2,
LEU393:CD1, and LEU393:CD2, along with six Pi–Alkyl hydrophobic interactions with
VAL281, ALA293 (two interactions), LEU273, VAL323, and ALA403. Furthermore, Apigenin
interacted with SRC through van der Waals interactions with several residues, including
GLU310, ILE336, GLU339, TYR340, GLY344, SER345, ASP404, and PHE405, as illustrated
in Figure 4B.

Additionally, Isozeylanone was able to occupy the central cavity of HSP90AA1, which
is the same site targeted by the control inhibitor NMS-E973 (5-(3,4-dichloro-phenoxy)-
benzene-1,3-diol), as depicted in Figure S7A,B. The docking energy for the control inhibitor
NMS-E973 towards HSP90AA1 was calculated to be −8.3 kcal/mol, while Isozeylanone
showed a docking energy of −10.126 kcal/mol. The control (NMS-E973) interacted with
HSP90AA1 through one conventional hydrogen bond with ASN51:HD21 and one Pi–
Sulfur bond with MET98:SD. Also, the control formed eight hydrophobic interactions with
ALA55, MET98, LEU107 (two interactions), PHE138 (two interactions), TYR139, and TRP162
(Figure 5A, Table S2). In addition, the control formed van der Waals interactions with the
residues of HSP90AA1, such as LEU48, SER52, ILE96, GLY97, LEU103, VAL150, and
THR184. Interestingly, ASP93 exhibited an unfavorable interaction with the control ligand,
as shown in Figure 5A. Conversely, the Isozeylanone–HSP90AA1 complex was stabilized by
two conventional hydrogen bonds with GLY97:HN, and GLY97:O, along with one Pi–Sulfur
interaction with MET98:SD (Figure 5B, Table S2). Moreover, Isozeylanone formed two Pi–
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Sigma hydrophobic interactions with LEU107:CD1, along with two Pi–Sigma hydrophobic
interactions with PHE138, three Alkyl hydrophobic interactions (MET98, VAL150, and
VAL186), and four Pi–Alkyl hydrophobic interactions with ALA55 (two interactions),
MET98, and PHE138. In addition, Isozeylanone was engaged with HSP90AA1 through
van der Waals interactions with residues such as ASN51, LYS58, ILE96, GLY97, ALA111,
LEU103, TRP162, and THR184 (Figure 5B).
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3.8. Analysis of MD Simulation

MD simulation is a pivotal computational method in drug discovery, offering detailed
insights into the dynamic behaviors of biological macromolecules and their interactions
with potential drug candidates. By exploring the structural changes, binding strengths,
and conformational fluctuations of protein–ligand complexes, MD simulations enable
rational drug design and virtual screening. This process accelerates the development of
new therapeutics with improved efficacy and safety profiles.
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3.8.1. RMSD Analysis

RMSD is a crucial metric for assessing the stability of protein–ligand complexes in MD
simulations. It quantifies how the structure deviates from its initial conformation over the
course of the simulation [46].

In this study, the stability of SRC and the SRC–Apigenin complex was evaluated by
examining the RMSD of Cα-atoms over a 200 ns MD simulation. For the SRC protein alone,
the RMSD showed some initial fluctuations during the first 20 ns before achieving a stable
state. Over the period from 20 to 200 ns, the RMSD for SRC alone ranged between 0.138
and 0.201 nm, with an average of 0.183 ± 0.006 nm (refer to Figure 6A). Conversely, the
SRC–Apigenin complex displayed initial RMSD variations within the first 5 ns, which
then stabilized as stable interactions were established between the protein and ligand. For
this complex, the RMSD fluctuated between 0.027 and 0.094 nm from 5 to 200 ns, with an
average of 0.073 ± 0.007 nm.
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Similarly, the RMSD of HSP90AA1 and the HSP90AA1–Isozeylanone complex was
assessed over the same 200 ns simulation. The HSP90AA1 protein alone exhibited minor
RMSD fluctuations initially, eventually stabilizing. The RMSD for HSP90AA1 alone varied
from 0.077 to 0.230 nm, with an average of 0.149 ± 0.005 nm (see Figure 6C). The HSP90AA1–
Isozeylanone complex showed initial RMSD variations during the first 5 ns, followed by
stabilization once favorable protein–ligand interactions were formed. For this complex, the
RMSD ranged from 0.040 to 0.188 nm during the 5 to 200 ns period, with an average value
of 0.122 ± 0.006 nm.
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3.8.2. RMSF Analysis

RMSF analysis is a valuable tool for understanding how the binding of ligands influ-
ences the conformational dynamics of amino acid residues within proteins [47].

In this research, we employed RMSF analysis to assess the side-chain conformational
changes of amino acid residues in SRC and its complex with Apigenin, as well as in
HSP90AA1 and its complex with Isozeylanone. The RMSF plots typically highlight regions
of heightened flexibility often found in protein loops and terminal regions. For SRC, the
RMSF profile of the SRC–Apigenin complex was largely similar to that of SRC alone,
indicating that binding with Apigenin induces minimal conformational changes in SRC
(Figure 6B). Nevertheless, minor variations were noted, likely attributable to the insertion
and positioning of Apigenin within SRC’s binding site.

Similarly, the RMSF analysis of HSP90AA1 and its complex with Isozeylanone revealed
that their profiles were closely aligned (Figure 6D). This suggests that Isozeylanone binding
causes only slight alterations in HSP90AA1’s conformation. Again, minor differences
were observed, which could be due to Isozeylanone’s insertion and positioning within
the HSP90AA1 binding site. Overall, RMSF analysis provided valuable insights into
the dynamic behavior of SRC and HSP90AA1 in the presence of their respective ligands.
These findings enhance our understanding of the molecular interactions between SRC and
Apigenin, as well as HSP90AA1 and Isozeylanone, and offer clues regarding the potential
functional implications of these interactions.

3.8.3. Rg Analysis

Rg measurements are essential for evaluating critical aspects of ligand–protein interac-
tions, such as the ligand’s positioning within the protein’s binding site and the compactness
of the resulting protein–ligand complex [48].

In our study, we utilized Rg measurements to analyze the behavior of SRC both
independently and in the presence of Apigenin. Over a 200-nanosecond timeframe, the Rg
values for SRC ranged from 1.875 to 1.923 nm in the absence of Apigenin and from 1.882
to 1.944 nm in its presence (Figure 7A). The average Rg values for SRC without and with
Apigenin were 1.903 ± 0.007 nm and 1.915 ± 0.008 nm, respectively. These findings suggest
that Apigenin induces a slight increase in the overall compactness of the SRC protein,
indicating stable packing of the SRC–Apigenin complex throughout the MD simulation.
This observation underscores Apigenin’s potential role in modulating SRC’s structural
dynamics, which may affect its functional activity as a ligand.

Additionally, we employed Rg measurements to examine the behavior of HSP90AA1
both independently and in the presence of Isozeylanone. Over the 200-nanosecond time-
frame, the Rg values for HSP90AA1 alone ranged from 1.692 to 1.744 nm without Isozey-
lanone and from 1.704 to 1.755 nm with Isozeylanone (Figure 7C). The average Rg values for
HSP90AA1 without and with Isozeylanone were 1.716 ± 0.004 nm and 1.728 ± 0.004 nm,
respectively. These results indicate that Isozeylanone induces a slight increase in the overall
compactness of the HSP90AA1 protein, suggesting stable packing of the HSP90AA1–
Isozeylanone complex throughout the MD simulation. This observation highlights Isozey-
lanone’s potential role in modulating the structural dynamics of HSP90AA1, which may
influence its functional activity as a ligand.
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3.8.4. SASA

Surface area measurements, referred to as SASA, are a widely used method for evalu-
ating the following two crucial aspects: the degree of exposure of a ligand within a protein’s
binding site and the interactions between the protein–ligand complex and surrounding
water molecules [49]. In this study, solvent-accessible surface area (SASA) measurements
were employed to evaluate the behavior of SRC with and without Apigenin. Over the
0–200 nanoseconds timeframe, the SASA values for SRC ranged from 128.4 to 137.9 nm²
without Apigenin and from 128.2 to 139.1 nm² with Apigenin (Figure 7B). The mean SASA
values of SRC alone and the SRC–Apigenin complex were calculated to be 133.6 ± 0.6 nm²
and 134.5 ± 0.9 nm², respectively. These results suggest that the presence of Apigenin may
slightly alter the surface accessibility of the SRC protein, possibly indicating changes in its
binding site conformation or interactions with surrounding solvent molecules. Similarly,
SASA measurements were used to evaluate the behavior of HSP90AA1 with and without
Isozeylanone. Over the 0–200 nanoseconds timeframe, the SASA values for HSP90AA1
ranged from 104.9 to 116.5 nm² without Isozeylanone and from 105.9 to 120.4 nm² with
Isozeylanone (Figure 7D). The mean SASA values of HSP90AA1 alone and the HSP90AA1–
Isozeylanone complex were calculated to be 110.2 ± 0.6 nm² and 111.8 ± 0.9 nm², respec-
tively. These findings suggest that the presence of Isozeylanone may slightly alter the
surface accessibility of the HSP90AA1 protein, potentially indicating changes in its binding
site conformation or interactions with surrounding solvent molecules.
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3.9. Analysis of Hydrogen Bonds

During MD simulation, understanding the stability of protein–ligand complexes is
crucial. One method to assess this stability involves analyzing the formation of hydro-
gen bonds within the protein (intramolecular) and between the protein and the ligand
(intermolecular) over time. In this study, intramolecular hydrogen bonds within the SRC
protein fluctuated between 150 and 190 bonds (Figure 8A), indicating the protein’s dynamic
nature during the simulation. Intermolecular hydrogen bonds between SRC and Apigenin
varied from 0 to 7 bonds (Figure 8B). Despite these fluctuations, the presence of consistent
hydrogen bonds throughout the MD simulation suggests that the SRC–Apigenin complex
remains stable over time.
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Similarly, the intramolecular hydrogen bonds within the HSP90AA1 protein ranged
from 139 to 179 bonds (Figure 8C), reflecting its dynamic structure. Intermolecular hy-
drogen bonds between HSP90AA1 and Isozeylanone fluctuated between 0 and 6 bonds
(Figure 8D). Despite these variations, the consistent hydrogen bonds throughout the simu-
lation indicate that the HSP90AA1–Isozeylanone complex is stable.

The formation of stable hydrogen bonds between the protein and the ligand is in-
dicative of favorable interactions, essential for maintaining the structural integrity of the
protein–ligand complex. These interactions may contribute to the ligand’s effectiveness
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in modulating the protein’s function. Therefore, the observed stability of both the SRC–
Apigenin and HSP90AA1–Isozeylanone complexes implies that Apigenin and Isozeylanone
could potentially act as reliable ligands for SRC and HSP90AA1, respectively, under physi-
ological conditions.

3.10. Analysis of Free Energy Calculations (MM/GBSA)

To assess the binding strength of SRC with Apigenin and HSP90AA1 with Isozey-
lanone, the free energy, representing the protein–ligand interactions in a solvent environ-
ment, was calculated using the MM/GBSA method. The results, shown in Table 4, reveal
that the HSP90AA1–Isozeylanone complex had a lower free energy (−49.85 kcal/mol) com-
pared to the SRC–Apigenin complex (−45.58 kcal/mol). In this context, the primary contrib-
utors to the stability of the protein–ligand complexes were Coulombic energy (∆GCoulomb),
lipophilic energy (∆GSA or ∆GSol_Lipo), and van der Waals energy (∆GvdW). In contrast,
the polar solvation energy (∆GSolv or ∆GSolGB) and covalent energy (∆GCovalent) were the
main forces opposing the protein–ligand interactions. These findings are consistent with
molecular docking results, highlighting that Apigenin and Isozeylanone exhibit significant
inhibitory potential against SRC and HSP90AA1, respectively (Table 4).

Table 4. Free energy (MM/GBSA) analysis for the interaction of SRC, and HSP90AA1 with Apigenin,
and Isozeylanone, respectively.

System ∆G or
∆GBind

∆GCoulomb ∆GCovalent ∆GH-bond
∆GSA or

∆GSol_Lipo

∆GSolv or
∆GSolGB

∆GPacking ∆GvdW

SRC-Apigenin −45.58 −18.22 6.91 −2.11 −15.70 19.58 −0.49 −35.55
HSP90AA1

Isozeylanone −49.85 −31.73 2.89 −3.03 −8.09 30.21 −1.71 −38.39

3.11. PCA

PCA is a widely employed technique for assessing the overall motion of target proteins
both with and without their respective ligands throughout simulations. In our study, PCA
was utilized to analyze the conformational sampling of SRC in the presence of Apigenin and
HSP90AA1 in the presence of Isozeylanone, along the PC1–PC2, PC2–PC3, and PC1–PC3
axes projected by the Cα-atoms (Figures 9 and 10).

Each red and blue dot on the plots represent a distinct conformational state of SRC
and HSP90AA1, while the red and blue clusters signify energetically favorable regions of
conformational space. In the PC1–PC2 projection, the conformational subspace occupied
by the SRC–Apigenin complex ranged from −15 to +15 along PC1 (14.45%) and from
−20 to +10 along PC2 (12.28%) (Figure 9A). Similarly, in the PC2–PC3 projection, the
conformational space occupied by the complex spanned from −20 to +10 along PC2
(12.28%) and from −12 to +10 along PC3 (7.43%) (Figure 9B). In the PC1–PC3 projection,
the conformational space ranged from −15 to +15 along PC1 (14.45%) and from −12 to +10
along PC3 (7.43%) (Figure 9C). Notably, the first three eigenvalues of SRC in the presence
of Apigenin collectively accounted for 34.2% of the conformational variances (Figure 9D).

For HSP90AA1 in the presence of Isozeylanone, the PC1–PC2 projection showed that
the conformational subspace ranged from −20 to +15 along PC1 (44.17%) and from −13
to +10 along PC2 (8.53%) (Figure 10A). In the PC2–PC3 projection, the conformational
space spanned from −13 to +10 along PC2 (8.53%) and from −8 to +11 along PC3 (6.13%)
(Figure 10B). In the PC1–PC3 projection, the conformational space ranged from −20 to +15
along PC1 (44.17%) and from −8 to +11 along PC3 (6.13%) (Figure 10C). Notably, the first
three eigenvalues of HSP90AA1 in the presence of Isozeylanone collectively accounted for
58.8% of the conformational variances (Figure 10D).
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These observations underscore the significant contribution of these principal com-
ponents to the overall structural dynamics of SRC induced by Apigenin binding and
HSP90AA1 induced by Isozeylanone binding. This insight into the dynamic behavior of
these protein–ligand complexes enhances our understanding of their functional implica-
tions in a biological context.

4. Discussion

DR, an ocular complication of diabetes, is marked by the formation of abnormal new
blood vessels, multiple microaneurysms, dot-and-blot hemorrhages, venous beading, and
cotton wool spots. Traditional Ayurvedic medicine has long suggested multi-target and
multi-phytoconstituent strategies to prevent and manage retinopathy. Notably, phyto-
constituents from SX and PZ are highly potent and frequently used for various illnesses,
including retinopathy.

To elucidate the molecular mechanisms of SX and PZ in treating DR, this study em-
ployed network pharmacology and molecular docking techniques. The following 16 active
phytoconstituents from SX were selected based on their BS and DL properties: Apigenin,
Beta-sitosterol, Campesterol, Cholesterol, Sitosteryl glucoside, Stigmasterol, Stigmasteryl
glucoside, Cycloartenol, Soladulcamaridine, Solasodine, Scopolin, Cycloartanol, Esculin,
Caffeic acid, Esculetin, and Scopoletin. Twelve phytochemicals from PZ were selected:
3-chloroplumbagin, Chitranone, D-Fructose, D-Glucose, Droserone, Elliptinone, Isozey-
lanone, Maritinone, Methylnaphthazarin, Plumbagin, Plumbazeylanone, and Zeylanone.

The GeneCards database provided 5181 retinopathy-related targets, while Swiss Tar-
get Prediction suggested 371 potential targets for these phytoconstituents. A comparison
of these datasets identified 217 putative targets unique to the interactions of SX and PZ
with DR. GO and KEGG pathway analyses enriched 4644 BPs, 371 CCs, 242 MFs, and
282 pathways from these 217 targets. GO enrichment analysis revealed the involvement of
SX and PZ phytoconstituents in numerous BPs, CCs, and MFs. These included responses
to oxidative stress, regulation of MAP kinase activity, positive regulation of protein ser-
ine/threonine kinase activity, membrane raft, membrane microdomain, membrane region,
protein serine/threonine kinase activity, protein tyrosine kinase activity, and phosphatase
binding, all of which are directly related to the development of DR.

The KEGG pathway enrichment analysis highlighted the involvement of pathways
such as PI3K–AKT signaling and EGFR tyrosine kinase inhibitor resistance in the pro-
gression of retinopathy. These pathways are crucial for processes like differentiation,
proliferation, and inflammation observed in DR. Analysis of the phytoconstituents–targets–
pathways network demonstrated that each phytoconstituent in SX and PZ could act on
multiple targets and the associated pathways implicated in DR therapy (Figure 11).

Figure 12 illustrates the selection of target proteins based on the involvement of the
top 10 core targets in EGFR tyrosine kinase inhibitor resistance and PI3K–AKT signaling
pathways, including EGFR, STAT3, SRC, AKT1, and HSP90AA1. Molecular docking was
conducted to validate the interaction between key phytoconstituents and their correspond-
ing protein targets. The results revealed that Apigenin and Maritinone showed the strongest
binding affinities for EGFR and HSP90AA1, respectively, indicating their potential roles in
modulating these proteins. Isozeylanone and Scopoletin also demonstrated favorable inter-
actions with HSP90AA1 and SRC, respectively, by binding effectively to their active sites.
Additionally, Scopolin exhibited a strong docking score with EGFR, suggesting a stable
interaction within its binding pocket. Pharmacological modification of EGFR, HSP90AA1,
and SRC could result in the downregulation of pathways involved in inflammation, cellular
proliferation, and stress response, which are key contributors to DR progression [50]. For
instance, the inhibition of EGFR can reduce abnormal angiogenesis, a hallmark of DR,
while the modulation of HSP90AA1 may help stabilize retinal cell homeostasis under
diabetic stress conditions [51]. Similarly, the inhibition of SRC could lead to decreased
vascular permeability and inflammation, both of which are central to DR pathogenesis [52].
These findings, supported by previous studies showing the efficacy of these compounds in
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mitigating retinal symptoms, underscore their therapeutic potential in DR treatment by
targeting and modulating key proteins involved in disease progression.
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EGFR tyrosine kinase inhibitor resistance in DR is a significant challenge, driven by
various mechanisms. These include secondary mutations like T790M, the activation of
alternative pathways such as proto-oncogene c-Met, hepatocyte growth factor, and Anex-
elekto, as well as downstream pathway aberrations like KRAS mutations and the loss of
phosphatase and tensin homologs. Additionally, the impairment of the apoptosis pathway
mediated by EGFR TKIs, such as the deletion of BCL2-like 11, contributes to resistance.
Aside from T790M, other resistance mechanisms such as avoiding EGFR signaling and
lineage transformation have also been identified, complicating therapeutic evaluation and
management [53]. The angiogenesis pathway and EGFR tyrosine kinase inhibitor resistance
pathway share several key protein targets, including VEGFA, PI3K, AKT, MAPK, and
STAT3, which are critical for endothelial cell proliferation, migration, and survival. In
DR, excessive VEGFA-mediated angiogenesis leads to abnormal blood vessel growth [54].
Similarly, in EGFR TKI resistance, angiogenesis persists through alternative pathways,
such as MET, SRC, and PRKCG, even when EGFR is inhibited. This redundancy allows
tumors and pathological processes to bypass EGFR blockade, sustaining angiogenesis
via PI3K/AKT and MAPK/ERK signaling. Our mapping of additional targets, including
BCL2, PRKCA/B, and PIK3R1, highlights the complexity of angiogenesis regulation. Tar-
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geting these overlapping proteins could offer a more effective therapeutic approach to both
DR and overcoming EGFR tyrosine kinase inhibitor resistance, emphasizing the need for
multi-target strategies to disrupt these interrelated pathways.
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Oxidative stress significantly contributes to DR and is intricately linked with the PI3K–
Akt pathway. In retinal tissue, chronic hyperactivation of the PI3K–Akt pathway in response
to glucose dysmetabolism exacerbates oxidative stress. Elevated glucose levels increase
oxidative stress through the enhanced production of reactive oxygen species (ROS) and the
activation of pro-inflammatory pathways. Specifically, this study demonstrates that high
glucose concentrations lead to increased fibronectin and α(v)β(3) integrin levels in retinal
endothelial cells, which promote a pro-migratory phenotype and further oxidative damage.
Concurrently, reduced GLUT-1 expression impairs glucose uptake, perpetuating metabolic
dysregulation. Our pathway analysis mapped numerous critical proteins involved in
oxidative stress, including PRKCA, PIK3CA, HSP90AA1, VEGFA, and BCL2. The PI3K–
Akt signaling cascade, through its interaction with these proteins, amplifies oxidative stress
and influences key cellular processes such as apoptosis and cellular proliferation. Targeting
this pathway, along with the associated oxidative stress proteins, could provide novel
therapeutic strategies for managing DR [55]. Enhanced focus on these proteins within the
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oxidative stress pathway will advance our understanding and potential treatment of this
debilitating condition.

The binding data from our study highlight that Apigenin, Maritinone, Isozeylanone,
Scopoletin, and Scopolin exhibit promising interactions with various targets, suggesting
potential therapeutic benefits for DR. Figure 11 illustrates the multi-target and multi-
pathway mechanisms of action that SX and PZ may employ in treating DR. The molecular
docking simulation results, as shown in Figure 12, further validate the findings from
the phytoconstituents–top 10 targets–pathways network analysis, reinforcing the overall
therapeutic potential of SX and PZ in DR management.

5. Conclusions

This study represents the first comprehensive analysis of the pharmacological and
molecular mechanisms of SX and PZ in the treatment of retinopathy, utilizing bioinformatics
tools such as network pharmacology, molecular docking, and MD simulation. We identified
28 active phytoconstituents in SX and PZ and compiled data for 371 active phytoconstituents
and 5181 DR-related targets. Through PPI analysis, ten key targets were identified, with
significant roles of major signaling pathways such as EGFR tyrosine kinase inhibitor
resistance and PI3K–AKT signaling in the mechanism of action of SX and PZ. Network
pharmacology highlighted strong correlations between these pathways and DR, indicating
that SX and PZ exert an inhibitory effect on these processes. The key target proteins
identified include EGFR, SRC, AKT1, HSP90AA1, and STAT3. The study underscores the
multi-target and multi-pathway mechanisms of SX and PZ, which has implications for
their therapeutic potential in DR. To fully elucidate the specific therapeutic mechanisms,
further in vivo and in vitro experimental validation is necessary. It is important to note
that this investigation primarily relied on network databases, molecular docking, and
MD simulation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology13090732/s1, Figure S1: Phytoconstituent-related target
network; Figure S2: STRING obtained the PPI network; Figure S3. PPI network obtained from
Cytoscape; Figure S4: Dot-plot diagrams of BPs, CCs, MFs and KEGG pathways; Figure S5: SX and
PZ Phytoconstituents–Targets–Pathways Network; Figure S6: 3D image of SRC–Apigenin docked
complex result comparing with AP23464 binding pocket region; Figure S7: 3D image of HSP90AA1–
Isozeylanone docked complex result comparing with NMS-E973 binding pocket region; Table S1:
Molecular interaction parameters for the binding of ligands to SRC; Table S2: Molecular interaction
parameters for the binding of Isozeylanone to HSP90AA1.
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