Effect of Different Opening Diet on the Growth, the Structure of the Digestive Tract and Digestive Enzyme Activity of Larval and Juvenile Mystus macropterus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bait and Experimental Fish
2.2. Determination of Growth Parameters and Sample Collection
2.3. Digestive Tract Sample Measurement
2.4. Enzyme Preparation and Determination of Enzyme Activity
2.5. Data Processing and Statistical Analysis
3. Results
3.1. Effects of Different Opening Diets on Growth and Survival Rate
3.2. Effects of Different Opening Diets on the Digestive Enzyme Activity
3.3. Effect of Different Opening Diets on the Structure of the Digestive Tract
4. Discussion
4.1. Effect of Different Opening Diets on the Survival and Growth of Larval and Juvenile M. macropterus
4.2. The Effect of Different Initial Feeds on Digestive Enzyme Activity in M. macropterus Larvae and Juveniles
4.3. The Influence of Different Opening Diets on the Morphological Index of the Digestive Tract of M. macropterus
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Liu, W.; Li, G. Isolation and characterization of collagens from the skin of large fin longbarbel catfish (Mystus macropterus). Food Chem. 2009, 115, 826–831. [Google Scholar] [CrossRef]
- Xiang, X.; Ye, Y.; Zhou, X.; Lin, S.; Luo, L.; Wang, Y. Digestive ability and nutritive value of Mystus macropterus. J. Fish. China 2003, 27, 371–376. (In Chinese) [Google Scholar]
- Wang, D.; Zhang, Y.; Luo, Q. Observations on the larval development of Mystus macropterus (Bleeker)-bagridae. J. Fish. China 1992, 16, 50–59. (In Chinese) [Google Scholar]
- Zhang, Y.; Wang, D.; Luo, Q. An observation on the embryonic of development of Mystus macropterus (Bleeker). J. Southwest Teach. Univ. 1991, 16, 223–229. (In Chinese) [Google Scholar]
- Ma, Y.; Zhu, J.; Chen, Y.; Xie, Y.; Zhang, F. Study on artificial propagation and seed cultivation of Mystus macropterus. Chongqing Fish. 2012, 2, 20–22. (In Chinese) [Google Scholar]
- Li, X.; Zhu, Y.; Yang, D.; Wu, X.; Li, X.; Zhu, T.; Meng, Z.; Shi, Z.; Zhang, Y. Research progress and prospect of artificial propagation of Mystus macropterus. Fish.Sci. Technol. Inf. 2023, 50, 128–132. (In Chinese) [Google Scholar]
- Chen, J.; Xie, X. Effect of Body Size and Temperature on the Metabolism of Bagrid Catfish, Mystus macropterus. J. Southwest China Norm. Univ. (Nat. Sci. Ed.) 2006, 31, 138–142. (In Chinese) [Google Scholar]
- de Lima, A.F.; Makrakis, M.C.; Andrade, F.F.; Kashiwaqui, E.A.L.; Gimenes, M.d.F.; Makrakis, S. Feeding selectivity in early life stages of Rhamdia voulezi under experimental conditions. Aquac. Res. 2017, 48, 1618–1628. [Google Scholar] [CrossRef]
- Bekcan, S.; Atar, H.H. Effects of live feeds and compounded diet on growth parameters of brown trout fry in the context of habitat restoration. J. Agric. Sci. Tarim Bilim. Derg. 2012, 18, 137–145. [Google Scholar]
- Jalbani, S.; Narejo, N.T.; Khan, P.P. Rearing of Catfish, Rita rita with live and prepared feeds in cemented cisterns. Pak. J. Zool. 2019, 51, sc8. [Google Scholar] [CrossRef]
- Deng, X.; Cui, Y.; Xiong, S. Initial trials with feeding of Chinese sturgeon (Acipenser sinensis) larvae on artificial diet. Acta Hydrobiol. Sin. 1998, 22, 189–191. (In Chinese) [Google Scholar]
- Cao, Z.; Deng, L.; Li, P. Effects of initial feeding on rate of survival and growth of Chinese sturgeon larvae. Hubei Agric. Sci. 2007, 46, 278–280. (In Chinese) [Google Scholar]
- Zhang, T.; Zhuang, P.; Zhang, L. Effects of initial feeding on the growth, survival, and body biochemical composition of Siberian sturgeon (Acipenser baerii) larvae. Chin. J. Appl. Ecol. 2009, 20, 358–362. (In Chinese) [Google Scholar]
- Rønnestad, I.; Yúfera, M.; Ueberschär, B.; Ribeiro, L.; Sæle, Ø.; Boglione, C. Feeding behavior and digestive physiology in larval fish: Current knowledge, and gaps and bottlenecks in research. Rev. Aquac. 2013, 5 (Suppl. S1), S59–S98. [Google Scholar] [CrossRef]
- Esmaeilzadeh-Leithner, S.; Wanzenböck, J. Suitability of two agglomerated commercial micro diets for rearing larvae of different strains of Coregonus lavaretus under cold-water conditions. Aquac. Nutr. 2018, 24, 260–268. [Google Scholar] [CrossRef]
- Peng, S.; Shi, Z.; Yin, F.; Sun, P.; Wang, J. Selection of diet for culture of juvenile silver pomfret, Pampus argenteus. Chin. J. Oceanol. Limnol. 2012, 30, 231–236. (In Chinese) [Google Scholar] [CrossRef]
- Castro-Ruiz, D.; Andree, K.B.; Blondeau-Bidet, E.; Fernández-Méndez, C.; García-Dávila, C.; Gisbert, E.; Darias, M.J. Isolation, identification, and gene expression analysis of the main digestive enzymes during ontogeny of the Neotropical catfish Pseudoplatystoma punctifer (Castelnau, 1855). Aquaculture 2021, 543, 737031. [Google Scholar] [CrossRef]
- Hu, Z.X.; Chen, Z.; Wang, Y.L.; Guan, M.; Ding, R.X.; Wang, H.X.; Liu, H.K.; Gong, Y.C. Effects of animal feeds as initial feed on growth and survival of Chinese Sturgeon (Acipenser sinensis) larvae. Chin. J. Anim. Nutr. 2024, 36, 3209–3218. (In Chinese) [Google Scholar]
- Qi, J.; Gu, X.; Ma, L.; Qiao, Z.; Chen, K. The research progress on food organism culture and technology utilization in crab seed production in ponds in China. Agric. Sci. 2013, 4, 563–569. [Google Scholar] [CrossRef]
- Chen, J.; Zou, P.; Wang, Y.; Wang, H.; Luo, G.; Tang, C. Effects of Different Diets on Growth Performance, Body Composition and Digestive Enzyme Activities of Juvenile Chinese Giant Salamander (Andrias davidiaus). Chin. J. Anim. Nutr. 2017, 29, 3726–3736. (In Chinese) [Google Scholar]
- Debnath, D.; Pal, A.K.; Sahu, N.P.; Yengkokpam, S.; Baruah, K.; Choudhury, D.; Venkateshwarlu, G. Digestive enzymes and metabolic profile of Labeo rohita fingerlings fed diets with different crude protein levels. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2007, 146, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.Z.; Jauncey, K. Optimal dietary carbohydrate to lipid ratio in African catfish Clarias gariepinus (Burchell 1822). Aquac. Int. 2004, 12, 169–180. [Google Scholar] [CrossRef]
- Liu, X.; Ye, C.; Ye, J.; Shen, B.; Wang, C.; Wang, A. Effects of dietary amylose/amylopectin ratio on growth performance, feed utilization, digestive enzymes, and postprandial metabolic responses in juvenile obscure puffer Takifugu obscurus. Fish Physiol. Biochem. 2014, 40, 1423–1436. [Google Scholar] [CrossRef]
- Talukdar, A.; Deo, A.D.; Sahu, N.P.; Sardar, P.; Aklakur, M.; Prakash, S.; Shamna, N.; Kumar, S. Effects of dietary protein on growth performance, nutrient utilization, digestive enzymes and physiological status of grey mullet, Mugil cephalus L. fingerlings reared in inland saline water. Aquac. Nutr. 2020, 26, 921–935. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Liang, X.F.; He SWang, J.; Li, L.; Zhang, Z.; Li, J.; Chen, X.; Li, L.; Alam, M.S. Metabolic responses of Chinese perch (Siniperca chuatsi) to different levels of dietary carbohydrate. Fish Physiol. Biochem. 2021, 47, 1449–1465. [Google Scholar] [CrossRef]
- Zheng, X.; Du, C.; Gao, X.; Ni, J.; Wang, Y.; Hou, C.; Zhu, J.; Tang, D. Changes in the histology and digestive enzyme activity during digestive system development of silver pomfret (Pampus argenteus). Aquaculture 2023, 577, 739905. [Google Scholar] [CrossRef]
- Nasruddin, N.; Azmai, M.; Ismail, A.; Saad, M.; Daud, H.; Zulkifli, S. Histological features of the gastrointestinal tract of wild Indonesian shortfin eel, Anguilla bicolor bicolor (McClelland, 1844), captured in Peninsular Malaysia. Sci. World J. 2014, 312670. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Hu, Z.; Yang, Y.; Zhan, S.; Liu, X.; Wang, Z. The effect of different baits on the growth and activities of the digestive tract and enzyme of the larvae and juvenile Gobiocypris rarus. Acta Hydrobiol. Sin. 2018, 42, 114–122. (In Chinese) [Google Scholar]
- Sallam, E.; Matter, A.; Mohammed, L.; Azam, A.; Shehab, A.; Mohamed Soliman, M. Replacing fish meal with rapeseed meal: Potential impact on the growth performance, profitability measures, serum biomarkers, antioxidant status, intestinal morphometric analysis, and water quality of Oreochromis niloticus and Sarotherodon galilaeus fingerlings. Vet. Res. Commun. 2021, 45, 223–241. [Google Scholar]
- Verma, C.; Gorule, P.; Kumkar, P.; Kharat, S.; Gosavi, S. Morpho-histochemical adaptations of the digestive tract in Gangetic mud-eel Ophichthys cuchia (Hamilton 1822) support utilization of mud-dwelling prey. Acta Histochem. 2020, 122, 151602. [Google Scholar] [CrossRef]
- Kasprzak, R.; Ostaszewska, T.; Kamaszewski, M. Effects of feeding commercial diets on the development of juvenile crucian carp Carassius carassius: Digestive tract abnormalities. Aquat. Biol. 2019, 28, 159–173. [Google Scholar] [CrossRef]
Constituents | Micro-Diet (%) | Artemia nauplii (%) | Tubifex (%) | Rotifers (%) |
---|---|---|---|---|
Crude protein | 52.60 | 55.25 | 56.90 | 53.50 |
Crude fat | 10.30 | 9.70 | 9.49 | 13.23 |
Crude Ash | 12.70 | 11.16 | 13.46 | / |
Degree of Freedom | Total Length (mm) | Body Mass (mg) | |
---|---|---|---|
Feeding methods | 3 | F = 100.818 p < 0.05 | F = 165.298 p < 0.05 |
Age in days | 6 | F = 138.605 p < 0.05 | F = 69.957 p < 0.05 |
Feeding methods × age in days | 18 | F = 7.336 p < 0.05 | F = 16.497 p < 0.05 |
Group | Morphological Index | |||
---|---|---|---|---|
The Height of Mucosal Folds (µm) | The Thickness of Muscular Layer (µm) | The Thickness of Submucosal Layer (µm) | Number of Goblet Cells (Cells/10,000 µm2) | |
Rotifer | 203.5 ± 30.14 a | 34.14 ± 4.68 a | 26.98 ± 3.39 a | 4.00 ± 1.03 b |
Artemia nauplii | 111.77 ± 33.05 bc | 24.70 ± 3.02 b | 8.38 ± 1.22 b | 8.80 ± 1.50 a |
Tubifex | 143.06 ± 14.41 b | 12.17 ± 1.47 c | 8.30 ± 1.29 b | 7.00 ± 1.14 ab |
Micro-diet | 69.65 ± 7.63 c | 8.54 ± 0.65 c | 8.26 ± 1.35 b | 0.60 ± 0.24 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wu, X.; Li, X.; Wei, N.; Jiang, M.; Zhu, Y.; Zhu, T. Effect of Different Opening Diet on the Growth, the Structure of the Digestive Tract and Digestive Enzyme Activity of Larval and Juvenile Mystus macropterus. Biology 2024, 13, 749. https://doi.org/10.3390/biology13090749
Li X, Wu X, Li X, Wei N, Jiang M, Zhu Y, Zhu T. Effect of Different Opening Diet on the Growth, the Structure of the Digestive Tract and Digestive Enzyme Activity of Larval and Juvenile Mystus macropterus. Biology. 2024; 13(9):749. https://doi.org/10.3390/biology13090749
Chicago/Turabian StyleLi, Xiaoli, Xingbing Wu, Xuemei Li, Nian Wei, Ming Jiang, Yongjiu Zhu, and Tingbing Zhu. 2024. "Effect of Different Opening Diet on the Growth, the Structure of the Digestive Tract and Digestive Enzyme Activity of Larval and Juvenile Mystus macropterus" Biology 13, no. 9: 749. https://doi.org/10.3390/biology13090749
APA StyleLi, X., Wu, X., Li, X., Wei, N., Jiang, M., Zhu, Y., & Zhu, T. (2024). Effect of Different Opening Diet on the Growth, the Structure of the Digestive Tract and Digestive Enzyme Activity of Larval and Juvenile Mystus macropterus. Biology, 13(9), 749. https://doi.org/10.3390/biology13090749