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Simple Summary: Melatonin is a hormone produced by plants and animals. It has been
widely used for sleep disorders and neurodegenerative diseases. However, studies show
that it can be used for several diseases, such as risk factors for cardiovascular disease,
serious infections, COVID-19, dermatitis, arthritis, and cancer. It is important to emphasize
that its use must be prescribed by a qualified professional so that the correct doses are used
for each type of disease.

Abstract: Melatonin is indispensable for the homeostasis of plants and animals. In humans,
it can help prevent or be an adjuvant treatment for several diseases mainly related to the
immune system, inflammation, and oxidative stress. Moreover, a melatonin-rich diet is
linked to several health benefits, such as regulation of circadian rhythm, regulation of
the immunological system, epilepsy control, delaying the aging process, and diminishing
hormones related to cancer. This review aimed to show the effects of melatonin in diseases
beyond its traditional use. The results showed it can present scavenging of free radicals,
reducing inflammatory cytokines, and modulating the immune system. Moreover, it can
improve insulin resistance, blood pressure, LDL-c, adipose tissue mass, adhesion molecules,
endothelial impairment, and plaque formation. These effects result in neuro- and cardio-
protection, improvement of liver diseases, rheumatoid arthritis, dermatitis, COVID-19,
polycystic ovaries, and sepsis. We conclude that plant melatonin can benefit patients with
many diseases besides sleep problems and neurodegeneration. Plant melatonin may be
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more cost-effective and present fewer adverse events than synthetic. However, more clinical
trials should be performed to show adequate doses, formulation, and treatment time.

Keywords: melatonin; plants; cardiovascular diseases; rheumatoid arthritis; sepsis; cancer;
COVID-19; dysbiosis; polycystic ovary syndrome

1. Introduction
Adaptive responses and vegetable growth under stress conditions are regulated

by several complex networks of molecules, such as hormones. Melatonin (N-acetyl-5-
methoxytryptamine) is included in this group and is key in controlling and relieving abiotic
stress in tune with other plant hormones [1,2]. This indoleamine was primarily identified
for its several roles in animals. It has recently been described as an influent and potent
regulator of several physiologic pathways in plant and human biology [3–6].

It has a vital role in modulating several aspects of plant growth and development.
These actions may include regulating photoperiodic responses and circadian rhythms.
Notwithstanding, it can also contribute to antioxidants and stress resistance in plants. It
is produced by many food plants, such as olive oil, pistachio, strawberry, cherry, mango,
grape, banana, pineapple, orange, papaya, tomato, almonds, hazelnuts, and walnuts, but
the amount can vary greatly [7–12].

In humans, melatonin is produced mainly by the pineal gland and is crucial in the
sleep-wake cycle. However, it can be made by the skin, retina, lymphocytes, gastrointestinal
tract, and bone marrow [13–17]. Furthermore, melatonin is essential in homeostasis in
the human body, particularly in adulthood. It has a critical role in promoting adaptation
through allostasis. As a natural substance, it can be obtained in the diet or utilized as a
supplement and therapeutic agent, offering the above-mentioned health benefits. It can
also be administered in capsules or tablets to standardize the dose [18–23].

A melatonin-rich diet is related to several health benefits, such as regulation of the cir-
cadian rhythm, cardiovascular protection, regulation of the immunological system, epilepsy
control, reducing allergic reactions, delaying the aging process, diminishing hormones
related to cancer, delaying Alzheimer’s and Parkinson’s disease symptoms, and working
as an antioxidant and anti-inflammatory molecule [13–17,22,24–28]. This hormone’s anti-
inflammatory and antioxidant effects contribute significantly to preventing or treating the
cited conditions. Melatonin presents scavenger properties, though it can remove reactive
oxygen species (ROS) and reactive nitrogen species (RNS), inhibiting the actions of nuclear
factor kappa B (NF-κB) and myeloperoxidase pathways. The downregulation in the ex-
pression of pro-inflammatory genes reduces the release of interleukin (IL)-1β, IL-6, tumor
necrosis factor-alpha (TNF-α), and many other inflammatory molecules. It can also be
associated with the production and activation of the apoptosis-related speck-like protein.
Due to the upregulation in monocyte synthesis and the proliferation and maturation of T
and B lymphocytes, melatonin also improves the immune response [23,29–32]. Figure 1
shows the main effects of melatonin.
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Figure 1. Melatonin can exert several actions in the human body. These effects can occur in several 
organs, such as the heart, liver, kidney, skin, and bones. Besides that, melatonin can modulate mo-
lecular and systemic actions. ↑: increase; ↓: decrease. 

Many clinical studies have shown that melatonin can work as an adjuvant therapeu-
tic or an option to prevent and treat several human diseases, such as Alzheimer’s disease 
[33–35], Parkinson’s disease [36], non-alcoholic fatty liver disease [35,37,38], rheumatoid 
arthritis [39–41], multiple sclerosis [42], polycystic ovary syndrome (PCOS) [43,44], der-
matitis [45,46], coronavirus disease 2019 (COVID-19) [47], and sepsis [48]. Figure 1 shows 
the effects of melatonin in humans. 

Since melatonin has been extensively studied in sleep-related disorders and other 
neurodegenerative diseases, this comprehensive review aims to draw on clinical trials to 
show the effects of this hormone beyond its commonly observed purposes. 
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Many clinical studies have shown that melatonin can work as an adjuvant therapeutic
or an option to prevent and treat several human diseases, such as Alzheimer’s disease [33–35],
Parkinson’s disease [36], non-alcoholic fatty liver disease [35,37,38], rheumatoid arthritis [39–41],
multiple sclerosis [42], polycystic ovary syndrome (PCOS) [43,44], dermatitis [45,46], coron-
avirus disease 2019 (COVID-19) [47], and sepsis [48]. Figure 1 shows the effects of melatonin
in humans.

Since melatonin has been extensively studied in sleep-related disorders and other
neurodegenerative diseases, this comprehensive review aims to draw on clinical trials to
show the effects of this hormone beyond its commonly observed purposes.
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2. Summary of Melatonin Biosynthesis in Plants
Melatonin is a hormone much described in mammals, amphibians, and birds. In the

synthesis pathways, tryptophan (Trp) results in melatonin [2,49–52]. Trp is converted into
tryptamine through the shikimic acid pathway, mainly by chloroplasts by the enzyme tryp-
tophan decarboxylase (TDC). A similar path is mediated by tryptophan hydroxylase (TPH)
to transform tryptophan into 5-hydroxytryptophan. These two enzymes are essential for
synthesizing melatonin in vegetables [7,17,53]. Tryptamine and 5-hydroxytryptophan are
converted into serotonin by the enzyme tryptamine 5-hydroxylase and TDC, respectively.
On the other hand, serotonin goes through other conversions by different enzymes depend-
ing on its location. In the cytoplasm, serotonin is converted into N-acetylserotonin through
serotonin N-acetyltransferase (SNAT), which is methylated by N-acetylserotonin methyl-
transferase (ASMT) to produce 5-methoxy tryptamine. Another possible path for serotonin
in the chloroplast is methylation by caffeic acid O-methyltransferase (COMT) to the con-
version in N-acetylserotonin, which also undergoes methylation to generate melatonin.
Plant melatonin production may involve several complex enzymatic pathways in different
transformation routes, depending on environmental conditions and organelle [7,54–56].

Mitochondria can also produce melatonin using a similar pathway. In summary, Trp
can be transformed into N-acetyltryptamine and N-acetylserotonin. This compound can
finally be converted to serotonin. Alternatively, Trp can produce serotonin that is further
converted to melatonin. The contribution of mitochondria to the production of melatonin
seems to be increased under stress conditions, and depending on the environment, the
contribution of this organelle and chloroplast may change [17]. Figure 2 summarizes the
biosynthesis of melatonin in chloroplasts and mitochondria.

The production and accumulation of melatonin can vary widely among different plant
parts and species. It was first described in grapes and then in olive oil. Depending on the
plant, its highest levels are in the seed, skin, leaves, roots, grain, flower buds (the embryonic
stage of flowers), and ripe fruits [7,54,57–60]. Table 1 shows some examples of plants and
their respective amounts of this hormone.

Table 1. Amounts of melatonin in some edible plant sources.

Plant Source Part of the Plant Melatonin (ng/g or
pg/g of Dry Weight) Reference Edible Part

Almond Seeds 39 ng/g [61]
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Table 1. Cont.

Plant Source Part of the Plant Melatonin (ng/g or
pg/g of Dry Weight) Reference Edible Part

Coffea arabica Beans 6800 ng/g [61,63]
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Table 1. Cont.

Plant Source Part of the Plant Melatonin (ng/g or
pg/g of Dry Weight) Reference Edible Part

Pistachio Seeds 233 ng/g [63,67]
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As pointed out above, melatonin can improve or prevent several human conditions.
The several effects that may be produced by melatonin are receptor-mediated or non-
receptor-mediated manners. Melatonin has lipophilic properties and can interact with
receptors in cell membranes, the cytosol, and the nucleus. In cell membranes, this hormone
can bind to G protein-coupled receptors named melatonin receptor 1 (MT1) and melatonin
receptor 2 (MT2) [69,70]. These receptors comprise a large family of molecules characterized
by binding to guanosine di/triphosphate (GDP/GTP) that have alpha, beta, and gamma
subunits. According to the type of alpha subunits, they can be named Gi (inhibitory), Gs
(stimulatory), Gq, or G12. The MT1 and MT2 receptors are mainly Gi-coupled. In this case,
melatonin binding inhibits adenylate cyclase (AC) and the cyclic adenosine monophos-
phate (cAMP)/ protein kinase A (PKA)/cAMP response element-binding protein (CREB)
pathway. Another possibility is binding to the guanylate cyclase (GC)/cyclic guanosine
monophosphate (cGMP)/protein kinase G (PKG) cascade [71]. Moreover, melatonin can
bind to Gq-coupled receptors and stimulate phospholipase C (PLC). This enzyme hy-
drolyzes phosphatidylinositol 4,5-bisphosphate (PIP2), resulting in inositol triphosphate
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(IP3) and 1,2-diacylglycerol (DAG), which leads to the augmentation of Ca+2 levels and
activation of calmodulin and calmodulin kinase pathway [72,73]. Melatonin receptor 3
(MT3) is the cytosolic enzyme quinone reductase 2 (QR2) and is the third possibility of
melatonin binding. QR2 is related to the reductases that act in reducing oxidative stress.
Melatonin can also bind to nuclear receptors designated as retinoid-related orphan (ROR)
receptors. These receptors are associated with regulating and modulating the circadian
clock. Melatonin possesses several effects, partly due to its robust antioxidant and anti-
inflammatory nature and partly due to its specific interaction with melatonin receptors
found in almost all tissues [74–79]. Figure 3 shows melatonin’s mechanism of action and
its many effects. In the following sections, we discuss the role of melatonin in unusual
diseases (Figure 4).
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Figure 3. Mechanism of action for melatonin. This hormone can bind to receptors associated with G
protein, named MT1, MT2, and MT3 receptors. The association of melatonin and the receptor leads
to several cellular responses, such as sleep regulation, intestinal mucosa protection, glycemia and
blood pressure homeostasis, and inflammatory and antioxidant effects. The ligation of melatonin
to the Gi-coupled receptors separates alpha from beta and gamma subunits. In this separation,
it is observed that the change of guanosine diphosphate (GDP) for guanosine triphosphate (GTP)
leads to inhibition of the adenylate cyclase (AC) enzyme and the subsequent cyclic adenosine
monophosphate (cAMP)/protein kinase A (PKA)/cAMP response element-binding protein (CREB)
route. The activation of the Gq receptors stimulates the enzyme phospholipase C (PLC), increasing
IP3 (inositol triphosphate) and diacylglycerol (DAG) and elevating the levels of Ca+2. The ligation of
melatonin to MT3 (cytosolic enzyme quinone reductase 2—QR2) is the third possibility of melatonin
binding. QR2 is related to the reductases that act in reducing oxidative stress. Melatonin can also bind
to nuclear receptors designated as retinoid-related orphan (ROR) receptors. ↑: increase; ↓: decrease.
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Figure 4. Melatonin can positively affect several human conditions, such as cardiovascular and neu-
rodegenerative diseases (NDD), metabolic-associated fatty liver disease (MAFLD), cancer, dysbiosis,
polycystic ovary syndrome, rheumatoid arthritis, coronavirus disease 2019 (COVID-19), periodontal
diseases, and sepsis.

It is also worth mentioning that the use of melatonin is not related to tolerance and
does not cause dependence. The most typical adverse event is a diminution of alertness
or mood (the next day after night administration). Other side effects are minimal and, at
lower doses, include dizziness, nausea, headache, and drowsiness [80]. Patients can present
glucose tolerance imbalance at higher (5 mg or more). The use of melatonin may interact
adversely with medications such as anticoagulants, impact negatively on epilepsy control,
and can interfere in the development of prepubertal children. Furthermore, melatonin
is not considered safe in pregnant or breastfeeding females. Melatonin overdose is not
life-threatening. Regarding long-term use, there is no evidence related to toxicity [81,82].

3. Melatonin in Cardiovascular Diseases and MAFLD
Cardiovascular diseases (CVDs) are considered the leading cause of death world-

wide. They are related to several conditions, such as obesity, diabetes, hypertension,
metabolic syndrome, and liver disease—such as metabolic-associated fatty liver disease
(MAFLD) [83–88]. Some studies have shown that melatonin can shorten the effects of risk
factors for CVDs and MAFLD [24,88,89]. Table 2 shows clinical studies involving melatonin
and the diseases mentioned above.
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Table 2. Effects of melatonin in cardiovascular disease patients and metabolic-associated fatty liver disease (MAFLD).

References Study Population Intervention Duration Outcomes

Cardiovascular Risk Factors

[90]

Double-blind, randomized,
multicenter,
placebo-controlled study
(Germany, UK, and Italy)

24 rotating night-shift workers 2 mg of sustained-release
melatonin 12 weeks of treatment

The treatment improved sleep
quality but did not significantly
affect insulin resistance and blood
pressure in rotating night-shift
subjects.

[91]
Randomized, double-blind,
placebo-controlled crossover
design study (USA)

22 participants (11♂/11♀,
26.5 ± 3.1 years)

Subjects in a high-sodium diet
(6900 mg Na/day) received
10 mg/day of melatonin

10 days

Melatonin did not change 24 h
mean arterial pressure but reduced
nighttime peripheral and central
blood pressure on the high-sodium
diet compared to placebo.

[92]

Double-blind,
placebo-controlled,
single-center clinical trial
(Iran)

65 patients with acute ischemic stroke
and not eligible for reperfusion therapy
were divided into two groups: placebo
(67.33 ± 12.81 years, 22♂ and 11♀) and
melatonin (64.22 ± 10.26 years, 20♂ and
12♀)

Supplementation with 20 mg of
melatonin orally daily 5 days

↓ mean of NIHSS and mRS in the
melatonin group. There was no
significant difference in the
functional independence criteria.

[93]
Placebo-controlled,
double-blinded, randomized
clinical trial (Iran)

92 heart failure patients with reduced
ejection fraction were randomized
between two groups: placebo (58.5 years,
40♂ and 6♀) and melatonin (63.5 years,
40♂ and 6♀)

10 mg of melatonin (tablets) daily 24 weeks

↓ NT-Pro BNP. Improved quality of
life by MLHFQ. There was no
difference in echocardiographic
parameters.

[94]
Randomized, double-blinded,
placebo-controlled clinical
trial (Iran)

92 heart failure patients with reduced
ejection fraction were randomized
between two groups: placebo
(59.1 ± 11.5 years, 40♂ and 6♀) and
melatonin (62.7 ± 10.3 years, 40♂ and
6♀)

10 mg/day of melatonin orally 24 weeks
↑ FMD. There was no difference in
blood pressure, total antioxidant
capacity, and MDA levels.

[95]
Double-blind
placebo-controlled study
(Iraq)

45 patients undergoing coronary artery
bypass grafting were distributed into
three groups: placebo (47–60 y, 12♂ and
3♀), low-dose melatonin (45–65 years,
13♂ and 2♀), and high-dose melatonin
(45–64 years, 11♂ and 4♀)

10 or 20 mg melatonin capsules
daily

From the fifth day
before surgery

↑ Ejection fraction, ↓ heart rate,
↓ CTnI, ↓ IL-1β, ↓ iNOS, and
↓ caspase-3 in both
melatonin-treated groups.

[96]

Single-center, randomized,
prospective, double-blind,
placebo-controlled study
(phase 2) (Spain)

272 patients presenting within 6 h of
onset of AMI symptoms were
randomized between placebo and
melatonin groups

11.61 mg intravenous melatonin
(approximately 166 µg/kg)

30 min before
percutaneous
revascularization and
remaining doses in the
subsequent 120 min

↓ area of infarction.



Biology 2025, 14, 143 11 of 30

Table 2. Cont.

References Study Population Intervention Duration Outcomes

MAFLD

[89]
Randomized, double-blind,
placebo-controlled clinical
trial (Iran)

45 patients with MAFLD were
randomized into 2 groups: melatonin
(44 ± 9.62 years, 17♂ and 7♀) and
placebo (37.71 ± 11.31 years, 14♂ and
7♀)

6 mg melatonin daily 12 weeks

↓ Weight, ↓ waist circumference,
↓ blood pressure, ↓ leptin levels,
↓ alanine aminotransferase, and
↓ liver fat in the melatonin group.

AMI: acute myocardial infarction; CTnI: cardiac troponin-I; FMD: flow-mediated dilatation; IL-1β: interleukin-1 beta; iNOS: inducible nitric oxide synthase; MAFLD: metabolic-associated
fatty liver disease; NIHSS: National Institutes of Health Stroke Scale; mRS: modified Rankin Scale score; MDA: malondialdehyde; MLHFQ: Minnesota Living with Heart Failure
Questionnaire; NT-Pro BNP: N-terminal pro–B-type natriuretic peptide; ↑: increase; ↓: decrease.
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In a randomized study, some authors investigated the effects of melatonin on the cir-
cadian cycle and social and environmental factors. Their results showed that rotating night
shift work produces moderate sleep quality impairment and insulin resistance. Melatonin
improved sleep quality but did not significantly interfere with insulin resistance in these
workers [90].

Based on the knowledge that using melatonin affects blood pressure regulation, Ramos
et al. [91] investigated the effects of this hormone in subjects receiving a high-sodium diet
for 10 days. Their results showed that melatonin can be beneficial in reducing blood
pressure in young, healthy, normotensive adults.

Mehrpooya et al. [92] conducted a double-blind, placebo-controlled study in patients
diagnosed with acute ischemic stroke and not eligible for reperfusion therapy to assess
the possible benefits of melatonin supplementation over traditional treatment for these
patients. Sixty-five patients were divided between placebo and melatonin (20 mg/day
for 5 days) groups. After melatonin supplementation, patients were evaluated 5, 30, and
90 days later. The results showed a mean reduction in the National Institutes of Health
Stroke Scale (NIHSS) and modified Rankin Scale (mRS) score. However, there was no
significant difference in the functional independence criteria.

Hoseini et al. [93] performed a randomized, double-blind, placebo-controlled clinical
to evaluate the role of melatonin supplementation in heart failure patients with reduced
ejection fraction. Ninety-two patients were randomized between placebo and melatonin
groups. The melatonin group received 10 mg of melatonin orally once daily for 24 weeks.
After the intervention, there was a reduction in N-terminal pro–B-type natriuretic peptide
(NT-Pro BNP) levels, accompanied by improved quality of life measured by the Minnesota
Living with Heart Failure Questionnaire (MLHFQ). However, there were no significant
changes in echocardiographic parameters.

Hoseini et al. [94] investigated the role of melatonin intake on endothelial function in
subjects with heart failure and decreased ejection fraction through a randomized, double-
blind, placebo-controlled clinical trial. Ninety-two patients received either a placebo or
10 mg/day of melatonin for 24 weeks. After treatment, there was a significant increase in
flow-mediated dilatation (FMD); however, there were no changes in blood pressure, total
antioxidant capacity, and malonaldehyde (MDA) levels.

Dwaich et al. [95] analyzed the effect of different dosages of melatonin in patients un-
dergoing coronary artery bypass grafting through a double-blind, placebo-controlled study.
Forty-five patients were allocated into three groups according to the treatment employed:
placebo group, melatonin 10 mg/day treatment group, and melatonin 20 mg/day treatment
group from the fifth day before surgery. The results indicated that the individuals treated
with melatonin showed an increase in the ejection fraction associated with a reduction in
heart rate and a decrease in the levels of cardiac enzymes, such as cardiac troponin-I (CtnI),
IL-1β, inducible nitric oxide synthase (iNOS), and caspase-3. These changes were most
prominent in the group treated with 20 mg of melatonin daily.

Dominguez-Rodriguez et al. [96] investigated the role of intravenous melatonin ad-
ministration in reducing cardiac damage in patients who presented 6 h acute myocardial
infarction (AMI) symptoms through a phase 2, single-center, prospective, randomized,
double-blind, placebo-controlled study, in which 272 patients were randomized to receive
placebo or intravenous melatonin (11.61 mg) 30 min before percutaneous revasculariza-
tion and remaining doses for the subsequent 120 min. Surviving patients were evaluated
90 days after the intervention, and it was possible to observe a reduction in cardiac damage
and improvement in clinical criteria in patients in the melatonin-treated group.
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Regarding MAFLD, Bahrami et al. [89] conducted a randomized, double-blind,
placebo-controlled clinical trial to investigate the action of melatonin supplementation
in patients diagnosed with this liver disease. Forty-five patients were randomized to re-
ceive a placebo or 6 mg of melatonin orally once daily for 12 weeks. After treatment, there
was a significant improvement in anthropometric parameters, such as weight and waist
circumference, in addition to a reduction in blood pressure, a reduction in serum levels of
leptin and alanine aminotransferase, and a decrease in the degree of liver fat in the group
treated with melatonin.

According to some authors, melatonin has some effects that produce a unique ther-
apeutic adjuvant for treating cardiovascular conditions, such as regulation of circadian
rhythms (adaption for internal and external environmental changes), working as an anti-
inflammatory and antioxidant (free radical scavenger), and protecting cells from oxidative
damage. These effects permit the integrity of endothelial cells, which prevents atheroscle-
rosis, which is considered a major contributor to CVDs. Moreover, melatonin properties
potentially reduce CVDs risk factors, ameliorating metabolic disorders [88,97,98].

4. Effects of Melatonin on Rheumatoid Arthritis
Besides the many effects of melatonin on the human body, some authors have also

demonstrated that it can benefit bone and cartilage-related disorders, such as osteoarthritis,
rheumatoid arthritis, and bone fracture healing [99–101]. The effects of melatonin in reduc-
ing oxidative stress (reducing ROS and MDA) and inflammation (reducing the release of
pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α) are essential in the improve-
ment of rheumatoid arthritis since it is characterized by an autoimmune, chronic systemic
connective tissue disease, resulting in joint inflammation and systemic complications like
pain, restriction of movements, and significant reduction in the quality of life [99,102–105].

This hormone can regulate inflammation and myogenesis in rheumatoid arthritis syn-
ovial fibroblasts and myoblasts. Furthermore, it can regulate pro-inflammation and atrophy
in differentiated myocytes and myoblasts by interfering in the NF-κB signaling route. The
oral administration of melatonin in a mouse collagen-induced arthritis model showed sig-
nificant improvement in hind limb grip strength, arthritic swelling, and pathological muscle
atrophy [99,105,106]. Although melatonin potentially affects rheumatoid arthritis, only
two clinical trials were performed to evaluate its impact on this inflammatory condition.
Table 3 shows clinical trials investigating this hormone’s effects on rheumatoid arthritis.

Table 3. Effects of melatonin in rheumatoid arthritis patients.

References Study Population Intervention Duration Outcomes

[107]

Randomized,
double-blind,
placebo-
controlled trial
(Iran)

64 participants diagnosed with
rheumatoid arthritis were
randomized between the
melatonin (49.31 ± 10.82 years,
24 ♀ and 8♂) and placebo
(49.44 ± 12.71 years, 27♀ and 5♂)
groups

Oral
supplementation
with 6 mg/day of
melatonin
(2 tablets
containing 3 mg of
melatonin) 1 h
before bedtime

12 weeks
↓ MDA
and
↓ LDL-c.

[108]

Randomized,
double-blind,
placebo-
controlled trial
(UK)

75 participants diagnosed with
rheumatoid arthritis were
randomized between the
melatonin (65.11 ± 2.1 years,
25♀ and 12♂) and placebo
(60.0 ± 1.8 years, 28♀ and 10♂)
groups

Oral
supplementation
with 10 mg/day of
melatonin

6 months
No
significant
outcomes.

LDL-c: low-density lipoprotein-cholesterol; MDA: malonaldehyde; ↓: decrease.
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5. Effects of Melatonin on Polycystic Ovary Syndrome
PCOS is one of the most common endocrine conditions in reproductive-age women.

It is marked by ano- or oligo-ovulation, polycystic ovarian morphology, and signs of
hyperandrogenism. The main symptoms include infertility, menstrual irregularities, and
hirsutism. PCOS can also be linked to insulin resistance/diabetes, obesity, and metabolic
syndrome. For these reasons, it is also associated with CVDs. Anxiety and reduction in
quality of life are also reported [109–111].

Many researchers have investigated the effects of melatonin on PCOS and showed that
the benefits include improving metabolic risk parameters. Melatonin receptors are found
in ovarian granulosa cells, and minor modifications in these receptor genes are linked to a
higher risk of PCOS in sporadic cases of familial origin [112,113]. Some interesting studies
have shown the effects of melatonin supplementation in women with PCOS. The results
are summarized in Table 4.

Table 4. Effects of melatonin in polycystic ovary syndrome (PCOS) patients.

References Study Population Intervention Duration Outcomes

[114]

Randomized,
double-blind,
placebo-controlled
clinical trial (Iran)

84 women with PCOS were
randomized into 4 groups:
placebo group (26,200 ± 5.72 y,
20♀), melatonin + magnesium
group (28.22 ± 6.38 y, 22♀),
melatonin group (25.57 ± 4.99 y,
21♀) and magnesium group
(25.57 ± 4.88 y, 21♀)

2 tablets daily of
3 mg melatonin each
+ 250 mg magnesium
oxide tablet daily

8 weeks

↓ Weight, BMI, and
WC in the melatonin
and melatonin +
magnesium groups.
↓ TNF-α in the
melatonin and
melatonin +
magnesium groups.
↓ Hirsutism in the
melatonin +
magnesium group.
↑ TAC in the
melatonin +
magnesium group.

[115]

Randomized,
double-blinded,
placebo-controlled
clinical trial (Iran)

58 patients with PCOS were
randomized into 2 groups:
placebo (26.0 ± 3.3 y, 29♀) or
melatonin (26.5 ± 3.5 y, 29 ♀)

2 capsules of 5 mg of
melatonin daily 12 weeks

↓ PSQI, BDI, BAI,
serum insulin,
HOMA-IR, and
LDL-c. ↑ PPARγ and
LDL Receptor gene
expression in the
melatonin group.

[116]
Randomized,
controlled,
double-blind trial
(Italy)

526 women with PCOS were
randomized into 3 groups: control
group (32 ± 3.6 y, 195♀), group A
(31.2 ± 2.1 y, 165♀), and group B
(31.5 ± 2.8 y, 166♀)

3 mg of melatonin +
4000 mg
myoinositol +
400 mcg folic acid
daily (group A)

From the first
day of the cycle
to 14 days after
embryo transfer

↑ Oocyte and embryo
quality with
melatonin +
myoinositol
supplementation.

BAI: Beck Anxiety Inventory Index; BDI: Beck Depression Inventory Index; BMI: body mass index; HOMA:
homeostasis model assessment of insulin resistance; LDL: low-density lipoprotein; LDL-c: low-density lipoprotein-
cholesterol; PPARγ: peroxisome proliferator-activated receptor gamma; PSQI: Pittsburgh Sleep Quality Index;
TAC: total antioxidant capacity; TNF-α: tumor necrosis factor-alpha; WC: waist circumference; ↑: increase;
↓: decrease.

Mousavi et al. [114] investigated the role of melatonin and magnesium supplementa-
tion in the amounts of inflammatory markers and oxidative stress in women with PCOS.
Eighty-four women were randomized into four different groups according to the treatment
used: placebo, melatonin (two tablets of 3 mg each), magnesium oxide (tablet of 250 mg),
or melatonin + magnesium oxide (two tablets of 3 mg of melatonin each + tablet of 250 mg
magnesium oxide) for 8 weeks. After treatment, there was a reduction in weight, body mass
index, waist circumference, and TNF-α in the group treated with melatonin + magnesium
oxide and melatonin alone, a reduction in hirsutism, and an increase in total antioxidant
capacity (TAC) in the group treated with melatonin + oxide of magnesium only [110].
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In a double-blind, randomized, placebo-controlled clinical trial, Shabani et al. [115]
investigated the effects of melatonin intake on mental health parameters and metabolic and
genetic profiles in women with PCOS. Fifty-eight women were randomized between the
placebo and melatonin groups (two capsules of 5 mg of melatonin daily), with intervention
for 12 weeks. After treatment, melatonin-treated women had better Pittsburgh Sleep
Quality Index (PSQI), Beck Depression Inventory Index (BDI), and Beck Anxiety Inventory
Index (BAI) scores compared to the placebo group. In addition, melatonin treatment
promoted a reduction in serum insulin and low-density lipoprotein-cholesterol (LDL-c)
levels, a reduction in homeostasis model assessment of insulin resistance (HOMA-IR), and
an increase in peroxisome proliferator-activated receptor gamma (PPARγ) and low-density
lipoprotein (LDL)-receptor gene expression.

Pacchiarotti et al. [116] evaluated the role of co-supplementation with melatonin and
myoinositol in optimizing in vitro fertilization in women with PCOS through a randomized,
double-blind, placebo-controlled clinical trial, in which 526 patients were randomized into
three groups according to treatment: control (folic acid: 400 mcg), group A (myoinositol:
4000 mg, folic acid: 400 mcg and melatonin: 3 mg), and group B (myoinositol: 4000 mg
and folic acid: 400 mcg). Treatment occurred from the first day of the cycle to 14 days after
embryo transfer. After the intervention, the oocyte and embryo quality were improved
with melatonin + myoinositol co-supplementation.

6. Effects of Melatonin on Dermatitis
Atopic dermatitis is a chronic inflammatory skin condition with a multifactorial origin.

Its regular symptoms are itching and lesions. Treatment for this condition can include
immunosuppressive agents, steroids, and biological therapies [46,117]. Melatonin has been
considered for treating atopic dermatitis and dermatitis provoked by irradiation, as shown
by the studies below (Table 5).

Table 5. Effects of melatonin in dermatitis.

References Study Population Intervention Duration Outcomes

[118]

Randomized,
double-blind,
placebo-controlled
clinical trial
(Denmark)

48 patients diagnosed with breast
cancer undergoing radiotherapy were
randomized between two groups:
placebo (64 ± 10 years, 22♀) and
melatonin group (62 ± 9 years, 26♀)

Application of 1 g of
cream containing
25 mg/g of
melatonin twice a
day on the irradiated
area of the skin
during radiotherapy

From the first
day of radiation
to the last
fraction of
radiation

There was no
significant difference
in quality of life
between groups after
treatment;
↓ BS score in the
melatonin group.

[119]

Randomized,
double-blinded,
placebo-controlled
trial (Iran)

70 children diagnosed with atopic
dermatitis were randomized between
two groups: placebo (8.4 ± 2.2 years,
17♀ and 18♂) and melatonin
(8.9 ± 2.1 years, 19♀ and 16♂)

Supplementation
with 2 tablets of 3 mg
of melatonin daily

6 weeks

There was no
significant difference
in pruritus, CRP,
weight, and BMI
scores.

[120]

Randomized,
double-blind,
placebo-controlled
clinical trial (Taiwan)

48 pediatric patients with atopic
dermatitis were randomly assigned to
two groups: placebo (7.3 ± 3.5 years,
10♀ and 14♂) and melatonin
(7.6 ± 4 years, 13♀ and 11♂)

3 mg/daily of oral
melatonin 4 weeks

↓ SCORAD index;
↓ sleep latency in the
melatonin-treated
group.

[121]

Phase II, prospective,
randomized,
double-blind,
placebo-controlled
study (Israel)

47 patients undergoing conservative
surgery for breast cancer were
randomized between two groups:
placebo (55 y, 21♀) and melatonin
(54 y, 26♀)

An emulsion
containing melatonin,
applied on the
irradiated breast
twice daily

7 weeks

↓ presence of
dermatitis in the
group treated with
melatonin.

BMI: body mass index; CRP: C-reactive protein; BS: breast symptom; SCORAD: Scoring Atopic Dermatitis; ↓:
decrease.
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Zetner et al. [118] investigated the role of topical application of melatonin in improving
the quality of life in patients with primary breast cancer undergoing radiotherapy through
a randomized, double-blind, placebo-controlled clinical trial. Forty-eight patients were
randomized between placebo and melatonin groups. The melatonin group was treated with
1 g of cream containing 25 mg/g of melatonin twice daily on the skin area irradiated during
radiotherapy. After treatment, there was no significant improvement in patients’ quality of
life when treated with melatonin-containing cream compared to placebo. However, there
was a reduction in breast symptom scores in patients in the melatonin group.

In a randomized, double-blind, placebo-controlled study with children diagnosed with
atopic dermatitis, Taghavi et al. [119] analyzed the effects of melatonin supplementation on
the sleep quality of these patients. Seventy patients were randomized between the placebo
and melatonin groups, who received two pills containing 3 mg of melatonin each day for
6 weeks. After treatment, the melatonin group tended to have improved sleep onset latency
and total sleep time. Still, there was no statistically significant difference in pruritus, weight,
and C-reactive protein (CRP) scores.

In a randomized, double-blind, placebo-controlled clinical trial, Chang et al. [120]
investigated the impact of melatonin supplementation in children with atopic dermatitis.
Forty-eight patients were assigned randomly to either the placebo group or the melatonin
group, where the latter received oral melatonin at a dose of 3 mg per day for 4 weeks.
Following the intervention, the melatonin group exhibited improved Scoring Atopic Der-
matitis (SCORAD) scores and reduced sleep onset latency.

Ben-David et al. [121] investigated the effects of melatonin-containing emulsions
against radiation-induced dermatitis in patients diagnosed with breast cancer through a
phase II, randomized, double-blind, placebo-controlled study. Forty-seven women were
randomized to receive a placebo or melatonin-containing cream twice daily for 7 weeks
during radiotherapy treatment. After treatment, it was observed that patients treated with
melatonin showed fewer signs of dermatitis compared to those treated with placebo.

7. Effects of Melatonin on Sepsis
Sepsis can be identified as an overpowering host’s inflammatory response to infection.

This inflammatory cascade induces multi-organ dysfunction syndrome and may cause
death. It can be separated into phases, and in the first, macrophage and leukocyte stimula-
tion with subsequent cytokine production is observed, leading to ROS and RNS production
and consequent oxidative stress. This last condition leads to endothelial dysfunction and
oxidative damage that reaches cells and organs. There is no specific treatment to control
sepsis and the inflammation storm, resulting in oxidative stress that leads to multi-organ
failure and death [122–125].

In a trial, the researchers investigated the use of melatonin in sepsis patients. After the
5-day treatment, they observed a reduction in hospital stay (19.60%) compared to placebo.
Five deaths occurred in the placebo group, and three occurred in the melatonin group.
They concluded that the use of this hormone improved (without side effects) the course of
the disease in surgical patients with severe sepsis [122].

Taher et al. [126] conducted another prospective, double-blind, randomized study
that evaluated the benefit of melatonin in patients with early septic shock. Forty patients
were randomized to receive a placebo or 50 mg of melatonin in a liquid solution for five
consecutive nights. The study results showed that patients receiving melatonin required
significantly lower doses of vasopressors than patients receiving placebo. In addition, the
melatonin-treated group had fewer deaths, lower sequential organ failure assessment score
(SOFA) scores, improved severity of organ dysfunction, and reduced need for invasive
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ventilatory therapy and renal replacement therapy, although without statistically significant
difference.

Galley et al. [127] evaluated the pharmacokinetics of two different doses of melatonin
in sepsis patients due to community-acquired pneumonia through a cohort study. Ten
eligible patients were divided into two cohorts according to the dose of melatonin in liquid
solution administered: cohort 1 (50 mg oral melatonin single dose) and cohort 2 (20 mg oral
melatonin single dose). After the intervention, a higher maximum concentration of serum
melatonin was observed in the group treated with 50 mg, and there was a similar maximum
concentration of 6-hydroxy melatonin sulfate (6-OHMS) between the two groups, indicating
that the 20 mg dose seems to be more adequate for the administration of melatonin in
liquid solution.

Aisa-Alvarez et al. [128] investigated the role of melatonin and other antioxidant
agents as adjuvant therapy in patients with septic shock through a randomized, controlled,
triple-blind clinical trial. Ninety-seven patients were randomized into five groups according
to the treatment employed: vitamin C group (1 mg capsule 4× a day), vitamin E group
(400 UI capsule 3× a day), N-acetylcysteine group (600 mg tablet 2× a day), melatonin
group (50 mg capsule a day), and control group. After 5 days of intervention, it was
observed that patients treated with melatonin showed a decrease in the SOFA score and a
reduction in lipid peroxidation and procalcitonin levels.

Table 6 shows clinical trials performed using melatonin in septic patients.

Table 6. Effects of melatonin in sepsis.

References Study Population Intervention Duration Outcomes

[122]

Phase II double-blind,
randomized,
placebo-controlled
trial (Spain)

29 subjects with severe sepsis
were allocated into two groups:
melatonin (65.5 y, 10♂ and 5♀)
and placebo (71.6 y, 8♂ and 6♀)

Patients received 60 mg
of melatonin daily
intravenously

5 days

Melatonin decreased redox
status compared to the placebo.
PCT showed better effects in the
melatonin subjects
(neutrophil-to-lymphocyte ratio
reduced significantly,
improving the evolution of the
condition).

[126]

Prospective,
double-blind,
randomized clinical
trial (Iran)

40 patients with septic shock
were randomized between
two groups: placebo
(53.95 ± 13.17 y, 14♂ and 6♀)
and melatonin (55.75 ± 11.45 y,
13♂ and 7♀)

50 mg/day of
melatonin orally at
night

5 days

Significant ↓ in the required
vasopressor dose, ↓ number of
deaths, ↓ severity of organ
dysfunctions, ↓ mean SOFA
score, ↓ use of ventilatory
support, and ↓ need for renal
replacement therapy, all
without statistically significant
difference.

[127] Cohort open-label
study (UK)

10 patients with sepsis due to
community-acquired
pneumonia were divided into
two cohorts: cohort 50 mg
melatonin (54–70 y, 5♂ and 0♀)
and cohort 20 mg melatonin
(45–83 y, 4♂ and 1♀)

20 or 50 mg of solution
containing 1 mg/mL of
melatonin in a single
dose

24 h

↑ of the maximum melatonin
concentration in the group
treated with 50 mg. The
maximum concentration of
6-OHMS was similar between
the two groups.

[128]

Controlled,
randomized,
triple-blind clinical
trial (Mexico)

97 patients diagnosed with
septic shock were randomized
between the following groups:
vitamin C (22–95 y, 6♂ and 12♀),
vitamin E (22–91 y, 12♂ and 6♀),
NAC (18–95 y, 11♂ and 9♀),
melatonin (46–95 y, 10♂ and
10♀), and control (51–89 y,
10♂ and 11♀)

50 mg of melatonin in
capsules daily 5 days ↓ SOFA score, ↓ LPO, ↓ PCT in

the melatonin-treated group.

6-OHMS: 6-hydroxy melatonin sulfate; NAC: N-acetylcysteine; LPO: lipid peroxidation; PCT: procalcitonin; SOFA:
sequential organ failure assessment score; ↑: increase; ↓: decrease.
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8. Effects of Melatonin on COVID-19
Coronaviruses have spread around the world during the last two decades. The severe

acute respiratory syndrome coronavirus (SARS-CoV) was known, but a new one emerged
in China in 2019, named SARS-CoV-2. This virus resulted in a tragic pandemic in 2020–2022
and led to millions of deaths. Although vaccines and prevention measures are well-known
against this disease, the virus is still circulating and evolving [129–133].

The virus acts in the spike protein to enter the host cell by the angiotensin-converting
enzyme 2 (ACE2) receptor, which is present in most organs. Stimulating the immune system
begins a pro-inflammatory cascade, resulting in augmented cytokine production and re-
lease, such as IL-1, IL-6, TNF-α, and interferon 1 (IFN-1). This scenario can lead to a systemic
condition termed cytokine storm related to the worst outcomes of the disease [23,134–136].

Purinergic signaling related to the P2X7 receptor is closely related to melatonin. The
impairment of P2X7 and other receptors contributes to the cytokine storm and the hyper-
inflammatory state. This condition initially leads to lung injury and acute respiratory dis-
tress syndrome. This hyper-inflammatory state can affect other organs, causing widespread
multi-organ dysfunction [23,137,138].

Melatonin has been considered a potential therapeutic for COVID-19 since, as pointed
out before, it can modulate inflammation, oxidative stress, and the immune system.
Therefore, it can reduce the cytokine storm and further oxidative conditions. Mela-
tonin can modulate many receptors related to the cytokine storm, preventing hyper-
inflammation [32,69,139,140].

As shown in Table 7, some clinical trials investigated the effects of melatonin in COVID
patients and showed improved quality of life, reduced hospitalization time, respiratory
symptoms, risk of thrombosis, sepsis, and mortality rate.

Table 7. Effects of melatonin in COVID-19.

References Study Population Intervention Duration Outcomes

[141]

Single-center,
double-blind,
randomized clinical
trial (Iran)

44 hospitalized patients with
confirmed mild-to-moderate
COVID-19 divided into
intervention
(50.75 ± 14.43 years, 10♀ and
14♂) and control
(52.95 ± 14.07 years, 8♀ and
12♂) groups

3 mg of melatonin
3 times daily 14 days

↓ Time of hospital discharge,
↓ respiratory symptoms,
↓ fatigue.

[142]

3-arm, parallel,
randomized,
double-blind,
placebo-controlled
trial (USA)

98 non-hospitalized patients
who tested positive for
COVID-19 were divided into
placebo (54 years, 24♀ and 10♂),
vitamin C (50 years, 19♀ and
13♂), and melatonin (52 years,
21♀ and 11♂) groups

10 mg of melatonin
once a day at bedtime
orally

14 days ↑ Symptom improvement,
↑ quality-of-life scores.

[143]

Single-center,
prospective,
randomized clinical
trial (Iraq)

158 patients with severe
COVID-19 divided into
melatonin (56.8 ± 7.5 years,
24♀ and 58♂) and control
(55.7 ± 8.0 years, 20♀ and 56♂)
groups

10 mg/day of
melatonin, 20–30 min
before bedtime orally

14 days ↓ Thrombosis, ↓ sepsis,
↓ mortality rate.

[144]

Open-label,
randomized,
controlled clinical
trial (Iran)

96 hospitalized patients with
COVID-19 divided into
melatonin (51.06 ± 15.86 y,
23♀ and 25♂) and control
(54.77 ± 15.34 y, 30♀ and 18♂)
groups

3 mg/day of melatonin
orally 1 h before
bedtime

7 days ↑ Sleep quality and blood
oxygen saturation.

↑: increase; ↓: decrease.
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9. Effects of Melatonin on Cancer
Like CVDs, cancer is considered a leading cause of mortality worldwide, and it is

possible to find historical records of this disease since ancient times (the first documented
cases are found in civilizations from Egypt and Greece). Despite this high prevalence, many
issues should be considered regarding its etiology and treatment [145]. Over the years,
immeasurable efforts have been made to uncover the possible causes and appropriate treat-
ment for each type of cancer. Many drugs have been developed that have positive effects
on the disease, even leading to remission. However, they are associated with countless side
effects. Because of this, compounds of natural origin have been considered in preventing
and treating different types of cancer [146–151]. For example, Jurju et al. [152] showed that
in inflammatory bowel disease (IBD)—a chronic inflammatory condition tightly linked to
immune system impairment and dysbiosis, resulting in inflammation of the gastrointestinal
tract, colorectal cancer, and multiple systemic manifestations—melatonin improves the
integrity of the intestinal mucosal barrier, modulates the immune response, and reduces
inflammation and oxidative stress. For these reasons, it can help control inflammation in
IBD patients, preventing or working as an adjuvant therapy to colorectal cancer.

Besides melatonin’s anti-inflammatory and antioxidant effects, it can also exert pro-
apoptotic actions on cancer cells, resulting in malignant cell death while preserving healthy
cells. Due to these reasons, this hormone arises as a multifaceted molecule with significant
therapeutic effects to combat cancer. Its property of modulating immune responses and
improving cellular resilience reaches the symptoms and pathophysiological pathways
associated with cancer [153–156].

Some researchers have demonstrated the effects of melatonin on cancer. The study of
Li et al. [157] pointed out that surgery is a standard treatment for lung cancer in the initial
phases; however, there is a significant malignancy of other nodules in other areas. Their
study combined local radiofrequency ablation associated with melatonin and improved
clinical outcomes for lung cancer with multiple pulmonary nodules. They observed reduced
lung injury nodules by diminishing lung function injury and reducing the probability of
malignant transformation or enlargement of nodules in non-ablated areas. Melatonin
could enhance local radiofrequency ablation-stimulated natural killer (NK) cell activity and
re-programmed tumor metabolism.

In another trial, the authors showed that melatonin may be effective in radioprotec-
tion against ionizing radiation-induced deoxyribonucleic acid (DNA) damage in human
lymphocytes [158].

Because oral squamous cell carcinoma (OSCC) may be the sixth most common malig-
nancy, Kartini et al. [159] investigated the effects of melatonin in this condition. Surgery is
a challenge since the head and neck present critical structures that can be affected by the
tumor or treatment. Chemoresistance is a concern due to the hypoxic microenvironment,
which is seen as a highly expressed hypoxia-inducible factor 1-alpha (HIF-1α). It is also
affected by micro ribonucleic acid (miR)-210 and the augmented expression of cluster
of differentiation (CD) 44 and CD133. Due to the powerful antioxidant and oncostatic
melatonin effects, it is expected to improve tumor hypoxia and clinical response. Their
results showed that using melatonin, compared to placebo, can reduce CD44 and miR-210.
Moreover, these effects were followed by a decrease in residual tumor percentage.

In another trial, the authors investigated the effects of melatonin on breast cancer
markers [insulin-like growth factor 1 (IGF-1), estradiol, insulin-like growth factor-binding
protein-3 (IGFBP-3), and IGF-1/IGFBP-3 ratio] in postmenopausal breast cancer survivors.
The results showed that postmenopausal women with a history of breast cancer who
received melatonin did not show modifications in the levels of IGF-1, estradiol, or IGFBP-3
levels [160].



Biology 2025, 14, 143 20 of 30

An interesting study by Sookprasert et al. [161] investigated the use of melatonin
in patients with advanced non-small cell lung cancer (NSCLC). A monthly overnight
or morning urine test was performed, and the DNA damage and repair marker was
measured [8-oxo-7,8-dihydro-2′deoxyguanosine (8-oxodG)]. Patients received 10 or 20 mg
of melatonin or placebo. Subjects in the melatonin group had better health-related quality
of life than placebo. A smaller amount of DNA damage biomarkers was found in the
melatonin-treated group, suggesting the hormone’s protective effects in healthy cells.

Table 8 shows clinical trials performed with melatonin and cancer.

Table 8. Effects of melatonin on cancer.

References Study Population Intervention Duration Outcomes

[157]
Non-randomized and
open-label study
(China)

Patients > 18 y with
biopsy-proven lung cancer

5 mg/day oral
melatonin 1 week after
RFA treatment

12 months

↓ lung injury nodules and the
probability of malignant
transformation or enlargement
of nodules in other areas;
enhancement of local RFA
ablation-stimulated NK cells
and re-programmed tumor
metabolism.

[158]
Biomedical
interventional study
(Iran)

5 male volunteers of 25–35 y
without a history of radiation
exposure

100 mg of melatonin at
9 am; blood samples
collected 5–10 min
before and at 1 and 2 h
after melatonin
administration;
the sample was
irradiated with a dose
of 10 or 100 mGy

-

Melatonin significantly reduced
the induction of γH2AX foci
after irradiation with X-rays
when ingested 2 or 1 h before.
Melatonin before exposure to
irradiation can benefit a patient
set to undergo computed
tomography.

[159]

Double-blind,
parallel, randomized
controlled trial
(Indonesia)

Fifty patients with OSCC

25 patients received
melatonin (20 mg) and
NC (cisplatin, taxane,
and 5-fluorouracil), and
25 received
neoadjuvant
chemotherapy alone

3 cycles
(each cycle
with an
interval of
3 weeks)

Melatonin decreased CD44 and
miR-210 compared to the
placebo insignificantly. These
effects were followed by a
decrease in residual tumor
percentage (not significant)
compared to placebo.

[160]
Double-blind,
placebo-controlled
study (USA)

95 postmenopausal women
with a history of stages 0-III
breast cancer

3 mg of oral melatonin
(n = 48) or
placebo/daily

4 months

Patients did not show
modifications in the levels of
hormones (IGF-1, estradiol, or
IGFBP-3) after having
melatonin.

[161]

A randomized,
double-blind,
placebo-controlled
study (Thailand)

151 patients with advanced
NSCLC; 18–70 y

10 or 20 mg of
melatonin or placebo
(associated with
traditional therapy)

7 months
Subjects in the melatonin group
had better health-related quality
of life and less DNA damage.

CD: cluster of differentiation; DNA: deoxyribonucleic acid; IGF-1: insulin-like growth factor 1; IGFBP-3: insulin-
like growth factor-binding protein-3, miR: micro ribonucleic acid; NC: neoadjuvant chemotherapy; NK: natural
killer; NSCLC: non-small cell lung cancer; OSCC: oral squamous cell carcinoma; RFA: radiofrequency ablation;
↓: decrease.

10. Effects of Melatonin on Dysbiosis
The gut microbiota is indispensable in protecting the gastrointestinal tract, maintaining

homeostasis, and, thus, health. Bacteria colonize the gastrointestinal tract after birth,
and the microbiota undergoes many modifications. It is profoundly influenced by diet
and environmental factors. When some factor interferes with it, the condition is named
dysbiosis [152,162–164].

Dysbiosis can lead to several diseases, such as neurodegenerative diseases, diabetes,
obesity, cancer, metabolic syndrome, and CVDs. Some animal studies have shown that
melatonin, due to its anti-inflammatory and antioxidant actions, can affect the gastrointesti-
nal tract and prevent dysbiosis. Moreover, melatonin can modulate gut microbiota, leading
to eubiosis [165–167]. Notwithstanding, the anti-obesity and anti-diabetic melatonin effects
can also improve gut microbiota [168–171]. Although melatonin has a crucial role in gut
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microbiota maintenance, as shown in animal studies [172–182], we only found one clinical
trial in the databases consulted when writing this review.

This study is a single-blind, parallel randomized controlled trial, and the authors
investigated the use of melatonin (100 mg daily/12 weeks) in adults (66 ± 3 years). Sleep
quality was assessed in the PSQI and the Global Sleep Score (GSS). The composition of
gut microbiota and short-chain fatty acids in stool were evaluated at weeks 0 and 12.
Their results showed that using melatonin could exhibit beneficial effects on sleep quality.
Furthermore, the authors observed increased microbiota diversity and a relative abundance
of short-chain fatty acid-producing bacteria in the gut [183].

11. Conclusions
Since melatonin can scavenge free radicals and downregulate inflammation (reducing

the release of pro-inflammatory cytokines such as pro-inflammatory interleukins, TNF-
α, and IFN-1), it can modulate the immune system and minimize apoptosis, adipose
tissue mass, insulin resistance, blood pressure, LDL-c, body weight, waist circumference,
endothelial dysfunction, and plaque formation. These isolated or combined effects can
make melatonin a systemic disease protection measure. This study showed that it can
prevent risk factors for several diseases and work as a therapeutic adjuvant in CVDs,
MAFLD, rheumatoid arthritis, dermatitis, COVID-19, polycystic ovaries, and sepsis. In
summary, we can conclude that melatonin can benefit patients with many diseases besides
sleep problems and neurodegeneration.

It is worth noting that using melatonin from plants presents several advantages. Firstly,
plant-derived melatonin can be associated with other bioactive compounds, which are
also naturally encountered in plants and often possess antioxidant, anti-inflammatory, and
other effects. Depending on the plant species, these may be flavonoids, vitamins, and
other compound classes. These compounds may also exert synergistic effects, improving
bioavailability, imposing fewer adverse effects, and making melatonin more cost-effective,
related to sustainability, and available for the final consumer [184]. Additionally, explor-
ing phyto-melatonin helps valorize biodiversity and enhance the therapeutic potential of
plants, which is mostly unknown. Finally, extraction methods of melatonin from plants
may be more sustainable than synthetic production, which also has high costs, depending
on the process utilized. This is particularly interesting in the context of an environmen-
tally friendly industry, especially regarding green healthcare. Synthetic medications pass
through rigorous regulation processes, while naturally occurring pharmacies are easily
regulated, making them more accessible and rapidly available for the consumer.

On the other hand, there are limitations in using melatonin from plants. Depending
on the cultivar (soil characteristics, soil nutrients, climate, light, proximity to contamination
areas), melatonin concentration cannot be the same. The presence of aggressive agents
and the harvest time also interfere with the phyto compound content. Post-harvest, plant
handling, and the method of melatonin extraction can also affect the quality and quantity.
Moreover, melatonin absorption can vary according to the pharmaceutical presentation,
dose, time of administration, and bioavailability. Notwithstanding, in higher doses, it can
interact with other medications, such as sedatives, and can lead to adverse events, such as
excessive sleep and metabolic or hormonal disorders.

Therefore, these challenges can be surpassed after standardizing planting, harvesting,
and melatonin extraction. These factors require investment in technology and robust
clinical trials demonstrating efficient pharmaceutical forms and doses, the appropriate
stimulation time, and adverse events in short-, middle-, and long-term use.
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