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Simple Summary: Marine hydrothermal ecosystems represent extreme environments
connected to submarine volcanic areas characterized by vents, having high temperatures
and particular chemical compositions. Microbial communities in hydrothermal vents play a
crucial role in the functioning of these extreme environments and have significant ecological
and scientific importance, with bacteria being the primary producers in the food chain and
important for the cycling of essential elements such as carbon, sulfur, nitrogen, and metals.
In addition, a deep investigation of the microbial communities in hydrothermal vents could
offer a wealth of scientific knowledge, from an understanding of life in extreme conditions
to potential applications in biotechnology and beyond.

Abstract: Marine hydrothermal ecosystems represent extreme environments connected to
submarine volcanic areas characterized by vents, having high temperatures and particular
chemical compositions. The hydrothermal marine system of Panarea, located in one of
the seven small islands belonging to the Aeolian Archipelago (southern Tyrrhenian Sea),
is characterized by a range of vents exhibiting diverse physical and chemical conditions.
We aimed to analyze the microbial community of a peculiar hot spring belonging to
the Panarea hydrothermal field, known as “Black Point” (BP), in two separate sampling
expeditions (May and August). Our results demonstrated that the chemical–physical
variations within this hydrothermal vent, such as temperature fluctuations, mineral content,
and hydrothermal fluid dynamics, play a role in shaping the structure and diversity of
microbial communities. The differences between the two sampling expeditions suggest that
seasonal changes, i.e., in temperature, pH, and redox potential (Eh), could drive microbial
community shifts over time.

Keywords: 16S rRNA gene metabarcoding; hydrothermal vents; microbial community

1. Introduction
Submarine hydrothermal ecosystems represent extreme environments connected to

underwater volcanic areas where numerous vents discharge hot fluids. Studying these
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ecosystems has been essential in understanding how organisms adapt to specific environ-
ments affected by the release of heated water. Indeed, the heated water that comes out of
hydrothermal vents changes chemical and physical conditions, such as temperature, pH,
electrical conductivity, and redox potential (Eh), in the surrounding environment [1–3].

In recent years, advancements in high-throughput genomic technologies, particularly
metabarcoding using next-generation sequencing (NGS), have revolutionized the study of
microbial communities. As an example, sulfur-oxidizing and hydrogen-oxidizing bacteria,
as well as archaea, are well adapted to high to moderate temperatures and use oxygen or
other electron acceptors to oxidize reduced sulfur compounds, which results in energy-
producing (redox) processes. Bacteria employ the energy generated by these inorganic
redox reactions for their biochemical and metabolic functions [4].

Since the discovery of hydrothermal vents, their unique chemical and physical proper-
ties have captured the scientific community’s attention. Over the past few decades, research
has primarily focused on studying the microbial communities in these environments. In
particular, studies on the variation in microbial presence between active and inactive vents,
the succession patterns of different bacterial groups, and how these communities adapt to
distinct chemical and physical conditions have been reported [5–8]. Additionally, microbial
metabolic potential has been explored for different biotechnological applications [9–11].

Panarea is the smallest island of the Aeolian Archipelago, located in the southern part
of the Tyrrhenian Sea [12–14]. A submerged fumarolic field is located 2.5 km away from
Panarea Island at a relatively shallow depth (<35 m b.s.l.), surrounded by five emerging
reefs, named Dattilo, Bottaro, Lisca Bianca, Lisca Nera, and Panarelli, representing the
remnants of an old volcanic center (Figure 1) [15–17]. In the late 1980s, researchers began
a systematic investigation in the field of geochemistry, revealing the presence of a deep
geothermal reservoir at temperatures ranging from 220 to 280 ◦C [18]. Panarea’s hydrother-
mal system has always shown intense dynamic variability [19]. In November 2002, a
sudden deep magmatic input produced a huge gas blast on the seafloor [20]. The fluid
fluxes released increased by two orders of magnitude and persisted for several months
before the restoration of normal conditions [21–24]. After the crisis, several geo- and
morpho-bathymetric surveys in the area highlighted the presence on the seafloor of hun-
dreds of craters [22,25], indicating the highly dynamic nature of these systems, resembling
the one identified in 2002. Moreover, another study on the behavior and composition
of the fluids suggested a common source and a close correlation between the Panarea
hydrothermal system and Stromboli volcanic activity [26]. Among the vents of the Panarea
hydrothermal system, a site, referred to as Black Point (BP hereinafter), was discovered
during a scuba diving investigation carried out after the explosive event on the 3rd of
November 2002. BP is characterized by a brown-colored fluid enriched in iron (Fe2+), alu-
minum (Al3+), and manganese (Mn2+). Salt precipitation occurs when the hot mineral-rich
fluids released by the vents rapidly mix with the cold seawater. As the fluids cool upon
contact with the surrounding seawater, they become supersaturated with dissolved miner-
als. This supersaturation triggers the precipitation of insoluble metal oxy-hydroxides. The
aggregation of these minerals results in dark-colored precipitates or coatings on surfaces
next to the vents, giving them their characteristic black appearance.

The precipitation of Fe-Al-Mn oxy-hydroxides shapes the surrounding geological and
ecological features [27–29]. These mineral deposits may accumulate over time, forming
chimney-like structures, similarly to what happens in deep-ocean “black smoker” forma-
tion, or coating surrounding substrates with distinctive layers of minerals [30]. Additionally,
the precipitated aggregates can serve as substrates for microbial colonization and play a
role in geochemical cycling processes within hydrothermal ecosystems.
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Figure 1. Morpho-bathymetric map of Panarea Island and relative hydrothermal field (modified 
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Figure 1. Morpho-bathymetric map of Panarea Island and relative hydrothermal field (modified after
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Despite the peculiarity of the Aeolian Archipelago and Black Point, as far as the
authors know, previous reports have investigated the microbial component only of the
shallow-water hydrothermal vents of this area [31–37]. In this study, for the first time, we
characterized the microbial communities at the youngest hydrothermal vents of Panarea by
combining the environmental metabarcoding of 16S rRNA gene amplicons with physico-
chemical features during two sampling expeditions (May and August 2022). This sampling
strategy was designed to provide a detailed examination of the influence of vent modula-
tion on the microbial communities of the hydrothermal water (HW), seawater (SW), and
marine sediment (MS). This study aimed to understand the microbial communities in these
extreme environments.



Biology 2025, 14, 86 4 of 20

2. Materials and Methods
2.1. Study Site and Sampling Collection

The study site (23 m depth) is the so-called “Black Point”, a hot water spring just in
the middle of the hydrothermal field. This vent emits hot fluid (138–140 ◦C, pH 2.3–2.8,
Eh 150–230 mV) (see Table 1), which contains black sulfide and manganese incrustations
(Figure 1) [38]. Sampling was carried out in two surveys in May and August 2022. Using
sterile bottles, we collected 0.5 L of HW from the emission point and a 0.5 L SW sample near
the emission point (5 m away). The exact point of emission of the hot spring was localized
univocally using a thermometer, with the hole where the temperature reached its maximum
value chosen as the collection point. Water samples from the source were collected using
a sterile Teflon probe inserted into the source hole and connected to a syringe and Pyrex
bottle via a three-way valve. The Pyrex sampling bottles were sterilized beforehand and
filled with Millipore water to avoid any external contamination. Once at the BP site on the
seabed, the sampling bottle was evacuated of Millipore water using air from the diving
regulator. The bottle, equipped with two valves to allow the sample in and air out, was
then connected to the three-way valve. The hydrothermal water samples were aspirated
through the syringe and then pushed into the Pyrex bottle by turning the three-way valve,
with this process repeated until the bottles were completely filled with hydrothermal water,
avoiding any seawater contamination. Seawater samples near the seafloor, at a 5 m depth,
and near the surface were collected by simply allowing the seawater to fill the sterilized
bottles previously evacuated from Millipore using air from the diving regulator. In addition,
5–10 g of MS consisting of soil, rocks, and sand was collected in sterile polycarbonate tubes
at a distance of 15 cm from the emission point using a sterilized plastic scoop. For these
last samples, it was not possible to totally avoid seawater contamination. The HW, SW, and
marine sediment samples were then stored at −20 ◦C.

Table 1. Chemical–physical parameters of the samples analyzed in this study.

Hydrothermal Water (HW) Seawater (SW) 3

pH Temperature ◦C pH Temperature ◦C

May 3.15 138.5 7.96 15
August 2.88 139.5 6.78 27

2.2. Chemical–Physical Parameters

The temperature of the sampled HW was directly measured at the emission point,
while pH, Eh, and electric conductivity were measured on the ship using portable instru-
ments. In order to avoid any precipitation and dissolution of suspended particulate matter,
all water samples were first filtered through cellulose filters (0.45 µm) and then acidified
(about 90–100 microliters of 67–69% ultrapure HNO3 for trace analysis) for the determina-
tion of cations (Na+, K+, Ca2+, Mg2+) and minor and trace elements. Untreated samples
were used for anion determination (Cl−, F−, Br−, NO3−, SO4

2−). A chemical analysis
of major constituents was carried out by ion chromatography (Dionex Dx 120; repro-
ducibility ±2%; Thermo Fischer Scientific, Waltham, MA, USA), a Dionex AS14A (Thermo
Fischer Scientific, Waltham, MA, USA) column was used for anions with ASRS (Anion
Self-Regenerating Suppressor), and Dionex CS12A (Thermo Fischer Scientific, Waltham,
MA, USA) was used for cations with CSRS (Cation Self-Regenerating Suppressor). HCO3

concentrations were determined in the laboratory by volumetric titration with HCl 0.1 N,
with care taken to keep water samples in filled and sealed bottles to avoid their degassing.

Minor and trace elements were analyzed by ICP-MS (Agilent 7800ce; Headquar-
ters 5301 Stevens Creek Blvd, Santa Clara, CA, USA); measurements were performed
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on 100 diluted filter-acidified water aliquots, spiked with an In-Re-Rh internal standard
solution insert online just before they were nebulized for a total volume of 10 ppb. Isobaric
and molecular interferences were minimized by a collision cell with He as an inert gas
forming a collision gas interacting with the ion beam at higher pressures.

The accuracy of the determinations (±15%) was checked by analyzing certified multi-
elemental reference water samples SPS-SW1 (LGC Queens Road Teddington, Middlesex,
UK) and SPS-SW2 (LGC Queens Road Teddington, Middlesex, UK), with SRLS-4 (National
Research Council of Canada) analyzed for the quality control of the instrument, both at the
beginning and at the end of each analytical sequence.

2.3. Genomic DNA Extraction, PCR Amplification, and Sequencing

For metabarcoding analysis, 100 mL of the sample (triplicate) was filtered through cellu-
lose filters (0.22 µm), and DNA was extracted from the filters using the DNeasy PowerWater
Kit® (QIAGEN, Strasse 1, Hilden, Germany) following the protocol suggested by the producer.
For MS, 1 g of the sample (triplicate) was used to extract total metagenomic DNA with the
PowerSoil® DNA Isolation Kit (QIAGEN, Strasse 1, 40724 Hilden, Germany). Metagenomic
DNA was verified by electrophoresis on 1% w/v agarose gel and quantified by a NanoDrop
2000c spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). The extracted DNA
was used to amplify the V3-V4 region of the 16S rRNA with universal primers (Pro341F:
5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNBGCASCAG-3′ and
Pro805R: 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACNVGGGTATC
TAATCC-3′) previously described [39] following the two-step PCR amplification proto-
col described in https://support.illumina.com/documents/documentation/chemistry_
documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf (accessed on 5
May 2024). Libraries were sequenced in a 300 bp paired-end run on the Illumina MiSeq
platform at IGA Technology Services s.r.l. (Udine, Italy).

2.4. Bioinformatic Analysis

An internal pipeline was created to analyze metabarcoding sequences. Read pairs
were overlapped with flash v. 1.2.11 [40] with the parameter “--min-overlap 15” to generate
consensus pseudo-reads, while non-overlapping reads were maintained as separated pairs.
Both overlapping and non-overlapping reads were retained. Primer sequences used in
amplification were removed with cutadapt v. 2.7 [41] with the following parameters:
“discard-untrimmed minimum length 200 overlap 10 times 2 error-rate 0.15”. Low-quality
bases at the 3’tails of reads were trimmed with erne-filter v. 1.4.3 [42] with the following
parameters: “min-size 200”. QIIME pipeline v. 1.9.1 [43] was then executed. The library
was scanned for the presence of chimeras with VSEARCH algorithm v. 2.14.1 [44]. The
operational taxonomic unit (OTU) picking process was performed in “open-reference”
mode against the SILVA v.138 SSU Ref NR 99 [45]. Taxonomy was assigned to OTUs
using the RDP classifier v. 2.2 [46]. Only OTUs matching with a 97% minimum identity
threshold and with a minimum confidence threshold of 0.50 were retained and subjected to
further classification. The expression-based heatmap of correlation was generated using
Spearman’s correlation test through the Heatmapper web server (http://www.heatmapper.
ca/expression/, accessed on 15 March 2024).

2.5. Statistical Analysis

PERMANOVA (permutational analysis of variance) was performed with the null
hypothesis stating that there is no significant difference among different types of samples
(“type”, a fixed and orthogonal factor with three levels: hydrothermal water, seawater,
and marine sediment) and different sampling dates (“date”, a fixed and orthogonal factor
with two levels: May and August), among all the detected samples. A p-value analysis

https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
http://www.heatmapper.ca/expression/
http://www.heatmapper.ca/expression/
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was applied to estimate the variability between the six samples at the phylum, class, and
order levels. Data were considered significant for p-values < 0.05. Principal Coordinate
Analysis (PCoA) was performed to evaluate the variations among samples using the Bray–
Curtis distance matrix. Alpha diversity metrics, including the abundance-based coverage
estimator (ACE), Chao1, Shannon–Wiener diversity index (H’), Simpson index (1-D), and
evenness (e), were calculated to determine the specific microbial richness and diversity.
Good’s coverage was estimated to assess the comprehensiveness of sampling.

3. Results
3.1. Chemical–Physical Characterization of the Samples

The hot fluid samples collected in May and August, following the method described
in Section 2.1 in order to avoid any water contamination, showed notable differences
in their physical and chemical composition, especially in Total Dissolved Solids (TDS,
expressed in g/L) values and rare earth element (REE) enrichment (see Table 1). The August
samples were characterized by higher temperature and Eh values, lower pH (Figure 2;
see Table 1), and a marked increase in Ca2+ and Cl− concentration, accompanied by a
decrease in Mg2+, Al3+, Mn2+, and Fe2+ compared to the May samples. In August, seawater
samples collected on the seafloor, approximately 5 m from the hot spring, revealed striking
anomalies in chemical–physical parameters, including an acid pH significantly lower than
that of seawater. Additionally, despite the observed variation, the seawater temperature at
this depth was notably high, indicating a significant influence of the hydrothermal spring
that is purged from the seafloor to the surrounding marine environment.
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3.2. Composition of Bacterial Communities Residing in BP in Different Seasons

Excluding the unclassified families, a total of 60 phyla, 122 classes, 242 orders, and 386
families were detected in different samples. The OTUs were successfully identified and
classified at the species level using a 97% sequence similarity threshold against the “SILVA”
database (Supplementary Table S1).
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Rarefaction curves show a good level of diversity sampling, as confirmed by the
Good’s coverage index for all the samples (Table 2 and Supplementary Figure S1). Further-
more, the Shannon–Wiener diversity index was, on average, 2.79 ± 0.6. The Simpson index
ranged between 0.04 and 0.35, while evenness ranged between 0.34 and 0.72 (Table 2).

Table 2. Descriptions and diversity indices of the samples used in this study.

Sample S Good’s
Coverage Chao1 α 1-D H’ e

HW of May
160 0.97 1089.764 183.34 0.29 1.84 0.36
128 0.97 1045.358 161.95 0.30 1.78 0.37
110 0.97 849.734 154.65 0.35 1.58 0.34

HW of August
118 0.96 1303.493 167.34 0.07 3.30 0.69
112 0.97 1095.135 190.66 0.08 3.00 0.67
109 0.96 1488.415 245.11 0.06 3.36 0.72

SW of May
120 0.96 1163.985 231.73 0.08 2.97 0.62
174 0.95 1497.837 167.48 0.08 2.95 0.57
155 0.95 1675.768 129.65 0.04 3.58 0.71

SW of August
138 0.96 1473.207 257.10 0.10 3.11 0.63
201 0.96 1356.164 310.61 0.35 1.98 0.37
186 0.96 1313.642 269.91 0.34 2.00 0.38

MS of May
165 0.95 1893.452 123.24 0.09 3.19 0.63
203 0.94 2113.745 180.50 0.10 3.13 0.59
192 0.94 1969.215 169.60 0.10 3.25 0.62

MS of August
185 0.93 2372.832 202.52 0.16 2.96 0.57
135 0.97 1053.659 257.03 0.12 3.02 0.62
213 0.92 2488.969 214.95 0.12 3.31 0.62

S represents the total number of bacterial families; Chao1 is an abundance-based richness estimator; α is the alpha
diversity; 1-D is the Simpson’s index; H’ is the Shannon–Wiener diversity; e is the evenness.

The PCoA plot indicates that the three replicas of each sample were very similar
(Figure 3). Surprisingly, a shared microbial community, independent of the sampling
expedition, was found in the SW and MS samples. In contrast, PCoA analysis revealed a
significant difference between the two HW samples collected in May and August.
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3.3. Taxonomic Composition of Prokaryotic Communities of BP Phyla

A comparison of the prokaryotic communities of BP phyla between the two sampling
expeditions revealed that August samples exhibited greater bacterial biodiversity compared
to those collected in May.
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Proteobacteria were the predominant phylum in the microbial community of all
samples (Figure 4 and Figure S2). They were abundant in both of the HW samples, with
relative abundances of 93% and 68% for May and August, respectively, and in both the SW
samples, with relative abundances of 78% and 86%, respectively. These percentages are
lower (50% and 40%) in both MS samples collected in May and August, respectively.
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Actinobacteriota were the second-most represented phylum in HW collected in August
(12%) compared to May (5%) and in MS collected in August, with a relative abundance of
15%, while they were less abundant in MS collected in May (8%) and in both SW samples
(4.4% and 4%, respectively, for May and August).

Bacteroidota were found to be more abundant in the MS sample collected in May
(18%) than in all the other samples, where the relative percentages range from 0.4 to 5.5%.

The Firmicutes and the Campylobacterota phyla were more abundant in two out of
the three samples collected in August, with relative abundances of 12% and 3.1% in HW
and 4.9% and 6.7% in MS, suggesting the influence of bacteria present in the HW on the
surrounding environment, since these phyla were poorly represented in both of the SW
samples (0.3–2.9%).

Cyanobacteria were mainly present in both SW (8%) and MS collected in May (4.4%).
These findings underscore the variability in microbial community composition across
different sample types and sampling periods.

However, the HW of August was weirdly enriched with Firmicutes and Campylobac-
terota. In SW samples, Cyanobacteria were also represented. Additionally, shared phyla
including Proteobacteria, Actinobacteria, Chloroflexi, and Bacteroidota were identified in
MS; some phyla appeared to be mainly present in the MS of May, such as Cyanobacteria
and Desulfobacterota, while others, such as Firmicutes and Campylobacterota, were mainly
present in MS collected in August.

PERMANOVA was performed at the phyla level, considering the three types of
samples (hydrothermal water, seawater, and marine sediment) and the two sampling
expeditions (May and August). The analysis revealed a significant statistical difference
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in microbial composition based on both the sample type and the sampling expedition
(p < 0.05) (Table 3).

Table 3. PERMANOVA of microbial community found at phyla level.

Source DF Adj. SS Adj. MS F-Value p-Value

Samples 2 7078.4 3539.2 10.995 0.001
Sampling expeditions 3 2574.8 858.26 2.6663 0.007

Res 12 3862.7 321.89
Total 17 13,516

DF—total degrees of freedom; Adj. SS—adjusted sums of squares; Adj. MS—adjusted mean squares. p-value is
significant (p < 0.05).

3.4. Taxonomic Composition of Prokaryotic Communities of BP Classes and Orders

At the class level, Alphaproteobacteria was the most abundant taxon in both HW
and SW samples collected in May, with relative abundances of 58% and 57%. On the
other hand, Gammaproteobacteria dominated the microbial community in both HW and
SW samples collected in August, with relative abundances of 45% and 61%, respectively
(Figures 5 and S3). However, the ratio between the Alphaproteobacteria and Gammapro-
teobacteria classes was approximately the same in the MS samples between May and
August (Figures 5 and S3). Actinobacteria were more abundant in both the HW samples
and the MS of August, with relative abundances of 12% and 7%, respectively. Additionally,
they were present in both SW samples, with a relative percentage of 3.5–3.7%, and in the
MS of May, with a relative percentage of 0.5%. The Bacteroidia class was more abundant in
the MS of May, followed by in the MS of August, with relative abundances of 14% and 5%,
respectively. However, this class was less abundant in all the other samples. The Bacilli
class was mainly present in the August HW sample, with a relative abundance of 12%.
Acidimicrobiia (7% and 8%) were highly abundant in both MS samples and less abundant
in the other samples. Camplylobacteria were more present in the August HW and MS
samples (2.5% and 6.7%). The Cyanobacteria class was more abundant in the May SW and
MS samples, and it was less abundant in the May HW samples and in the other samples.

PERMANOVA was performed using the detected classes within the three types of
samples (hydrothermal water, seawater, and marine sediment) and the two sampling
expeditions (May and August). The analysis showed a significant statistical difference
in microbial composition based on both the sample type and the sampling expedition
(p < 0.001) (Table 4).

Table 4. PERMANOVA of microbial community found at class level.

Source DF Adj. SS Adj. MS F-Value p-Value

Samples 2 8331.9 4165.9 11.601 0.001
Sampling expeditions 3 3572.8 1190.9 3.3163 0.001

Res 12 4309.4 359.11
Total 17 16,214

DF—total degrees of freedom; Adj. SS—adjusted sums of squares; Adj. MS—adjusted mean squares. p-value is
significant (p < 0.05).

At the level of order, the MS samples shared the same bacteria, while more striking
differences were found in HW and SW samples between May and August.

Rhizobiales and Burkholderiales were predominant in HW in May, with relative
abundances of 47% and 32% (Figures 6 and S4), while Enterobacterales were predominant
in HW in August, with a relative abundance of 27%.
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The SW of May was mainly dominated by SAR11clade, with a relative abundance of
25%, and Pseudomonadales, with a relative abundance of 14%. The SW of August was
highly abundant in Thiomicrospirales, with a relative abundance of 50%, followed by 16%
and 7% for SAR11clade and Pseudomonadales. In the MS of May, various orders were
found, such as Rhodobacterales, with a relative abundance of 11%, and Flavobacteriales
(with a relative abundance of 9%), followed by Ectothiorhodospirales and Actinomarinales
(with relative abundances of 8% and 5%, respectively). Other orders were less represented.
The most represented orders in the MS of August, excluding the unclassified, were Acti-
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nomarinales and Campylobacterales, both with a relative abundance of 7%. Other orders
were less represented.

PERMANOVA was used to detect significant differences at the order level among the
three types of samples (hydrothermal water, seawater, and marine sediment) and across the
two sampling expeditions (May and August). The analysis indicated a significant statistical
difference in microbial composition related to both the sample type and the sampling
expedition (p < 0.05) (Table 5).

Table 5. PERMANOVA of microbial community found at order level.

Source DF Adj. SS Adj. MS F-Value p-Value

Samples 2 14456 7228.2 13.91 0.001
Sampling expeditions 3 7623.4 2541.1 4.8902 0.001

Res 12 6235.6 519.64
Total 17 28,315

DF—total degrees of freedom; Adj. SS—adjusted sums of squares; Adj. MS—adjusted mean squares. p-value is
significant (p < 0.05).

3.5. Taxonomic Composition of Prokaryotic Communities of BP Families and Genera

At the family level, a heatmap analysis was performed to gain further insights into the
microbial community composition across the different types of samples and sampling expe-
ditions. This analysis reveals two groups based on their microbial community composition
(Figures 7 and S5): one contains the SW and HW samples from both sampling expeditions
(May and August) and the other includes both of the MS samples and forms an exclusive
group. SW samples were confirmed to be very similar and create a distinct subgroup within
the larger group. However, the two HW samples are different from each other and form
two distinct subgroups. The results highlight the diversity of microbial communities in
HW compared to other sample types. The differences observed between hydrothermal
water (HW) samples collected during various sampling expeditions highlight the dynamic
nature of microbial communities as they respond to changes in hydrothermal fluids. The
heatmap analysis supports the findings of the PCoA plot, underscoring the diversity of
microbial communities in HW samples compared to other samples.

Significant differences were observed in the microbial community composition at the
genus level across all samples (Figures 8 and S6). Although unclassified genera were highly
abundant, certain distinctive genera were identified in specific samples. For instance, in the
HW samples collected in May, Methylobacterium was the most abundant genus, followed
by Burkholderia, with relative abundances of 44.36% and 30.76%, respectively. In contrast,
the HW samples from August were dominated by Alteromonas, followed by Idiomarina and
Halomonas, with relative abundances of 16.87%, 8.57%, and 6.51%, respectively.

In the SW samples collected in May, excluding the unclassified genera, the most
abundant genera were Clade Ia and Methylobacterium, with relative abundances of 32.7% and
4.5%, respectively. However, in the SW samples from August, Thiomicrorhabdus emerged
as the most abundant genus, followed by Clade Ia, with relative abundances of 49.6% and
10.9%, respectively.

Finally, unclassified genera dominated the microbial community in the MS samples
from both months. Nonetheless, distinctive genera were identified: Thiogranum was
prominent in the May MS samples (5.72%), while Campylobacter was notable in the August
MS samples (4%).
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4. Discussion
This study, for the first time, investigated the variation in the microbial community at

Black Point across two sampling expeditions, in a unique hydrothermal vent near Panarea
Island (Messina, Italy). Hydrothermal ecosystems are extreme habitats characterized
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by high and fluctuating temperatures and metal concentrations, which vary based on
site-specific conditions. Key environmental factors, such as temperature, organic matter
concentration, metal composition, and redox potential, drive community dynamics in
these ecosystems [33]. These environments are biodiversity hotspots, where bacteria
play a crucial role in maintaining ecosystem homeostasis. We analyzed the variations
in microbial communities and physicochemical parameters at Black Point during two
sampling campaigns (May and August). While previous studies have focused on the
microbial communities of shallow-water hydrothermal vents in this region [31,32,34–37],
our research provides the first characterization of the bacterial composition of hydrothermal
water collected directly from the vent.

Although we ensured careful sample collection following the procedure described
in [47], some limitations should be considered. These include the potential effects of
sample storage at −20 ◦C prior to laboratory analysis, the choice of primer pairs for the
amplification of the 16S rRNA gene, and the data analysis pipeline. Additionally, fluid
mixing between vent emissions, surrounding seawater, and marine sediment cannot be
ruled out.

Despite these limitations, our study provides a foundational milestone for future com-
parative analyses and offers initial insights into the chemical–physical and microbiological
characteristics of Black Point.

In August, the samples collected from the hydrothermal vent and the nearby seafloor
reveal significant differences in chemical–physical properties, indicating an overall increase
in hot fluid output (Table 1, Figure 2).

This increased flow, as a primary result, leads to the enhancement of the pure hy-
drothermal end-member, equilibrated at a depth of 23 m [48–50], with its high salinity and
typical hot (140 ◦C) and acidic (pH 2.0) fingerprint, that is less contaminated by seawa-
ter. The high Cl concentration is evidence of enrichment due to water–rock interaction
enhanced by sweltering hot and acidic conditions. At the same time, a lower concentra-
tion of Mg, in the context of the May sample, is in good agreement with a more mature
hydrothermal component. Furthermore, a higher concentration of REEs accompanies
the low pH observed in August. Several processes control REEs in hydrothermal waters,
including water–rock interactions and the composition of both rock and water, influencing
the complexation and fractionation of REEs.

Additionally, an adsorption process, dependent on pH, occurs on the newly formed
phases of Fe2+, Al3+, and Mn2+ oxy-hydroxides. Independently from the temperature
and type of local rocks, REE concentrations in hydrothermal fluids are usually inversely
correlated with pH [51], and scavenging by Fe2+ and Mn2+ oxy-hydroxides occurs at the
vent–seafloor interface due to mixing with seawater [27,52,53].

In BP hydrothermal water, REE behavior is controlled by Fe, Al, and Mn oxy-
hydroxides because this solid phase’s dissolution and precipitation process, including
the sorption and desorption of REEs, is pH-dependent.

The positive correlations between the total amount of REEs and Fe2+, Al3+, and Mn2+

dissolved in water highlight the simultaneous variation in these elements, indicating the
involvement of Fe, Al, and Mn in controlling the abundance of REE dissolved in water.
On the contrary, pH values negatively correlate with Fe2+, Al3+, and Mn2+, indicating that
dissolution and precipitation processes control rare earth element (REE) behavior. As a
result, a vigorous scavenging process occurs during co-precipitation and adsorption onto
the surfaces of Fe2+, Al3+, and Mn2+ oxides and oxy-hydroxides [52,54,55].

The radar plot in Figure 2 well describes the divergent features of the two hot fluid
samples. Indeed, in August, a general increase in pressure in the hydrothermal field, likely
generated by a deep input from the feeding system, resulted in general output variation
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in the gas vents and the hot fluids being purged from BP and the surrounding area. The
physical condition of the seawater sample collected at a depth of 23 m far from BP testifies
to an aerial extension of the hot fluid flux that, flowing out from seafloor sediment, heated
and contaminated the seawater column above. The binary plot of magnesium versus
chloride in Figure 2b represents the chemical properties of a pure hydrothermal component.
It shows that as the flux output increases, there is progressively less contamination by
seawater, approaching the ideal condition of zero magnesium in the pure end-member.

At the same time, our results suggest significant changes in the microbial community
between the May and August samples of hydrothermal water. In contrast, the microbial
community of seawater and marine sediment shows greater resilience, exhibiting less
pronounced changes compared to the other samples. Similar results were found in another
study [56].

A previous study [33] reported on the prokaryotic community at BP using Illumina
Sequencing Technology, with some technical differences compared to our approach, such
as the type of water sampled, the primer pairs employed, and the bioinformatics pipeline
used to analyze bacterial composition.

Despite these differences, comparable results were obtained. Similarly to the findings
of the mentioned study and earlier reports [31–33,57], the bacterial composition was domi-
nated by bacteria over archaea, even in the high-temperature conditions where sampling
was conducted.

The dominance of Proteobacteria, variations in Actinobacteriota abundance, and
the differences in Bacteroidota, Firmicutes, and Campylobacterota highlight the complex
dynamics of microbial communities in BP ecosystems as previously reported [33]. Indeed,
other studies found high variability within the Proteobacteria phylum [58] and underlined
the different compositions of microbial communities around the world [59].

In this study, we observed a shift within Proteobacteria, particularly in the Gammapro-
teobacteria and Alphaproteobacteria classes, between the May and August samples, which
highlights the dynamic nature of microbial communities in these peculiar marine environ-
ments and the influence of environmental factors on their composition [7,60].

Our results align with previous studies that emphasized the significant roles of
Gammaproteobacteria in hydrogen and sulfur oxidation (SUP05 group) and methane
oxidation (Methylothermaceae) in hydrothermal water. However, in other studies, Ep-
silonproteobacteria were more abundant in hydrothermal water [9,33,61,62]. The lower
abundance of these particular classes in our study could be related to BP’s lower sulfide
levels than other hydrothermal waters, which typically contain higher sulfide concentra-
tions. This correlation between class distribution and sulfide levels might explain why
these classes are less prevalent in our samples.

In our study, Gammaproteobacteria and Campylobacterota were the most abundant
classes in the hydrothermal water of August, consistent with previous studies highlighting
the prevalence of Campylobacterota in acidic and turbulent environments [63]. Further-
more, another study suggested that Campylobacterota inhabited shallow marine wa-
ters during the early stages, followed by Gammaproteobacteria [64], following chemical–
physical variation in the fluids. This differential distribution trend may be associated
with variations in sulfide and oxygen levels and temporal factors [64]. In our study, the
exceptional sampling period, especially in August, in which hydrothermal water leakage
was more abundant, explains the increased abundance of these classes. Moreover, in our
study, Campylobacterales, especially the Sulfurimonas and Sulfurovum genera, were more
abundant in hydrothermal water in August. These genera are known for carbon fixation
under moderate and extreme acidic conditions and may significantly contribute to overall
hydrogen consumption in deep-sea vent systems [63,65–67].
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Further investigation is necessary to elucidate the differential prevalence of Rhi-
zobiales, Sphingomonadales, and Burkholderiales in hydrothermal water and seawater
in May.

All samples collected in August showed more diversity in their microbial communities
compared to those collected in May. These findings challenge studies in which temperature
within the chimney is a critical factor influencing microbial colonization and vents with
high-temperature sites (>80 ◦C) have lower diversity compared to lower- and moderate-
temperature sites [37,68]. Furthermore, pH has been identified as a significant influencer
of microbial composition, as Arcadi et al. 2023 [36] reported. Our study supports this
finding, revealing a decreased abundance of Proteobacteria and Bacteroidota in the samples
collected in August, where the pH was more acidic, alongside an increased prevalence of
Campylobacterota.

In August hydrothermal water samples, the most abundant orders were Enterobac-
terales, Pseudomonadales, and Thiomicospirales. Our results are in accordance with
previous studies, in which Enterobacterales were found in marine sediments, waters, and
shallow-water sponges as epibionts, and underline the presence of these bacteria in the deep
sea, where they efficiently reduce Fe (III). Even though these organisms are primarily asso-
ciated with anoxic environments, where they either reduce sulfate or rely on fermentation,
they could also play a role in recycling organic matter in oxygen-rich settings [69].

Pseudomonadales have been isolated from marine sediment associated with two deep-
sea hydrothermal vents and are reported in other studies in the degradation of toluene
and benzene [63,70]. Furthermore, other studies have frequently reported the presence of
the Thiomicospirales order in hydrothermal chimneys and sediments, where acidic fluids
containing abundant carbon dioxide (CO2) correlate positively with nitrate [71,72]. Indeed,
in our study, this order was more abundant in August than in May, suggesting that the
presence of this order is correlated with the more acidic pH and the greater abundance
of NO3.

Additionally, the abundance of specific orders, such as Rhizobiales, SAR11clade,
and Thiomicrospirales in some samples, underscores the importance of understanding
the ecological roles of these microbial taxa in their respective environments [73]. SAR11,
Puniceispirillales (SAR116), and Rhodobacterales are widespread across oceans. SAR11
is a group of carbon-oxidizing bacteria characterized by their aerobic, free-living, and
chemoheterotrophic nature and are particularly abundant [74]. Other studies have reported
that Rhodospirillales, such as anaerobic photosynthetic bacteria, engage in nitrogen and
sulfur metabolism, such as sulfur oxidation, cysteine synthesis, and glutamine/glutamate
synthesis. Additionally, researchers have recovered numerous novel isolates belonging to
this class from the deep sea and associated them with petroleum hydrocarbon degrada-
tion [75,76]. Moreover, Rhodobacterales have been known for their roles in nitrogen and
sulfur metabolism, including sulfur oxidation, cysteine synthesis, and glutamine/glutamate
synthesis [77].

The most common Bacteroidota genera include Flavobacteriales, primarily aerobic or
facultative aerobic bacteria with strict chem-organic heterotrophic metabolism [78]. On the
other hand, members of Ectothiorhodospiraceae display a wide range of metabolic capabilities,
engaging in photolithotrophy, photoheterotrophy, chemoheterotrophy, chemolithotrophy,
and methylotrophy [79]. They use different electron acceptors, including nitrite and sulfur
compounds, and thrive in iron-rich environments. These orders appeared in greater
abundance in the marine sediment collected in May, indicating that a high concentration of
chemical and physical elements, such as iron, might affect the microbial composition of
entire ecosystems.
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Meanwhile, Actinomarinales was the most prevalent order in the microbial community
of marine sediment gathered in August. Members of this order oxidize organic matter
into CO2 through the tricarboxylic acid (TCA) cycle, and they are known to live in marine,
hydrothermal, and freshwater sediments. These bacteria also carry genes that encode
transporters for ferric ions, ammonium, phosphate, and phosphonates [80,81].

The genus Methylobacterium, which was highly abundant in the HW samples collected
in May in this study, has also been identified in various natural environments, including
coastal and pelagic seawater, as well as deep-sea hydrothermal vents. As noted by Kato
et al. (2009) [82], this genus utilizes compounds such as formate and methanol for growth.
In contrast, the dominant genus in the HW samples from August was Alteromonas, which is
known for producing polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPSs). It
also plays a significant role in the degradation of organic matter in marine environments.

In the SW samples collected in August, the most abundant genus was Thiomicrorhabdus,
which has been reported in various environments, including deep-sea hydrothermal vents.
Recently, new species of Thiomicrorhabdus, such as Thiomicrorhabdus indica, have been
isolated from hydrothermal vents. These species can grow using thiosulfate, sulfide,
elemental sulfur, or tetrathionate as their sole energy source [83].

5. Conclusions
This study provides novel insights into the microbial communities within the hy-

drothermal vent ecosystem of Black Point near Panarea Island, Italy. By examining samples
collected in May and August, we observed significant variations in microbial abundance
and composition across hydrothermal water, seawater, and marine sediment.

The dominance of specific microbial taxa varied between sampling expeditions, high-
lighting the influence of temporal factors and environmental parameters, such as tempera-
ture, pH, and chemical composition.

Overall, our findings can contribute to the understanding of the ecological role of
microbial communities in hydrothermal vent ecosystems and underscore the importance
of considering temporal dynamics and environmental parameters in microbial ecology
research. Further investigations are needed to elucidate the specific metabolic activities
and interactions driving microbial community dynamics in these extreme environments.
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