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Plant genetic resources (PGRs) are perhaps the most precious gift of nature to human-
ity: they provide food, shelter, medicines, and many goods of high economic value, not to
mention their key importance for healthy ecosystems and their aesthetic value. Nonethe-
less, the depletion of plant biodiversity is a problem that has escalated to a threatening
level in recent decades. There is an urgent need for the scientific community to search for
and put into practice modern methods for PGR conservation through principal studies and
practical applications of tissue culture and cryobiotechnology [1,2].

Over the past decades, cryopreservation has markedly progressed from laboratory
experiments using single-genotype materials to large-scale methodology testing on diverse
genebank collections [3–5]. This move has uncovered new shortcomings and challenges for
the methodology, such as considerable variation in recovery response among genotypes,
year-by-year reproducibility, the need for cost reduction, and specific issues related to
conserving plant material of tropical or subtropical origin with no inherited mechanisms
of cold or desiccation tolerance. From the perspective of protocol development, the big
challenges lie in the conservation and propagation of endangered species, including aquatic
and wetland plants that are hyper-sensitive to desiccation [6–9], as well as elite genotypes
of novel crops of increasing economic value [10–12]. These tendencies were reflected in the
contributions to the Special Issue, which focused on different aspects of in vitro culture
and cryobiotechnology to approach the problem of PGR conservation, including crops,
ornamental, medicinal, and model plants, as well as wild species and crop wild relatives.

Kaviani and Kulus [13] reviewed the application of cryobiotechnology to endangered
ornamental plants and fruit crops from the tropics and subtropics. These species do
not possess natural mechanisms of freezing tolerance and are often very sensitive to
dehydration. This complicates the implementation of classical cryopreservation protocols
for such species, making their cryobanking challenging and time-consuming. According
to the authors, encapsulation-dehydration and encapsulation-vitrification are the most
utilized methods for cryopreserving tropical ornamental plants, such as orchids, with shoot
tips, protocorms, and PLBs being the most frequently utilized materials. Tropical fruit trees
are cryopreserved mostly by vitrification, droplet-vitrification, and D- and V-cryoplate
techniques. Here, the material types vary from shoot tips to zygotic embryos, somatic
embryos, and embryogenic cell cultures [13]. Not surprisingly, a threshold recovery of
40% is not always possible to achieve with tropical germplasm. Yet, even 20–30% explant
recovery to whole plants is a significant step towards cryobanking these challenging
but highly economically important crops. The authors also advocate the use of “-omics”
technologies (genomics, proteomics, and metabolomics) to assist both protocol optimization
and the assessment of the genetic integrity of the recovered plants.

Popova et al. [14] review draws attention to the critical role of regrowth conditions in
the post-cryopreservation behavior of in vitro plant germplasm. The authors compiled the
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data from over 260 experimental and review papers to explore the parallels and differences
in optimum post-cryopreservation conditions for a wide range of plant materials, including
apical shoot tips, axillary buds, embryogenic and non-embryogenic cell cultures, somatic
embryos, hairy and adventitious roots, adventitious buds, rhizome sections, and micro-
tubers, amongst others. The review highlights and discusses major strategies, including
the balance of plant growth regulators; medium composition, physical state, and osmotic
potential; exogenous antioxidants; polymers; nanoparticles; antimicrobial agents; illumina-
tion quality and intensity. These strategies help plant materials combat non-lethal injuries
induced by cryopreservation stress. The authors demonstrate how different strategies and
their combinations at the post-cryopreservation step support plant material’s rapid recov-
ery and regeneration and advocated for step-wise recovery to improve normal regeneration
in stress-sensitive genotypes.

Yuorieva et al. [15] give a birds-eye view of the in vitro and cryobank collections
of plant cells and tissues, microalgae, and cyanobacteria at the research institute of the
Russian Academy of Sciences. This story is an excellent example of how a research institute
benefits from hosting, supporting, and encouraging the collaboration of multiple collections
of national importance. The history and current holdings of the collections and their
contribution to the institute’s research activities over the years are covered, emphasizing
material acquisition strategies, the development of conservation methods, and quality
management systems. The review features one of the world’s oldest cryobanks (established
in the 1970s) of plant material and collections of biotechnologically important strains
of plant cells and adventitious root cultures, microalgae, and cyanobacteria capable of
producing bioactive compounds that are beneficial for human health. These strains are
directly used in the institute’s biotechnological R&D center, which strongly focuses on
collection development and rationalization.

Genetic collections are also in the spotlight in research papers on this Special Issue. Ex
situ conservation of fruit trees and strawberries using cryopreservation was explored in the
national genebanks of Germany [16], Russia [17], and the Republic of Korea [18]. Höfer
and Flachowsky [16], of the Dresden-Pillnitz Fruit Genebank at the Institute for Breeding
Research on Fruit Crops in Germany, applied direct dormant bud cryopreservation and
the cryopreservation of shoot tips from in vitro culture for its diverse genetic collections of
apples and pears [16]. A total of 180 accessions of different Malus wild species were cryop-
reserved using dormant buds over 10 years; 116 (64%) had a viability of over 40%. In Pyrus
wild species, in vitro shoot tip cryopreservation using the PVS2-based vitrification gave
better results than dormant bud cryopreservation in preliminary studies using 35 samples
belonging to 21 species [16].

Multi-year experiments performed by Verzhuk et al. [17] in the N.I. Vavilov All-
Russian Institute of Plant Genetic Resources (VIR) confirmed that cold storage and cryop-
reservation were effective for conserving bird cherry (Padus Mill.) dormant buds, resulting
in over 43% recovery, assessed under both laboratory and field conditions for all five
genotypes tested. Moreover, cryopreservation did not affect the total sugar and ascorbic
acid content of fruits produced on regenerated trees.

Bae et al. [18] assessed the morphological traits, fruit characteristics, and genetic stabil-
ity of six strawberry genotypes grown in the greenhouse from cryopreserved shoot tips.
They found that cryopreservation induced no abnormalities in plant and fruit characteris-
tics or genomes. However, some variability in sugar content and the pH of fruits in three
accessions was observed, it was only in the first runner generation.

Tissue culture is a helpful tool for both the conservation of PGR and the rapid produc-
tion of improved genotypes, particularly for species with increasing economic value; this
was also reflected in two research papers that focused solely on in vitro techniques. Using
optimized media, tissue culture was effective in propagating a rare and critically endan-
gered aquatic carnivorous plant, Aldrovanda vesiculosa, by Parzymies et al. [19]. Hesami
et al. [20] explored phenotypic changes of in vitro-grown Cannabis plantlets derived from
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different types of explants over multiple subculture circles. They confirmed the effective-
ness of tissue culture in the propagation of this crop.

In conclusion, we would like to thank all the authors for their papers submitted to this
Special Issue, and acknowledge all the reviewers for their thoughtful and helpful comments
and time spent with the submissions. We would also like to express our sincere gratitude
to the staff of the Biology editorial office for their constant and highly professional support.
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