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Simple Summary: This study used the superlet transform and the cluster depth test to
compute the time–frequency representation (TFR) of the oscillatory differences between
neural activities recorded by magnetoencephalography with optically pumped magnetome-
ters while participants were listening to congruent and incongruent Chinese semantics.
Then, the differences were parameterized based on the definition of local events. The
results showed the TFRs of the differences in oscillatory activity occurring during various
semantic processing tasks. The specific times, frequencies, and brain regions in which
these differences occurred were demonstrated in detail. These results revealed the specific
manifestations of the differences in neural oscillation activities during the cognition of
semantically congruent and incongruent stimuli, which also revealed the potential causes
of the differences in N400m neural activity and mismatch activities from the perspective of
neural oscillations.

Abstract: Neural oscillations observed during semantic processing embody the function
of brain language processing. Precise parameterization of the differences in these oscilla-
tions across various semantics from a time–frequency perspective is pivotal for elucidating
the mechanisms of brain language processing. The superlet transform and cluster depth
test were used to compute the time–frequency representation of oscillatory difference
(ODTFR) between neural activities recorded by optically pumped magnetometer-based
magnetoencephalography (OPM-MEG) during processing congruent and incongruent
Chinese semantics. Subsequently, ODTFR was parameterized based on the definition of
local events. Finally, this study calculated the specific time–frequency values at which
oscillation differences occurred in multiple auditory-language-processing regions. It was
found that these oscillatory differences appeared in most regions and were mainly concen-
trated in the beta band. The average peak frequency of these oscillatory differences was
15.7 Hz, and the average peak time was 457 ms. These findings offer a fresh perspective
on the neural mechanisms underlying the processing of distinct Chinese semantics and
provide references and insights for analyzing language-related brain activities recorded by
OPM-MEG.
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1. Introduction
Semantic cognition constitutes a crucial aspect of the language function of the human

brain [1]. Semantic cognition refers to acquiring, storing, retrieving, and using knowledge
about word and concept meanings and their relationships. The N400 component, which
reflects semantic processing and is known as N400m in magnetoencephalography (MEG),
peaks at approximately 400 ms after stimulus onset [2]. The ability to distinguish congruent
and incongruent semantics is an important indicator of linguistic processing [3–5]. Congru-
ent semantics refers to a situation in language where the meaning of words, phrases, or
sentences aligns with preexisting knowledge, expectations, and semantic associations [2].
Incongruent semantics occurs when the meaning of words, phrases, or sentences deviates
from our normal expectations and semantic associations. It creates a sense of conflict in the
language [5]. Neural activity patterns exhibit differences in processing these two types of
semantics, and this has been evidenced by non-invasive neuroscientific techniques such
as electroencephalography (EEG) and magnetoencephalography (MEG) with supercon-
ducting quantum interference device (SQUID-MEG). In addition, some differences occur
at N400m between congruent and incongruent semantics in the event-related field (ERF),
namely, mismatch negativity (MMN) [6–8]. The amplitude of N400m observed in the left
hemisphere significantly increases during processing incongruent semantics compared
to congruent ones [9–12]. Optically pumped magnetometer (OPM)-based MEG (OPM-
MEG) in the form of a wearable brain magnetic measurement technique [13] offers better
source localization compared to EEG [14,15] and greater flexibility compared to SQUID-
MEG [16,17]. In unrestricted conditions, it holds great potential for application [13,18] and
provides a broader perspective for exploring the mechanisms of semantic processing in
the brain. Wu et al. [2,19] demonstrated the effectiveness of OPM-MEG in recording neural
activities and time-domain differences during the processing of congruent and incongruent
semantics via a multivariate analysis from a temporal perspective.

Neural oscillation is an important aspect reflecting neural function [20]. The time–
frequency features of oscillations are closely related to physiological activity states across
different cognitive tasks [21,22]. Research has demonstrated alterations in the energy of
beta- and alpha-band neural oscillations during semantic cognition activities, which is in
temporal correlation with N400m [11,23]. Semantic processing typically occurs within a
few hundred milliseconds [24]. Furthermore, oscillations across various frequency bands
serve distinct roles in different brain regions within short durations [25,26]. It is essential to
employ high-resolution time–frequency analysis methodologies to accurately capture the
instantaneous characteristics of oscillatory activity during semantic processing, including
specific frequencies and temporal occurrences on a single-trial basis. In the studies men-
tioned above, the time–frequency analysis (TFA) methods used for MEG mainly include
short-time Fourier transform (STFT), wavelet transform (WT), and so on. The superlet
transform (SLT) method proposed by Moca has very high time–frequency resolution for
neuro-electrophysiological signals [27], and it exhibits superior performance in both the
temporal and frequency resolution of neural activities compared to the most commonly
used STFT, WT, and so on [27,28]. The SLT can effectively represent the instantaneous
oscillatory activities during cognitive processes. Therefore, this paper employs the SLT to
calculate the time–frequency representation (TFR) of neural activities.

Furthermore, the differences between neural activities associated with the processing
of congruent versus incongruent semantic information are manifested through alterations
in neural oscillations [29–31]. When listening to semantically congruent sentences, alpha-
band neural oscillations within the temporoparietal cortex not only significantly intensify
but also exhibit higher coherence between trials [32]. Moreover, compared with semanti-
cally incongruent stimuli, semantically congruent stimuli exhibit an increase in beta band



Biology 2025, 14, 91 3 of 13

power within 200–400 milliseconds [33,34]. These time–frequency differences in neural
oscillatory activities underscore the sensitivity of the brain to congruent and incongruent
semantics. Thus, precise calculation and analysis of the time–frequency differences in
neural oscillations will facilitate a more reliable understanding of the neural mechanism of
semantic processing.

It is essential to ensure that the identified differences are statistically significant,
which can be solved by massively univariate tests, such as the cluster-based test [35],
threshold-free cluster enhancement [36], and the cluster depth test [37]. Simultaneously,
it is crucial to accurately compute the timing and frequency information of short-time
changes in oscillations and ERF during semantic processing (such as the N400m [12] and
mismatch activities [6]) from the perspective of oscillations. The cluster depth test proposed
by Frossard aims to test the time-channel differences for EEG or MEG, allowing for a
point-wise and channel-wise interpretation that can be used for determining the effects of
timing [37]. Therefore, the cluster depth test method is applied to the TFR calculated by
SLT in this paper, with ‘channel-wise’ replaced by ‘frequency-wise’. This approach will
help to accurately represent the time–frequency differences in neural oscillatory activities.

Moreover, most studies have only focused on the time or frequency ranges of the
neural oscillation differences associated with semantic processing [11,30,31] rather than on
definitive numerical values. This may hinder an understanding of the precise characteris-
tics of neural oscillations in semantic processing [38]. It is well established that external
stimuli with fixed rhythms or durations can facilitate rehabilitation [39] and cognitive en-
hancement [40]. An approach to parameterization can achieve the calculation of definitive
numerical values of those oscillation differences, which is used in this study.

In addition, Chinese is a language characterized by semantic features and that has
the largest number of speakers globally [41]. It is of great significance to investigate the
mechanism of semantic perception using Chinese semantic materials [41,42]. Consequently,
the primary aims of this paper, in which neural activities are recorded by OPM-MEG during
Chinese semantic processing, are as follows: (1) to illustrate how to use above-mentioned
methods for the time–frequency representation and parameterization of oscillatory dif-
ferences recorded by OPM-MEG for various semantic contents; and (2) to demonstrate
the specific times, frequencies, and brain regions in which these differences in oscillatory
activities occur during different semantic processing stages.

2. Materials and Methods
This section introduces the OPM-MEG data collection, data preprocessing, neural time

series reconstruction, and the time–frequency representation and parameterization of the
differences in neural activities in detail.

2.1. Subjects and Experiment

The data were obtained from a previously published Chinese auditory semantic
OPM-MEG experiment [2]. The participants recruited for the experiment were required
to be between 18 and 30 years old, have normal hearing, have no history of neurological
or severe chronic diseases, have no cardiovascular or cerebrovascular diseases, have no
metal materials implanted in their bodies, and have not participated in other similar
studies. Furthermore, volunteers who failed to complete the research tasks as required
or experienced serious adverse reactions were excluded from the study. Finally, the data
of nine participants (mean age: 25.55 ± 2.58 years old; six males and three females) were
analyzed in this study.
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A traditional Chinese auditory final-verb N400m paradigm was used in this study. The
semantics of the sentences are divided into two cases: (1) the final verb being congruous
with semantic conditions; and (2) the last verb being incongruous with the semantic
conditions [2]. Ethical approval for the experiment was issued by the Ethical Committee of
Beihang University (No. BM20200175) on 20 July 2020.

2.2. Data Acquisition and Preprocessing
2.2.1. Acquisition and Preprocessing of OPM-MEG Signals

OPM-MEG data were recorded by 36 second-generation magnetometers (Quspin Inc.,
Louisville, CO, USA), which covered the frontal, bilateral temporal, and parietal cortexes.
The magnetic field perpendicular to the scalp was recorded. MEG signals and the triggers
of semantic conditions were recorded with a PXI computer chassis (PXIC-7318C, ART
Technology Inc., Beijing, China), and the positions and orientations of the OPM sensors in
relation to the head of each subject were obtained with co-registration [2].

OPM-MEG data were preprocessed with 2–30 Hz bandpass filtering. A Picard in-
dependent component analysis [43] was used to remove artifacts arising from muscle
activity, eye movement, and heartbeat. Multi-trial superposition and averaging of the
preprocessed OPM-MEG signals were used to obtain the ERF and calculate the half-width
of peaks, helping to determine the approximate time interval of the N400m component to
be 200–400 ms.

2.2.2. Source Reconstruction of ROI

The MRI data of the brains of all subjects were recorded by a Siemens MAGNETOM
Prisma 3T scanner (Siemens AG, Munich, Germany) [2]. T1-weighted MRI scans were
obtained using an MPRAGE sequence (TR, 2300 ms; TE, 3.03 ms; TI, 1100 ms; FA, 8; field of
view, 256 × 256 × 192 mm; voxel size = 1.0 × 1.0 × 1.0 mm), which were pre-processed with
Freesurfer [44] to extract the scalp surface and cortex. A forward model was constructed
using MRI data and the positions and orientations of OPM sensors with MNE-Python [45].
Source spaces were established on the superior cortex in both hemispheres using recursively
subdivided icosahedrons and downsampling [45]. A total of 5124 source spaces were set
for each participant. This resulted in 5124 vertices in the white matter surfaces of the
superior cortices in both hemispheres, whose neural time series could be reconstructed.
A single-layer boundary element model (BEM) was constructed using the linear collocation
method [45]. Subsequently, the source spatial information and the BEM model were utilized
to construct the forward model.

According to previous studies [2,9], the time series of neural activity in regions of
interest (ROIs) were obtained based on the aparc.a2009s atlas [46] and source reconstruction.
The ROIs are shown in Figure 1. The time series of vertices in each ROI were constructed,
and the numbers of vertices in the ROIs are shown in Table 1. The method of source
reconstruction was dynamic statistical parametric mapping (dSPM), which integrates data
from various imaging modalities along with prior anatomical and physiological knowledge
to produce spatiotemporal estimations of brain activity [47]. These estimations are capable
of achieving high levels of accuracy down to the millisecond scale. A focal source-level
searchlight analysis was conducted on the ROIs to verify that the time-domain N400m
spikes (400–800 ms) of the neural activity after source reconstruction still had excellent
decoding performance for both congruent and incongruent semantic content. The specific
methods and procedures are as described in Ref. [2].
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Figure 1. The selected ROIs, including middle temporal gyrus (MTG), precentral gyrus (M1), anterior
transverse temporal gyrus (aSTG), orbital part of the inferior frontal gyrus (OIFG), opercular part of
the inferior frontal gyrus (OPIFG), triangular part of the inferior frontal gyrus (TIFG), orbital gyri
(Orbital), lateral aspect of the STG (lSTG), anterior of the STG (aSTG), posterior of the STG (pSTG),
and inferior temporal gyrus (IFG).

Table 1. The numbers of vertices in ROIs (averaged across subjects).

ROI Mean ± Std * ROI Mean ± Std * ROI Mean ± Std * ROI Mean ± Std *

L-MTG 42.7 ± 8.7 L-Orbital 36.6 ± 2.7 L-TIFG 18.6 ± 3.2 L-pSTG 24.6 ± 4.2
R-MTG 50.8 ± 9.6 R-Orbital 43.7 ± 3.4 R-TIFG 15.8 ± 2.9 R-pSTG 21.7 ± 4.2
L-M1 50.8 ± 7.1 L-OIFG 7.1 ± 2.4 L-lSTG 37.1 ± 5.3 L-ITG 40.6 ± 3.1
R-M1 54.6 ± 7.2 R-OIFG 5.3 ± 0.7 R-lSTG 34 ± 5.3 R-ITG 37.6 ± 4.1

L-aTTG 10.4 ± 1.2 L-OPIFG 25.3 ± 1.8 L-aSTG 15.3 ± 2.6
R-aTTG 7.9 ± 0.6 R-OPIFG 26.1 ± 4.1 R-aSTG 20.6 ± 2.9

* Std: Standard deviation.

2.3. The Time–Frequency Analysis of the Differences Between Neural Time Series Based on SLT
and Cluster Depth Tests

Firstly, the time–frequency spectrum of the reconstructed neural signals for each ROI
were calculated using SLT [27]. Subsequently, the cluster depth test [37] was employed
to ascertain the p values for the differences in multi-trial TFRs of oscillatory activities at
each vertex within the ROIs during the processing consistent and inconsistent semantics
information. The initial number of cycles of SLT was set to 1. The minimum and maximum
order of SLT were set to 1 and 30, respectively. A significance threshold of p < 0.05 was
employed to obtain the TFR of oscillatory differences (ODTFR) for of all vertices in each
ROI. Ultimately, the ODTFRs were averaged across all vertices in each ROI to provide a
representation of the time–frequency differences in oscillatory activities between consistent
and inconsistent semantic information processing within the ROIs. In the ODTFR, values
greater than 0 indicate that the response under semantically inconsistent conditions is
significantly stronger than that under semantically consistent conditions. Conversely,
values less than 0 suggest that the response under semantically inconsistent conditions is
significantly stronger. After obtaining the ODTFR for each ROI of each subject, the ODTFR
features were parameterized.

2.4. Parameterization of Local Oscillatory Differences

Time–frequency features for oscillatory differences in the ODTFRs were parameterized
according to the definition of local events [48,49]. Firstly, multiple local peaks of ODTFRs
were detected with the ‘scipy.ndimage’ library in Python. The frequencies and times
corresponding to the extrema of these local peaks were designated as peak frequencies and
peak times, respectively (see Figure 2).



Biology 2025, 14, 91 6 of 13
Biology 2025, 14, x FOR PEER REVIEW 6 of 13 
 

 

 

Figure 2. The definition of parameters in local peaks of ODTFR. 

For each local peak, time–frequency boundaries (coarse boundaries) were deter-
mined preliminarily. Additionally, the time (frequency) points at which the local peak 
power decreased to half of its maximum value (Half-Max) were computed. Subsequently, 
the boundaries of the local peaks were refined based on the Half-Max time (frequency) 
range. The refinement process involved the following steps: If the time (frequency) range 
of Half-Max fell within the coarse boundaries, the peak frequency was retained. If only 
one of the Half-Max boundaries exceeded the coarse boundaries, the within-bound 
boundary was retained, and the exceeding boundary was corrected to the Half-Max 
boundary. If both Half-Max boundaries exceeded the coarse boundaries, both boundaries 
were corrected to the Half-Max boundaries. Finally, for the different boundary correction 
scenarios, different methods were used to calculate the Full-Width at Half-Maximum 
(FWHM), which allowed for the calculation of duration and frequency span. Parameters 
and their definitions are shown in Table 2 and Figure 2. 

Table 2. The definition of parameters of the time–frequency difference in oscillations. 

Parameters Definition 
Peak Fre-
quency 

The frequency corresponding to local peaks in the ODTFR, where the difference in power is maxim-
ized. 

Frequency 
span 

The frequency span corresponding to the half-width of local peaks in the ODTFR and the frequency 
span over which the difference occurs. 

Peak Time The moment corresponding to local peaks in the ODTFR, where the difference in power is maximized. 

Onset Time 
The onset time corresponding to the half-width of local peaks in the ODTFR and the time at which the 

difference begins to appear. 

Duration The duration of time corresponding to the half-width of local peaks in the ODTFR and the duration 
over which the difference persists. 

3. Results 
Firstly, we utilized the SLT-CDT to calculate the time–frequency differences between 

neural activities during processing congruent and incongruent semantics within ROIs, as 
shown in Figure 3. Figure 3 shows the ODTFR of all ROIs, which were averaged across 
participants. Significant differences were apparent in the low-frequency, alpha, and low-
beta bands (13–20 Hz) of the time–frequency spectrums across multiple cortical regions. 
Specifically, the low-frequency (<4 Hz) oscillations in L-MTG, R-MTG, L-M1, L-Orbital, 
and L-lSTG, predominantly occurred after 400 ms. The differences in low-frequency (<4 
Hz) oscillations in the ITG were less pronounced compared to those in other ROIs. In other 
ROIs, distinct differences in neural oscillations occurred across the whole semantic-pro-
cessing period. Significant differences in alpha-band oscillations were observed in L-
MTG, L-M1, R-M1, aTTG, L-OIFG, R-OIFG, L-OPIFG, R-TIFG, L-lSTG, L-pSTG, and R-
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Figure 2. The definition of parameters in local peaks of ODTFR.

For each local peak, time–frequency boundaries (coarse boundaries) were determined
preliminarily. Additionally, the time (frequency) points at which the local peak power
decreased to half of its maximum value (Half-Max) were computed. Subsequently, the
boundaries of the local peaks were refined based on the Half-Max time (frequency) range.
The refinement process involved the following steps: If the time (frequency) range of
Half-Max fell within the coarse boundaries, the peak frequency was retained. If only one of
the Half-Max boundaries exceeded the coarse boundaries, the within-bound boundary was
retained, and the exceeding boundary was corrected to the Half-Max boundary. If both
Half-Max boundaries exceeded the coarse boundaries, both boundaries were corrected to
the Half-Max boundaries. Finally, for the different boundary correction scenarios, different
methods were used to calculate the Full-Width at Half-Maximum (FWHM), which allowed
for the calculation of duration and frequency span. Parameters and their definitions are
shown in Table 2 and Figure 2.

Table 2. The definition of parameters of the time–frequency difference in oscillations.

Parameters Definition

Peak Frequency The frequency corresponding to local peaks in the ODTFR, where the difference in
power is maximized.

Frequency span The frequency span corresponding to the half-width of local peaks in the ODTFR and
the frequency span over which the difference occurs.

Peak Time The moment corresponding to local peaks in the ODTFR, where the difference in
power is maximized.

Onset Time The onset time corresponding to the half-width of local peaks in the ODTFR and the
time at which the difference begins to appear.

Duration The duration of time corresponding to the half-width of local peaks in the ODTFR and
the duration over which the difference persists.

3. Results
Firstly, we utilized the SLT-CDT to calculate the time–frequency differences between

neural activities during processing congruent and incongruent semantics within ROIs, as
shown in Figure 3. Figure 3 shows the ODTFR of all ROIs, which were averaged across
participants. Significant differences were apparent in the low-frequency, alpha, and low-
beta bands (13–20 Hz) of the time–frequency spectrums across multiple cortical regions.
Specifically, the low-frequency (<4 Hz) oscillations in L-MTG, R-MTG, L-M1, L-Orbital, and
L-lSTG, predominantly occurred after 400 ms. The differences in low-frequency (<4 Hz)
oscillations in the ITG were less pronounced compared to those in other ROIs. In other ROIs,
distinct differences in neural oscillations occurred across the whole semantic-processing
period. Significant differences in alpha-band oscillations were observed in L-MTG, L-M1,
R-M1, aTTG, L-OIFG, R-OIFG, L-OPIFG, R-TIFG, L-lSTG, L-pSTG, and R-pSTG. Specifically,
the oscillatory activities associated with semantic incongruence were notably stronger than
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those associated with semantic congruence. However, in L-Orbital, the oscillatory activities
of semantically congruent situations were significantly stronger than those of semantically
incongruent ones. As for the beta-band oscillations, strong differences were found in
L-MTG, R-MTG (400–600 ms), R-M1, L-aTTG, R-aTTG, R-OIFG, L-OPIFG, L-lSTG, L-aSTG,
L-pSTG, and R-pSTG. Slight differences in oscillatory activities also occurred in other brain
regions. These results underscore the efficacy of OPM-MEG in capturing neural oscillations
during the processing of Chinese semantics.
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Figure 3. ODTFRs between congruent and incongruent semantics. Dark red and dark blue indicate
significant time–frequency differences in neural activities under different semantic conditions.

The ODTFRs roughly indicate the time–frequency range where differences occurred,
and the parameters of the oscillatory differences from the ODTFRs are shown in Tables 3–5.
It can be observed that differences in the beta band appeared in most regions.

Table 3. Parameterized time–frequency differences in theta-band oscillations.

Band ROI Duration (ms) Peak Frequency (Hz) Peak Time (ms) Onset Time (ms)

theta

L-MTG 400 ± 37 7.58 ± 0.18 499 ± 30 301 ± 34
L-Orbital 300 ± 10 6 ± 0 371 ± 31 370 ± 31
L-TIFG 116 ± 57 4.5 ± 1.13 234 ± 46 187 ± 23
L-aTTG 566 ± 42 4.38 ± 0.57 536 ± 18 243 ± 21
L-lSTG 146 ± 58 6.58 ± 0.08 502 ± 106 406 ± 103
L-pSTG 230 ± 39 3.93 ± 0.44 363 ± 94 260 ± 111
R-M1 156 ± 30 4 ± 0.09 276 ± 1 191 ± 17

R-TIFG 228 ± 76 6.81 ± 0.36 444 ± 37 351 ± 62
R-aTTG 312 ± 55 3.74 ± 0.21 497 ± 44 308 ± 51
R-pSTG 135 ± 34 4.3 ± 0.18 324 ± 41 219 ± 9
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Table 4. Parameterized time–frequency differences in alpha-band oscillations.

Band ROI Duration (ms) Peak Frequency (Hz) Peak Time (ms) Onset Time (ms)

alpha

L-MTG 241 ± 67 8.56 ± 0.32 674 ± 84 627 ± 98
L-OPIFG 351 ± 58 11.79 ± 0.44 520 ± 37 332 ± 47
L-TIFG 92 ± 23 12.38 ± 0.07 626 ± 2 580 ± 7
L-aSTG 413 ± 34 14.73 ± 0.28 444 ± 27 244 ± 13
L-aTTG 19 ± 5 9.00 ± 1.15 926 ± 8 925 ± 8
R-M1 262 ± 25 11.55 ± 0.3 536 ± 14 423 ± 15

R-TIFG 328 ± 53 10.60 ± 0.49 318 ± 42 221 ± 30
R-aTTG 463 ± 53 12.93 ± 0.71 363 ± 29 171 ± 29
R-pSTG 154 ± 37 10.51 ± 0.15 535 ± 31 461 ± 42

Table 5. Parameterized time–frequency differences in beta-band oscillations.

Band ROI Duration (ms) Peak Frequency (Hz) Peak Time (ms) Onset Time (ms)

beta

L-ITG 94 ± 52 25.94 ± 0.06 330 ± 44 293 ± 39
L-M1 289 ± 45 24.10 ± 1.04 433 ± 39 289 ± 38

L-OIFG 310 ± 11 26.75 ± 0.01 242 ± 3 241 ± 5
L-OPIFG 84 ± 24 24.75 ± 1.46 707 ± 85 638 ± 91
L-TIFG 249 ± 30 23.08 ± 0.93 436 ± 32 336 ± 33
L-aSTG 371 ± 122 23.68 ± 2.21 499 ± 118 353 ± 144
L-aTTG 128 ± 26 19.08 ± 1.17 563 ± 50 482 ± 51
L-lSTG 57 ± 5 22.25 ± 0.01 620 ± 9 605 ± 10
L-pSTG 241 ± 74 22.54 ± 0.08 275 ± 84 158 ± 96
R-M1 154 ± 36 22.96 ± 0.68 472 ± 67 415 ± 68

R-MTG 143 ± 28 21.23 ± 1.43 422 ± 27 372 ± 25
R-OIFG 273 ± 61 23.53 ± 0.63 512 ± 65 406 ± 82

R-OPIFG 378 ± 35 23.20 ± 0.09 352 ± 54 119 ± 22
R-Orbital 314 ± 67 24.53 ± 0.87 422 ± 45 272 ± 49
R-TIFG 314 ± 47 23.22 ± 0.41 489 ± 45 352 ± 57
R-aSTG 374 ± 59 24.35 ± 0.52 478 ± 37 295 ± 55
R-aTTG 257 ± 39 22.44 ± 0.98 283 ± 35 206 ± 32
R-lSTG 445 ± 50 21.66 ± 0.42 474 ± 33 240 ± 35
R-pSTG 254 ± 29 23.72 ± 0.70 374 ± 23 264 ± 22

Table 4 shows that differences in the alpha band only appeared in less than half of the
regions. As shown in Tables 3 and 4, both theta- and alpha-band oscillatory differences
were observed in L-MTG, L-TIFG, L-aTTG, R-M1, R-TIFG, R-aTTG, and R-pSTG. As shown
in Tables 3 and 5, oscillatory differences occurred in both theta and beta bands in L-TIFG,
L-aTTG, L-lSTG, L-pSTG, R-M1, R-TIFG, R-aTTG, and R-pSTG. As shown in Tables 4 and 5,
oscillatory differences in both alpha and theta bands occurred in L-TIFG, L-aTTG, L-lSTG,
L-pSTG, R-M1, R-TIFG, R-aTTG, and R-pSTG. In addition, beta-band oscillatory differences
also occurred in L-OPIFG, L-TIFG, L-aSTG, L-aTTG, R-M1, R-TIFG, R-aTTG, and R-pSTG,
where alpha-band ones were not observed. In addition, oscillatory differences in L-MTG
were only observed in the alpha band and theta band and not in beta band. The main
difference between alpha- and beta-band oscillations occurred at the duration of L-OPIFG,
L-TIFG, L-aTTG, R-M1, R-aTTG, and R-pSTG. The difference also occurred at the peak time
and onset Time in L-OPIFG, L-TIFG, L-aSTG, R-TIFG, and R-pSTG. However, no significant
oscillatory difference was identified in only R-ITG, according to Tables 3–5.

Furthermore, the peak times of these oscillatory activity differences mainly occurred
between 200–600 ms, with an average peak time of 405 ms for theta-band oscillatory differ-
ences, 549 ms for alpha-band oscillatory differences, and 441 ms for beta-band oscillatory
differences. The onset times of these oscillatory activity differences mainly occurred with
an average peak time of 284 ms for theta-band oscillatory differences, 443 ms for alpha-
band oscillatory differences, and 333 ms for beta-band oscillatory differences. The average
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peak frequency of all the differences was 15.7 Hz, and the average peak time was 457 ms.
These results could be linked to the differences in the N400m component and MMN of
the time-domain ERF during semantically consistent and inconsistent processing from a
time–frequency domain perspective.

4. Discussion
4.1. Neural Activities During Semantic Processing

The neurophysiological activities in the brain when processing semantic information
can reflect language perception mechanisms. The non-invasive OPM-MEG technique has
opened new avenues for recording and analyzing neural activity during semantic pro-
cessing [2,19]. This study introduced super-resolution SLT [27] combined with the cluster
depth difference test [37] to explore the differences in short-time oscillatory activities when
processing consistent and inconsistent Chinese semantic conditions. Significant differences
were apparent in the low-frequency, alpha, and low-beta bands across multiple cortical re-
gions (see Figure 3), similar to the findings of previous studies [11,31,32]. Furthermore, the
analytical method effectively parameterized the differences in oscillatory activities across
the different semantic processing tasks. By the time–frequency parameterization of the
neural oscillatory activity differences, this study revealed the differences between the two
types of semantic processing. For instance, differences in beta-band oscillations appeared
in most ROIs (see Table 3), which is related to the crucial role of beta-band oscillations
in cognition [11,50] and the peak time of the oscillatory differences mostly occurred at
200–600 ms. This phenomenon may also be the cause of difference in N400m and the MMN
phenomenon, which has been proven to serve as a marker for human auditory semantic
processing [6,8]. Previous studies have already demonstrated significant differences in
neural activity (such as MMN) between healthy individuals and those with illnesses (e.g.,
schizophrenia) under different auditory trials [51,52]. Limited by practical conditions, the
number of experimental samples in this study was restricted, and all samples were healthy
adults. Therefore, the accumulation of more data from healthy individuals of different
ages and patients in the future will help to further strengthen the conclusions of this study.
Additionally, this research provides new references and insights for the application of the
OPM-MEG in the recording and analysis of language-related brain activities.

Future research directions for advancing our understanding of neural activity during
semantic processing and their contributions to the study of language-related brain functions
are as follows. Firstly, employing MEG with other advanced neuroimaging techniques
could precisely map the neural substrates involved in semantic processing in order to
understand the exact neural mechanisms. Secondly, focusing on frequency-specific (such
as beta-band) neural oscillations and conducting connectivity analysis could reveal how
different brain regions communicate and coordinate during semantic processing, which
could potentially allow for understanding the neural architecture supporting language
functions and developing targeted therapeutic interventions for language disorders [2].

4.2. The Techniques for Analyzing Neural Activity During Semantic Processing

In this study, the statistical test method based on cluster depth contributed to the
identification of short-duration oscillatory differences that consistently exist across multiple
trials. However, it is important to note that burst oscillations occurring occasionally in
individual trials may also carry physiological or neuroscientific significance related to
language processing. Therefore, future research could explore additional methods such as
PATPO [48] and BOSC [53] for parameterizing oscillatory activities in single trials, gaining a
deeper understanding of the neural oscillatory mechanisms involved in semantic cognition.
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Moreover, aperiodic activity, a neural activity that operates simultaneously with os-
cillatory activity, has shown potential correlations with cognitive functions [54,55]. The
time–frequency characteristics of aperiodic components reflect the firing patterns of neu-
ronal populations and the inhibition and enhancement of synaptic currents [56,57]. These
activities can be parameterized using some techniques, such as FOOOF [56], ξ-π [56],
and SPRiNT [57]. These advanced techniques will enable a better parameterization of
aperiodic activities and transient oscillations, helping to reveal the mechanisms of neu-
ral activity during semantic processing from the perspectives of both aperiodic activities
and oscillations.

Additionally, as a study driven by OPM-MEG data, the preprocessing method had
an impact on the subsequent parameterization results. In particular, the filtering method
employed in this paper is the widely used Infinite Impulse Response method [45]. Some
newly developed methods, such as Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise [58], could contribute to improving the data denoising effect in the
future, enabling a more accurate analysis of neural activities. For the time–frequency
analysis, the SLT method used in this study has been proven to be more effective than
most time–frequency analysis methods, such as the Choi–Williams and Wigner–Ville
distributions and minimum mean cross-entropy [27]. With the advancement of technology
and the expansion of application scenarios, this time–frequency analysis technique and the
parameterization method used in this paper could be applied to a wider range of biological
signal analysis scenarios, such as electromyogram signals [58].

In summary, four research directions could be expanded upon in the future: (1) more
participants could be recruited, including healthy individuals and patients, to strengthen
and expand the research presented in this paper; (2) by employing parameterizing methods,
we could further explore the stable and short-duration neural activities during semantic
processing; (3) the analysis of aperiodic activities could be introduced to gain a more
comprehensive and in-depth understanding of the mechanisms of neural activity during
semantic perception; and (4) more advanced processing methods could be employed to
conduct more reliable analysis of more kinds of biosignals.

5. Conclusions
To analyze the differences in neural oscillations during Chinese semantic processing

recorded by OPM-MEG, this paper introduced a super-resolution approach to the testing
and parameterization of time–frequency differences. The time–frequency representations
and parameters of the differences in oscillatory activity that occurred during various
semantic processing tasks were calculated. The results elucidated the peak frequency, peak
time, onset time, and duration of the differences in cortical oscillations when processing
semantically consistent and inconsistent information. The results further revealed that the
differences in neural oscillation activity were associated with the N400m and mismatch
activities. This study can provide a reference for recording and analyzing language-related
brain activity using OPM-MEG from the perspective of neural oscillations.
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