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Simple Summary: Infectious bacteria (microbes) are able to evolve to become resistant to antibiotics
(develop antimicrobial resistance, or AMR). Resistant microbes are harder to treat, requiring higher
doses, or alternative medications, which can be more toxic. Because of inappropriate use of medicine,
microbes are being subjected to evolutionary pressure resulting in increased AMR development. As a
result, AMR is emerging one of the biggest public health challenges of our time—posing the risk of a
pandemic without effective treatment or vaccine. The goals of this paper are to develop and analyze
machine learning methods to use the genome sequence information of a bacterium to: (1) predict
the minimum required dose of an antibiotic to treat bacterial infection, and, (2) identify specific
mutations or altered genetic content give rise to AMR. In particular, we propose a novel method
to apply machine learning algorithms to learn patterns of amino acid sequences in the genes of the
bacteria. We show that our proposed method produces comparable or even more accurate results
when compared to existing methods for the goal of dose prediction, and it can provide additional
insight for scientists who study AMR mechanisms.

Abstract: Machine learning algorithms can learn mechanisms of antimicrobial resistance from the
data of DNA sequence without any a priori information. Interpreting a trained machine learning
algorithm can be exploited for validating the model and obtaining new information about resistance
mechanisms. Different feature extraction methods, such as SNP calling and counting nucleotide
k-mers have been proposed for presenting DNA sequences to the model. However, there are trade-offs
between interpretability, computational complexity and accuracy for different feature extraction
methods. In this study, we have proposed a new feature extraction method, counting amino
acid k-mers or oligopeptides, which provides easier model interpretation compared to counting
nucleotide k-mers and reaches the same or even better accuracy in comparison with different methods.
Additionally, we have trained machine learning algorithms using different feature extraction methods
and compared the results in terms of accuracy, model interpretability and computational complexity.
We have built a new feature selection pipeline for extraction of important features so that new AMR
determinants can be discovered by analyzing these features. This pipeline allows the construction of
models that only use a small number of features and can predict resistance accurately.

Keywords: antimicrobial resistance; machine learning; genome sequencing; k-mer counting;
nucleotide; amino acid; gene clustering; SNP
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1. Introduction

Antimicrobial resistance (AMR) is a growing global threat [1–6]. AMR causes at least
700,000 deaths annually, a number that is projected to increase to 10 million by 2050 if no action
is taken [6,7]. Even as the world contends with the reality of viral pandemics like COVID-19, influenza
and Ebola, the world may soon face the scenario where bacterial infections, again, become a leading
cause of death for humanity [4]. The annual cost of antibiotic-resistant infections to the US health care
system is $55 billion [8]. The cumulative cost of combating AMR by 2050 is estimated between 60
and 100 trillion US dollars [7]. Antibiotics can cause different types of drug-induced toxicity, such as
nephrotoxicity [9] and hepatotoxicity [10]. Thus, prescribing the correct amount of the correct antibiotic
to treat a bacterial infection with minimizing the negative side effects is of seminal importance.

Advances in genomics can expedite the process of AMR detection. Traditional methods of
antimicrobial susceptibility testing require that bacteria are first isolated from human specimens
by culture techniques, and then, in multiple assays, isolated bacteria are exposed to different
concentrations of antibiotics to find out which concentration inhibits growth [11–13]. These approaches
are slow and expensive [14,15]. Alternatively, genome sequencing methods can be used for AMR
prediction [14,16]. Prediction of AMR from the genome of the bacteria is faster than culture-based
methods: While results of traditional tests are not available for days after sample collection [17],
commercial polymerase chain reaction (PCR) methods have been able to reduce the time of AMR
prediction to 2 h [18]. Moreover, the continuous reduction in the cost of sequencing technologies is
making this solution even more attractive.

Methods of AMR prediction from the genome of a microbe can be broadly categorized into
two groups: methods based on preexisting knowledge of genetic AMR determinants [19–21],
and methods with no a priori knowledge of AMR determinants [15,22–24]. A priori knowledge-based
methods predict AMR by cross referencing the genome sequence of the bacterium against databases
of known AMR genes and mutations [25]. Databases such as PAThosystems Resource Integration
Center (PATRIC) [26], Comprehensive Antibiotic Resistance Database (CARD) [27], RssFinder [28],
PointFinder [29] and Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) [30] provide a large
number of known AMR determinants. The main limitation of a priori knowledge-based methods is that
they are only effective when the AMR mechanisms are known [24,25]. Additionally, those methods
generally assume that a single genetic factor is causing AMR, or, if multiple factors are present,
that they do not interact [25]. In other words, these methods do not account for epistasis between AMR
mechanisms; however, epistasis has been reported to alter the final AMR phenotype when different
mechanisms co-exist [31–33]. On the other hand, methods that do not require a priori knowledge
of the identity of specific genetic AMR determinants, such as [15,22–24,34], infer AMR phenotype
from genome sequence data using statistical techniques and machine learning. Using the advances
in machine learning, these methods are capable of learning complex interactions between different
genetic AMR factors. One notable characteristic of those machine learning models which do not
require a priori knowledge is that they learn the AMR knowledge from the data. As a result, scientists
can use these models not only for AMR prediction, but also for discovering new AMR mechanisms
that have not been discovered before, given that the model can be interpreted.

AMR can be measured as a continuous variable or as a discrete variable. Certain methods [23,35–41]
classify the genomes into two classes of resistant or susceptible with respect to a certain antibiotic.
For example, in the case of [22], mapping was to three classes: resistant, intermediate and susceptible for
Acinetobacter baumannii, Staphylococcus aureus, Streptococcus pneumoniae and Mycobacterium tuberculosis.
In cases of [36,39], the intermediate class was merged with the resistant class (for AMR predicting
of Escherichia coli, in [36] and for AMR prediction of Staphylococcus aureus, Pseudomonas aeruginosa
and Escherichia coli, in [39]). On the other hand, methods such as [15,19,20,24,42,43] use machine
learning to predict the minimum inhibitory concentration (MIC) of an antibiotic on a certain
strain. These papers predicted MICs of different antibiotics for Streptococcus pneumoniae [42],
Neisseria gonorrhoeae [19], Klebsiella pneumoniae [15] and Salmonella [24], and the MIC of ciprofloxacin
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for Escherichia coli [20]. MIC is defined as the minimum concentration of an antibiotic that will inhibit
the visible growth of a microorganism after overnight incubation [44]. One shortcoming of methods
that predict resistance or susceptibility is that the definition of a resistant or susceptible strain depends
on clinical breakpoints (thresholds) [45,46]; however, in some cases, there is no agreement on the
values of these breakpoints between scientific institutions [45]. Moreover, the breakpoints are subject
to change over time [47], resulting in different definitions of resistance or susceptibility to an antibiotic.
On the other hand, MIC prediction does not rely in on a breakpoint. MIC also provides some resolution
as to the reflection of level of resistance, rather than a binary output of resistant or susceptible. As a
practical example, this can help distinguishing between a strain that has a very low MIC and a strain
that is susceptible but has an MIC that is close to the breakpoint [19]. From the machine learning
point of view, in these methods quantitative MIC prediction is a regression problem, meaning that a
continues value is outputted by the machine learning algorithm, which is the MIC, unlike classification
problems where a discrete label such as 0 for susceptible or 1 for resistant was outputted.

Different papers have used different feature extraction methods to present genome sequence data
as input to prediction models such as support vector machines [38,48,49], neural networks [41],
or gradient boosting [15,24,36], for AMR prediction. In [50,51], for example, the authors used,
as features, single nucleotide polymorphisms (SNPs) in genes that previously were known to have
drug-resistance mutation for Mycobacterium tuberculosis. In another paper [14], the authors also
used SNPs to predict resistance in Mycobacterium tuberculosis, in two scenarios: only using SNPs in
known AMR genes and using all SNPs in the dataset. In [34], SNPs from whole-genome sequence
(WGS) to predict resistance for Neisseria gonorrhoeae. In [35], the following feature extraction method
was used for binary AMR prediction in Escherichia coli: The authors first clustered all genes in all
genomes using 95% amino acid identity. Genes that existed in all genomes were labeled as “core”
genes, and genes that existed in some genomes were labeled as “accessory” genes. Then, a genetic
algorithm (GA) method was used to choose which subset of accessory genes should be used for
AMR prediction. Finally absence or presence of chosen accessory genes in each genome was used as
feature to predict AMR. Khaledi et al. [38] tried gene expression, gene absence/presence, SNP calling
and different combinations of those features for binary AMR prediction in Pseudomonas aeruginosa.
For gene absence/presence, they clustered all of the genes with the condition of 95% sequence
alignment coverage (genes went to the same cluster only if there was 95% coverage when they aligned
using BLAST). Then absence or presence of each gene cluster in each genome was used as a feature.
Hyun et al. [39], used absence/presence, but since gene clustering ignores genetic variation, they also
included unique amino acid sequence variants or “alleles” of each gene. In their definition a core
gene was a gene that was missing in at most 10 genomes. Similarly, in [37] both SNPs and gene
absence/presence were used to predict AMR for Elizabethkingia. Reference [36] used different features,
including absence/presence of accessory genomes, SNPs, indels and year of isolation for Escherichia coli.

Another approach has been to count nucleotide k-mers (oligonucleotides) for predicting MIC:
For example, ref. [15,24] employed counts of 10-mers (subsequences of length 10) for Klebsiella
pneumoniae and 15-mers for Salmonella enterica, respectively. In [22,23], nucleotide 31-mers were
employed to predict resistance for multiple species. Liu, et al. [52] also used nucleotide 31-mers to
predict resistance in Actinobacillus pleuropneumoniae. In [49], nucleotide k-mers of length 5 to 10 were
used for Neisseria gonorrhoeae. Although nucleotide k-mers can perform well in terms of predicting
AMR accurately, good performance is only guaranteed when the k-mer is long enough. Furthermore,
important features (k-mers) chosen by the model in this method can only be interpreted by searching
against databases such as NCBI [53] if k is long enough. However, simply increasing k-mer length runs
into a substantial practical problem: the number of features in this method increases exponentially
as k increases, at least before the number of features becomes limited by the sizes of the genomes.
As such, longer k-mers can lead to memory issues when a machine learning model is trained using
these features.
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To mitigate the problems associated with increasing k-mer length to achieve interpretability,
in this paper we propose an alternative: counting amino acid k-mers (i.e., oligopeptide sequences)
in protein sequences. Amino acid k-mer counts exploit the biological redundancy of the nucleotides
sequences to provide a more compact representation of the data. Amino acid k-mers can provide
easier model interpretation and require less computational complexity compared to nucleotide k-mers,
while providing comparable accuracy to other feature extraction methods evaluated herein, such
as counting nucleotide k-mers of varying lengths, identifying the absence/presence of gene clusters
and obtaining SNPs.

We principally used extreme gradient boosting (XGBoost) regression [54] to train the models
evaluated in this paper. In XGBoost, several trees are trained to learn the relationship between input
and output. After being trained, each tree calculates the output by comparing the inputs to a series
of thresholds in a hierarchical manner. Each tree attempts to correct mistakes of the previous tree.
The final output is sum of predictions from all trees. As a result, in XGBoost, a strong learner is built
by combining decisions of several weak learners [54].

In this paper, we first use amino acid k-mers alongside other feature extraction methods to
predict MIC and compare them in terms of ability to predict MIC, interpretability, feature stability
and computational complexity. Then, we build and demonstrate the results of a feature selection
pipeline for the extraction of important features, and use it to identify important AMR determinants
from the model without any prior knowledge about AMR mechanisms. For example, the pipeline
discovers that although the truncated version of tetracycline resistance gene tet(D) is known as a
resistance conferring gene in PATRIC database, Klebsiella pneumoniae strains that have this version have
lower MICs compared to strains that do not have any version of this gene. Finally, we show that we
can build a model with only a few important features picked by our feature selection pipeline, which in
many cases reaches a better accuracy in comparison with a model that uses all features. In this paper,
we apply the proposed feature extraction method as well as other existing feature extraction methods
to four gram-negative bacteria species.

2. Methods

2.1. Data Acquisition and Pre-Processing

We applied all feature extraction methods described below to four bacterial species, namely,
Campylobacter jejuni, Neisseria gonorrhoeae, Klebsiella pneumoniae and Salmonella enterica. For S. enterica
the MIC values were downloaded from the published metadata of a previous study [24] and for
K. pneumoniae the MIC values were downloaded from the metadata of another study [15]. For C. jejuni
and N. gonorrhoeae, the MIC values were downloaded from the PATRIC database [26]. For all
datasets, the nucleotide sequences and the amino acid sequences were obtained from PATRIC database.
Nucleotide genomes were in FASTA format (.fna) and amino acid sequences were in protein FASTA
format (.faa). The amino acid sequences were annotated using RAST tool kit (RASTtk) [55] by PATRIC.
For dual antibiotics, such as trimethoprim–sulfamethoxazole, we used the MIC values of the first
antibiotic, because the second one either depends on the first one or is constant [15]. For each antibiotic
and each species, we discarded MIC target values which were underrepresented below a specified
threshold in the amount of strains. We set the threshold for discarding a target value to 3, meaning that
strains of any target value that had only 1, 2 or 3 strains were discarded from dataset of that particular
species of antibiotic combination. The number of genomes and distribution of MIC values for each
species and each antibiotic are provided in Appendix A. Chemical structures of all antibiotics are
provided in Appendix J.

2.2. Feature Extraction Methods

We compared the results of the following feature extraction methods: counting nucleotide k-mers
in raw DNA sequences, counting amino acid k-mers in protein sequences annotated by PATRIC from
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the raw DNA sequences, gene content (finding which genes exist in which genomes, and in a case of
existence, how many times the gene is present in the genome), SNP calling and the combination of
gene content and SNP calling.

2.2.1. Nucleotide k-mers

Nucleotide k-mers were counted using KMC3 [56] for the genome of each strain. The minimum
count for output k-mers was set to 1, meaning that any k-mer with a frequency more than zero was
counted. By default, the maximum count for a k-mer in KMC3 is 255. In order to avoid cutting off
the counts when a k-mer repeated more than this value, we set the maximum value to 4,294,967,295,
which is larger than any possible k-mer count in our data because the longest genome in our data had
9,985,884 characters and a k-mer count theoretically cannot be larger than that. k-mers of length 8, 9, 10
and 11 were tested. We did not try longer k-mers because of memory limitation.

Two scenarios are possible for counting nucleotide k-mers. One scenario is to convert all
of the non-canonical k-mers (k-mers that have smaller lexicographical orders than their reverse
compliments [57]) to their reverse complement to get the canonical form, and just count canonical
k-mers. The other scenario is to count all k-mers [57]. For each k, both scenarios were tested in
Appendix F. Results show that converting non-canonical k-mers to canonical performs better. Therefore,
canonical counting was used for all nucleotide k-mer analyses in the main text. The rest of the
parameters were set to their default values.

2.2.2. Amino Acid k-mers

Amino acid k-mers were counted in the protein FASTA sequences downloaded from PATRIC
database. For counting the amino acid k-mers, we used MerCat [58]. The minimum frequency for
output k-mers was set to 1, so that any existing k-mer was counted; 3-mers, 4-mers and 5-mers of amino
acid (which correspond to 9-mers, 12-mers and 15 mers of nucleotide, respectively) were counted for
the genome of each strain. We did not try longer k-mers because of our memory limitation.

2.2.3. Gene Content

The goal of this method is to predict MIC based on the gene content of the strains. The gene
content of a genome is defined as the set of genes that exist in that genome and the number of
times each gene exists. In [35] a subset of genes was selected by a GA method to be used for AMR
prediction. On the other hand, [36,38,39] used all genes as features. We chose the second approach,
which includes all genes. Moreover, in [35,36,38,39], the clustering of the genes was performed on all
genomes regardless of partitioning of the genomes into training and testing sets. This creates a bias for
the machine learning model because the model is exposed to some information about the test data
during the clustering step before training. To avoid this bias, we performed clustering one the training
data and searched for the genes in the test set.

For each species and each antibiotic, in order to find an orthologous gene in different genomes,
in each training set, we combined all of the genes in amino acid sequences of all of the training genomes
into one FASTA file. Then the entries of this FASTA file were clustered using MMseqs2 version
9.d36de [59,60]. We used the easy-linclust command with default settings: Setcover clustering mode,
maximum e-value: 0.001, minimum alignment length 80%, amino acid substitution matrix: Blosum62.
After performing the clustering, the list of all existing gene clusters was extracted. Each cluster was
labeled with the PATRIC ID of a representative gene sequence. For each genome, the number of times
each gene cluster was observed was counted to create the gene cluster feature matrix. In this matrix,
each row is a genome and each column is a gene, and the corresponding element is the number of
times that gene exists in that genome. We used count rather than binary absence/presence so that the
model could understand if a gene was observed more than once in a genome. After training the model
to search existence and counts of the genes in the test genomes, we again used MMseqs2 with the
same parameters (maximum e-value: 0.001, minimum alignment length 80%, amino acid substitution
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matrix: Blosum62) to search the test genomes in the training genomes. By doing this, we made sure
that the training set and the test set were completely separated and the model was been exposed to
any information about the test genomes during the training or before that.

2.2.4. SNP Calling

The goal of this method is to predict AMR based on the SNPs in the genome. There are multiple
software packages for SNP calling used in the literature [61–64]. Based on the comparative analysis
of [65], Snippy [66] had the best overall rank when the reference genome was divergent from the
sources of the reads. Thus, we chose Snippy in our analysis. For the genome sequence of each strain,
SNPs were extracted by comparing each genome to the reference sequence. The reference sequences
were downloaded from National Center for Biotechnology Information (NCBI) [53] in FASTA format.
The NCBI accession IDs of the chosen reference genome for different species are as follows. C. jejuni:
NC_002163, K. pneumoniae NC_016845, N. gonorrhoeae: NC_002946.2 and S. enterica: NC_003198.1.
We used Snippy version 4.6.0 [66] for extracting SNPs. Since genes might be at different locations in
query genomes with respect to reference genome, Snippy shreds each query to 250 bp pseudo-reads
with 20x coverage and then aligns the short pseudo-reads to the reference and finds SNPs using
Freebayes [62] (version: 1.3.2-dirty). We annotated the SNPs with respect to the reference genome.
In each position on the reference, the nucleotide could change to three different bases. For example,
if at a position 200, the reference has A, the variant at that position can be C, T or G. In order to be able
to keep all of the information, we one-hot coded the SNP features. For example, for the aforementioned
position, 3 features can exist: position 200 > C, 200 > G, and 200 > T. Snippy also finds indels that we
did not use.

This representation of data leads to a sparse matrix (more than 95% zero), because many SNPs do
not exist in most of the strains. We exploited this criterion of the data to conserve memory, by storing
the data in form of sparse row matrix of SciPy (version 1.3.0) [67].

2.2.5. Gene Content and SNP Calling

Both the gene content and SNP features were combined and tested as another feature extraction
method. In this feature extraction method, SNP features extracted according to Section 2.2.4 and gene
content features extracted according to Section 2.2.3 were concatenated into one vector. Since most
of the features for this data were the SNP features, the data were also sparse and we used the same
sparse representation as Section 2.2.4.

2.3. Feature Matrix and Target Values

For each species and each antibiotic regardless of the feature extraction method, certain features
only exist in certain genomes and not all of them. For example, for k-mer features, a genome of one
strain has a subset of all possible k-mers and the genome of another strain has a different subset.
To build a unified feature matrix, the union of all existing features was calculated to create the feature
space. The feature matrix was created as a N f eat × Nstrain matrix, where N f eat is the total number of
existing features and Nstrain is the number of genomes in the dataset. The feature matrix was used for
machine learning in conjunction with the target MIC values.

Similarly to [15,24], when the MIC value was larger than the maximum testing threshold (reported
as MIC > x) the employed MIC value was replaced with 2× x, and when MIC value was smaller
than the minimum testing threshold (reported as MIC < x), it was replaced with x/2. In all cases the
target MIC values were converted to log2 scale for the machine learning task. Without this conversion,
the model will not be able to distinguish the differences between different small MIC values in the
presence of larger values. For example, small target values, such as 0.125 and 0.25, look the same in the
presence of large target values, such as 64 and 128, because the difference between two small target
values looks like a small amount of noise compared to the large target values. After the conversion,
the mentioned target values become −3, −2, 6 and 7 respectively.
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Distribution of MIC values For each species–antibiotic combination is presented in Figures A1–A4.
The overall pipeline for all feature extraction methods is depicted in Figure 1.
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Figure 1. Overall pipeline for all feature extraction methods.

2.4. Measuring the Prediction Performance

According to the FDA standards for antimicrobial susceptibility test [68], essential agreement
(EA) between two MIC measurement approaches is achieved when MIC of the proposed method is
within ±1 two-fold dilution of the reference method. In other words, if the reference MIC is denoted
by x and the MIC of the proposed method is denoted by x̃, the agreement is reached when

x̃ ∈ [x/2, 2x] (1)

This can be used to evaluate performance of MIC prediction methods: ±1 two-fold accuracy is
defined as the number of predictions that satisfy EA, divided by the total number of predictions,
as done in [15,19,24,42,43]. Note that in the log2 scale the accepted range of EA becomes
[log2(x)− 1, log2(x) + 1]. We used this metric as the main method to evaluate the the prediction
performance. As an alternative that tolerates greater error, ±2 two-fold dilution accepts anything in
the range of [x/4, 4x] as a correct prediction for the actual target value of x.

A more theoretical alternative metric is root mean squared error (RMSE). For a set of target values,
such as xi, and a set of corresponding predictions, such as x̃i, RMSE is defined as:

RMSE =
√

∑
i
(xi − x̃i)2 (2)

RMSE is more precise compared to ±1 two-fold accuracy, because it better quantifies the error.
Two other biologically important metrics are major error (ME), which is type I error, and very major

error (VME), also known as type II error [68]. These metrics can be calculated based on breakpoints for
MIC. Breakpoints are concentrations (mg/L) of an antibiotic that define whether a strain is susceptible
or resistant to the antibiotic. If the MIC is less than or equal to the susceptibility breakpoint, the strain is
considered susceptible to the antibiotic. If the MIC is greater than the resistance breakpoint, the strain
is considered resistant to the antibiotic. If MIC is between the susceptibility and resistance breakpoints,
the strain is considered intermediate. For C. jejuni and S. enterica, the breakpoints were obtained
from the National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS) [69].
For N. gonorrhoeae and K. pneumoniae, breakpoints were obtained from the Clinical and Laboratory
Standards Institute (CLSI) [46]. Predicting a truly susceptible strain as resistant is a ME and predicting
a truly resistant strain as susceptible is a VME. Rate of ME and VME can be calculated by dividing the
number of errors by the total number of tested strains.
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We report a performance evaluation with all of the metrics for all of the species–antibiotic
combinations in Appendix E.

2.5. Machine Learning

For each species and each feature extraction method, we trained a separate model for each
antibiotic. Similarly to methods in [15,19,20,24,43], we trained the model to predict MIC as a regression
task, rather than just classifying the genomes into resistant or susceptible.

In order to choose the best regression package, different methods were tested on an experimental
dataset, with S. enterica and ampicillin, 4-mers of amino acid, to see which one performed better.
After separating 10% of the data as a hold-out set, the remaining genomes were divided into
10 folds of stratified cross-validation. Regression packages that we tried were linear regression,
ridge regression, support vector machine regression with three kernels (linear, radial basis function
or RBF, and polynomial), random forest regression [70], AdaBoost regression [71] and XGBoost
regression [54]. For XGBoost, we used the Python implementation version 1.0.2 [72] with
regression objective function and squared loss. For all other methods, we used scikit-learn version
0.23.1 [73]. In this experiment, all methods were trained with their default parameters and no
hyper-parameter tuning was performed. Results of the comparison are provided in Section 3.1.2.
Since XGBoost performed better than all other methods and had a reasonable computational complexity,
we chose XGBoost.

2.5.1. Hyper-Parameter Tuning for XGBoost

After selecting XGBoost, in order to find the best combination of hyper-parameters, we performed
hyper-parameter tuning for each species and each feature extraction method separately. Since we
had four species and five feature extraction methods, the hyper-parameter tuning was performed
20 times. For k-mer counting feature extraction methods, different k-mer lengths exist. We ran
hyper-parameter tuning on 4-mers of amino acids and 10-mers of canonical nucleotides. Since different
antibiotics exist, for each species, one antibiotic was used for tuning. For C. jejuni we used
clindamycin; for N. gonorrhoeae, we used tetracycline; for K. pneumoniae, we used cefoxitin; and
for S. enterica, we used streptomycin. These antibiotics were chosen because they each had (i) a
relatively uniform distribution of MIC values, (ii) a large range of values and (iii) a sample size large
enough to allow the model can learn the data while being small enough to avoid computational
complexity. Before performing hyper-parameter tuning, the genome of each microbe was divided
into two parts: 90% of the genomes were used for running the experiment, and 10% were held out
(see Figure 2). For each microbe, the hold-out set was not used at any of the hyper-parameter tuning
or cross-validation steps and was saved exclusively for the final evaluation. Since there are different
number of genomes for different antibiotics, we could not use the same hold-out set for all antibiotics.
We also ensured that no genome in the hold-out set would ever be observed by any of the models
during the parameter-tuning step. Thus, for each species, the genomes IDs of the genomes that were
used for hyper-parameter tuning were saved by the pipeline, and the pipeline made sure that in other
antibiotics these genomes did not fall in the hold-out set. In cases where the number of unobserved
genomes was less than 10% of the total number of genomes, due to smaller number of genomes for
some antibiotics compared to the antibiotic that was used for hyper-parameter-tuning, less than 10%
of the data were used as the hold-out set.

In the hyper-parameter tuning stage, we performed cross-validation with five folds. In each fold,
20% of the data were used for validation and 80% were used for parameter tuning (see Figure 2).
In each fold, the hyper-parameter combination that minimized the mean squared error of validation
was selected as the optimal combination. After running the tests, we had five sets of hyper-parameters
corresponding to five folds. The final chosen hyper-parameters were those that minimized the RMSE
error on the validation set. Since some of the datasets are very large, more than one hundred gigabytes,
it is not computationally feasible for many researchers to experiment with all possible combinations
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of all hyper-parameters in an exhaustive search manner. We used Optuna [74], a software package
that implements early stopping for XGBoost by using the built-in validation check feature of XGBoost
and a tree-structured Parzen estimator (TPE) [75] for choosing combinations of hyper-parameters
to perform hyper-parameter tuning in each one of the mentioned five folds. The hyper-parameters
which we searched were learning rate, maximum tree depth, minimum child weight, lambda, gamma,
column sub-sampling, maximum delta step, and number of estimators. Table 1, shows the ranges of
the hyper-parameters which were swept.

Table 1. Examined values of hyper-parameters.

Hyper-Parameter Ranges Sampling

Learning rate [10−5, 0.5] Log uniform
Maximum tree depth [3, 10] Uniform integer

Minimum child weight [2, 8] Uniform
Lambda [0, 10] Uniform
Gamma [0, 3] Uniform

Column sub-sampling [0.25, 1] Uniform
Maximum delta step [0, 10] Uniform

Number of estimators [50, 100] Uniform integer
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Figure 2. Overall pipeline: First, a hold-out set is separated for the final evaluation. Then for each
microbe and each feature extraction method, hyper-parameter tuning is done on one antibiotic
with 5 folds of cross-validation, which results in 5 different sets of hyper-parameters in the end.
The parameter set that minimizes the RMSE is chosen for 2 experiments: Cross-validation using
10 folds, and a final evaluation on the hold-out set.

2.5.2. Training the Model

After optimizing the parameters of XGBoost, it was used to train and test with 10 different feature
extraction methods for C. jejuni, S. enterica, N. gonorrhoeae and K. pneumoniae. We used two schemes for
train and test: 10-fold cross-validation and evaluation of the hold-out set (See Figure 2). For the 10-fold
cross, in each fold, 10% of data were used for testing and 90% were used for training. In the training
part, 10% of the training data were used for validation to prevent over-fitting and the rest was actually
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used for training the model. The trained model of each fold was later tested with the corresponding
test set. In the hold-out evaluation, all of the data except for the hold-out set were used for training,
and the hold-out set was used for final evaluation.

2.5.3. Feature Selection

After training the model with cross-validation in 10 folds, we wanted to extract the important
features. Important features serves two purposes:

• A concise model using only important features can be built.
• The features can be used to gain biological insights.

2.5.3.1. Feature Selection Pipeline

To find the important features, we ranked them by their absolute SHAP [76,77] values.
SHAP (shapley additive explanations) assigns each feature an importance value based on the
contribution of that feature to the output of the model by comparing the output of the model with
and without that feature [76]. A feature that makes a great change in the output will have a great
absolute SHAP value and a feature that does not make a huge difference in the output will have a
small SHAP value.

Since we performed 10-fold cross-validation for each species–antibiotic combination, there were
10 models in each experiment. However, we wanted a unified set of important features from all folds.
To combine the features selected in different folds, we used the following method: In each fold, the top
Ntop features are picked and added to the set of important features. Any feature in this set might be in
the top Ntop features in the model in one or more fold. For each feature in the set of important features,
the number of folds in which it makes it to the top Ntop is counted, and features are ranked based on
this number. For example, a feature that makes it to the top Ntop in 9 folds out of 10, receives a higher
rank compared to a feature that makes it to the top Ntop only 3 times. This method returns a list of
features ranked based on their importance in all folds of cross-validation. In this pipeline Ntop is a
hyper-parameter. We tuned this hyper-parameter and found the optimal value of 50 for it. Details of
this optimization are provided in the rest of this section. Pseudo-code for the feature selection pipeline
is presented in Algorithm 1.

Algorithm 1 Feature selection.

1: for i = 1, 2, . . . ,10 do
2: Rank the features in fold i based on their SHAP values;
3: Selected features i = Top Ntop features in fold i;
4: end for
5: Find union of selected features in all folds ;
6: for feature in union set do
7: Find in how many folds this features makes it to top Ntop;
8: end for
9: Rank features in the union based on the number of times each feature appears in the top Ntop;

10: Output the ranked list of features;

In the results section, for different antibiotic-species, we are reporting the top features selected by
this pipeline. Moreover, for each feature, all of the existing strains (including the ones that are filtered
out) are divided into 2 groups: positive strains, strains that have the feature at least once, and negative
strains, strains that do not have the feature. The Kruskal–Wallis (K–W) test [78] is used to compare
the MICs of two groups and see if there is a significant difference. The reported features are the ones
that appear in the top 50 features in at least 8 folds out of 10 folds and their p-values are less that the
significance threshold (0.05).
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2.5.3.2. Training the Model with the Selected Features

After obtaining the list of features sorted by their importance, we built models with the most
important features. To do this, first, we picked only the most important features and trained the model
in 10 fold cross-validation with only 1 feature. Then we selected the 2 most important features and
trained the model in 10 folds. The same processes was repeated up to the 40 most important features.
The minimum number of features that reached the maximum accuracy was selected as the required
number of features for the “selected-feature” model. Then this selected-feature model was tested in
the hold-out evaluation scheme.

2.5.3.3. Tuning the Hyper-Parameter Ntop

In Algorithm 1, Ntop is a hyper-parameter. We tested the values of [20, 30, 40, 50, 60, 70, 80] for this
hyper parameter on a dataset of C. jejuni and tetracycline using gene content feature extraction. To find
the best value for this hyper-parameter, we needed a metric to evaluate different values. Since the
purpose of this pipeline was to find important features, the best performance was achieved by the
set of features that resulted in good accuracy with the fewest features. The good accuracy that we
choose as the benchmark was the average cross-validation accuracy when all of the features are used.
In other words, the question was using which value of Ntop can a pipeline that is only using the
selected features reach the average cross-validation accuracy of a pipeline that is using all features.
The best performance was achieved by Ntop = 50, where the pipeline reached an accuracy better than
the average accuracy of model trained with all features using only 10 features.

2.5.3.4. Interpreting the Top Features

After selecting the top features, we wanted to know what these features are and what information
can we extract from them, for two purposes:

• Validation: When the model finds top features that we already know are important AMR
determinants, we know that the model has been trained and is working properly.

• Discovery of new AMR determinants: In an accurate model, the top features that are derived
from the data can be used for discovering new AMR genes/SNPs.

For the gene content pipeline, we interpreted the functions of the selected genes by searching the
gene ID of a representative gene of each cluster in the PATRIC database. In some cases we also blasted
the important gene sequences in other databases such as CARD [27] and NCBI [53], as reported in
Section 3.2. For SNP features, first we extracted the position of each SNP with respect to the reference,
and then looked for the gene in which the SNP happened and then found the function of that gene in
the gene bank file provided for the reference in NCBI database. For the k-mer features, we searched
them in NCBI database using BLAST [79]. We specified the species name before each blast search.
When a query is searched against a database, it might align with multiple positions in different genes.
We only considered the hits with perfect matches to the query and discarded cases where only a part
of the k-mer matched a subject. When there was a disagreement among perfect matches, meaning
that the query aligned with multiple genes, we reported the gene that had the bigger number of hits.
In cases where the hits with full query coverage were from different genes and none of these genes
outnumbered the others, and where a product of the gene with a maximum number of hits was a
hypothetical protein, we did not report anything.

2.6. Software Implementation and Availability

All of the computational results reported herein were performed using Python version 3.7.1,
CentOS Linux release 7.6.1810 and Red Hat Enterprise Linux Server release 6.5. We have made all of
the source code available on Github at https://github.com/TahaAslani/AAk-mer.

https://github.com/TahaAslani/AAk-mer
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3. Results

The results section is divided into two subsections: First, we present results of performances of
different techniques. Second, we analyze the AMR determinants for different antibiotics by interpreting
the top features that our feature selection pipeline picked. Analyses of feature stability and performance
evaluations for selected-feature models are provided in Appendices G and H, respectively.

3.1. Performances of Different Feature Extraction Methods

3.1.1. Comparison of Required Numbers of Features

When comparing different feature extraction methods, it is important to take the number
of features into account, because it directly affects memory usage and computational complexity.
For k-mer counting methods, the number of features is determined by the number of existing k-mers
in all genomes. For SNPs, the number of features is the number of existing SNPs in all genomes
multiplied by four, because of one-hot coding of four possible nucleotides after mutation. In case of
gene content, the number of features is the number of existing clusters after clustering the genomes.
Finally, for “gene content + SNP” the number of features is simply the addition of the number for gene
content and SNP methods. Figure 3 depicts the average and standard deviation of number of features
for each method across all species. For SNP data, although the number of features is large, the data are
always sparse (more than 95% zero) so sparse data format can be used to mitigate memory issues.
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Figure 3. Average and standard deviation of number of features for each method across all species.
An asterisk indicates the maximum theoretically possible number of k-mer features, where applicable.

3.1.2. Comparison of Regression Packages

As mentioned in Section 2.5, different regression packages were compared based on predicting
MIC of S. enterica and ampicillin from 4-mers of amino acid. We chose 4-mers of amino acid because
the number of features and data size for this feature extraction method were not too large and we
could test computationally expensive methods, like random forest, using this dataset. Figure 4 shows
the results of this comparison.

The best performance, as measured by the accuracy of prediction of ±1 two-fold dilution level,
was achieved by XGBoost. The second best option was random forest, which performed close to
XGBoost in terms of accuracy; however, the computational complexity of XGBoost was significantly
lower than that of random forest. XGBoost is thus more scalable to bigger datasets. XGBoost was also
reported to outperform other machine learning packages for MIC prediction in [15]. Moreover, in [36]
gradient boosting overall performed better than logistic regression, random forest and deep learning.
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Figure 4. Comparison of ±1 two-fold dilution accuracy of regressors in 10 folds of cross-validation
on predicting MIC of ampicillin for Salmonella enterica with 4-mers of amino acid. In each box plot,
the whiskers represent the maximum and minimum. The boxes represent the first and the third
quartiles. The orange line represents the median and the green dashed line represents the mean.

3.1.3. Accuracy of Different Feature Extraction Methods Using XGBoost

For the dataset for each species and antibiotic combination, we tested and compared different
feature extraction methods. In the main text, we used ±1 two-fold dilution to measure MIC prediction
accuracy. A complete evaluation of all models using all metrics described in Section 2.4 is provided
in Appendix E. Since we used cross-validation to measure the performance, in each experiment
there were 10 different prediction accuracies corresponding to 10 different folds. The average and
the box plot of distribution of the ±1 two-fold dilution accuracies are reported in Figures 5–8 for
different species. In these figures, the antibiotics are ordered based on their classes. In each box plot,
the whiskers represents the maximum and minimum. The boxes represent the first and the third
quartiles. The orange line represents the median and the green line represents the mean. The accuracy
on the hold-out set is also represented by an “×” mark.

3.1.4. Searching Top Amino Acid and Nucleotide k-mers in NCBI Database

In order to compare the interpretability of models trained with nucleotide and amino acid k-mers,
for eight species–antibiotic combinations, we searched the top amino acid 5-mers and nucleotide
11-mers, chosen by the proposed feature selection pipeline in NCBI database. These datasets were:
K. pneumoniae–tetracycline, K. pneumoniae–tobramycin, K. pneumoniae–imipenem, S. enterica–cefoxitin,
S. enterica–amoxicillin clavulanic acid, S. enterica–ampicillin, S. enterica–chloramphenicol
and S. enterica–sulfisoxazole. For both amino acid and nucleotide k-mers, we chose the longest k-mers
size, which was determined by computational complexity limitations. As mentioned in Section 3.1.1,
both of these methods have virtually the same feature size. The searched features were chosen based
on these two criteria: They appear in the top 50 features at least in eight folds out of 10 folds and their
K–W test p-value is less than the significance threshold (see Section 2.5.3). In all of the searches we
used the default parameters of NCBI BLAST.
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For the top amino acid 5-mers, the chosen features in all datasets aligned to genes that were
known AMR determinants. Results of these alignments are presented in Tables 2, A5, A6, A7, A8, A9,
A10 and A11, respectively. On the contrary, in case of nucleotide 11-mers none of the queries hit a
subject on NCBI database.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Distribution of accuracies of folds of cross-validation
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Gene content
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Figure 5. Distribution of ±1 two-fold dilution accuracies in different methods for Campylobacter jejuni.
The box plots are similar to Figure 4. The orange line represents the median and the green line
represents the mean. The ×marks represent the accuracy of the hold-out set. The antibiotic used for
hyper-parameter tuning is indicated by an asterisk. For each method, the top boxes, labeled as “All,”
were obtained by combining all ten folds for all antibiotics.
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Figure 6. Distribution of ±1 two-fold dilution accuracies in different methods for Neisseria gonorrhoeae.
Plots are similar to Figure 5.
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Figure 7. Distribution of ±1 two-fold dilution accuracies in different methods for Klebsiella pneumoniae.
Plots are similar to Figure 5.
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Figure 8. Distribution of ±1 two-fold dilution accuracies in different methods for S. enterica. Plots are
similar to Figure 5.
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Table 2. Important genes found for S. enterica and amoxicillin clavulanic acid by amino acid 5-mer and gene content methods.

Amino Acid 5-mers Gene Content

5-mer Gene Product Number of
+/− Strains

Mean (STD) MIC
of +/− Strains

p-Value Gene Product Number of
+/− Strains

Mean (STD) MIC
of +/− Strains

p-Value

TDFLR class A beta-lactamase 143/5135 12.7 (12.7)/11.1 (20.8) 1.5× 10−17 Class A beta-lactamase (EC 3.5.2.6) => CARB/PSE
family, carbenicillin-hydrolyzing

42/5236 15.3 (2.8)/11.1 (20.7) 7.7× 10−16

AWLWQ 49/5229 12.2 (9.7)/11.1 (20.7) 1.2× 10−10 Class A beta-lactamase (EC 3.5.2.6) => HER family 56/5222 15.2 (10.5)/11.1 (20.7) 3.9× 10−19

NTAAN type IV conjugative transfer system
coupling protein TraD

868/4410 16.6 (15.8)/10.0 (21.3) 8× 10−309 Class C beta-lactamase
(EC 3.5.2.6) => CMY/CMY-2/CFE/LAT family

736/4542 58.6 (13.0)/3.4 (6.5) 0.0

NQNYG cysteine synthase family protein 42/5236 15.3 (2.8)/11.1 (20.7) 7.7× 10−16 Class A beta-lactamase (EC 3.5.2.6) => TEM family 815/4463 16.8 (16.2)/10.1 (21.1) 1.6× 10−289

YWDYN TolC family protein 42/5236 15.3 (2.8)/11.1 (20.7) 7.7× 10−16 Transposase, IS3/IS911 family 14/5264 16.2 (14.6)/11.1 (20.6) 0.0007

PLKAD 745/4533 58.2 (13.5)/3.4 (6.3) 0.0 Tetracycline resistance regulatory protein TetR 38/5240 15.2 (2.9)/11.1 (20.7) 2.5× 10−14

AHTWI CMY-2 family class C beta-lactamase 743/4535 58.3 (13.3)/3.4 (6.3) 0.0 Mobile element protein 294/4984 17.3 (17.0)/10.7 (20.7) 3.3× 10−97

QHFRV pilin outer membrane usher
protein SafC

812/4466 16.4 (15.7)/10.2 (21.2) 1.8× 10−284 DNA translocase FtsK 6/5272 33.7 (30.4)/11.1 (20.6) 0.043

VIDMA CMY-2 family class C beta-lactamase 872/4406 51.4 (21.2)/3.1 (6.0) 0.0 ABC transporter involved in cytochrome c
biogenesis, ATPase component CcmA

4/5274 56.0 (13.9)/11.1 (20.6) 0.0006

QNEQK CMY-2 family class C beta-lactamase 744/4534 58.3 (13.4)/3.4 (6.3) 0.0

ASWVH CMY-2 family class C beta-lactamase 745/4533 58.3 (13.4)/3.4 (6.2) 0.0

WQEVF 5/5273 39.0 (30.6)/11.1 (20.6) 0.016

TIPPD ParB/ RepB/ Spo0J family partition 59/5219 14.6 (10.6)/11.1 (20.7) 4.9× 10−18
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3.2. Analysis of AMR Determinants for Specific Antibiotics Families

In this subsection, we analyze the performances of models that were trained with different feature
extraction methods for different families of antibiotics, and we interpret the models by analyzing the
top features that they selected.

3.2.1. Resistance to Tetracycline

In this section, we analyze determinants of resistance to tetracycline that the models found for
different species. It is well-known that resistance of C. jejuni to tetracycline is conferred by the presence
of tet(O) gene [80,81]. Tet(O) belongs to the class of ribosomal protection proteins that cause resistance
by dislodging tetracycline from its primary binding site on the ribosome [81–83]. When XGBoost
uses feature extraction methods that are capable of detecting the presence of this gene, such as amino
acid 5-mers or gene content, it can detect AMR and predict MICs of organisms reasonably well.
On the other hand, when SNPs are used as features, it cannot detect presence or absence of this
gene. This can be seen in Figure 5, where results of using SNP features are not as good as other
methods. Moreover, Figure A5 in Appendix C provides more details about prediction error for models
trained with different methods. Our feature selection method found tet(O) for gene content and
gene content + SNP. In amino acid 5-mer pipeline, the top feature, “RKAEY,” aligns with this gene.
Out of total of 481 strains (including the ones that were filtered out), 327 strains had this gene and
154 strains did not have this gene. The average MIC of strains that had this gene was 33.30 (standard
deviation 51.16) mg/L and the average MIC of strains without this gene was 13.11 (standard deviation
30.33) mg/L, K–W test [78] p-value: 0.0418.

The same pattern for accuracy of different methods can be seen in Figures 7 and 8 for K. pneumoniae
and S. enterica, respectively. For K. pneumoniae, the gene content and gene content + SNP pipelines
found tet(A), tet(D), tetR. tet(A), tet(D) and TetR are known to confer resistance to tetracycline in
K. pneumoniae [84,85]. We found that SNP features are not capable of reflecting the presence of those
genes. Important features found by the amino acid 5-mers and gene content, using the method
described in Section 2.5.3, for K. pneumoniae and tetracycline, are presented in Table A5 in Appendix D.
The top op features of amino acid 5-mer pipeline are “DGLTT,” “LIMPV” and “HYGIL,” which align
with TetR, Tet(A) and Tet(A), respectively.

Two Types of the tet(D) Gene

Gene clustering reveals two clusters associated with tet(D) gene, and two clusters associated with
tetR gene. We investigated further to see why and determine whether both clusters are correlated
with AMR. In the case of tet(D), two clusters are formed because, in the cluster represented by
fig573.13783.peg.5353, the gene has been truncated to approximately one quarter of the length of
the corresponding gene found in the cluster represented by fig573.14286.peg.4536. In fact, the gene
sequence in most of the members in the cluster represented by fig573.13783.peg.5353 is the last 97 amino
acid of the consensus gene sequence of the cluster represented by fig573.14286.peg.4536 (length of all
of the sequences in this cluster is 394 amino acids). In the case of tetR, we found that this is due to the
mutations in this genes in some strains, i.e., sequence identity of blasting the representative genes of
two clusters is 52%.

Interestingly, strains that have the truncated version of the tet(D) have lower average MIC value
compared to strains that do not have this gene at all. For 73 strains that have the truncated version
of tet(D) gene, the average MIC is 5.92, with a standard deviation of 4.56, and the average MIC
of the rest of the strains is 9.78 (standard deviation 6.17) (Kruskal–Wallis p-value of 2.54 × 10−6).
When MICs of these strains are compared to CLSI breakpoints, 11 are resistant, 9 are intermediate
and 53 are susceptible. Notably, although based on our finding this gene is conferring antimicrobial
susceptibility, its function for all of the versions is labeled as “Tetracycline resistance” in PATRIC
database, presumably based on sequence homology. The FASTA file and PATRIC ID of the truncated
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versions of the gene as well as the long versions are provided in Supplementary Material. By contrast,
the long version of tet(D) confers resistance as expected: out of 250 strains with the long version,
243 are resistant, 3 are intermediate, and 4 are susceptible.

The gene content pipeline also found a class A β-lactamase gene as a factor for resistance to
tetracycline. This shows that some strains are multi-drug resistant.

For S. enterica, tet(A) has been reported before to confer resistance [86]. For the gene content
method, our feature selection pipeline found tet(A) [86], tet(D) [86] and tetR. For the amino acid 5-mer
method, the feature selection pipeline selected “GLIMP” and “GPLLF” which align with tet(B) and
“ALYWH,” which aligns with tetR.

For N. gonorrhoeae, tet(M) [87] is selected by the gene content pipeline. Top amino acid 5-mers,
“LLISA” and “PVSTP” also align with tet(M).

3.2.2. Resistance to Quinolone Antibiotics

In this subsection, we analyze the causes of resistance to quinolone antibiotics, which include
nalidixic acid and ciprofloxacin. Quinolone antibiotics target two essential bacterial enzymes,
DNA gyrase and DNA topoisomerase IV [88]. Quinolone resistance can be caused by single amino
acid changes in gyrase [88]. Gyrase is composed of 2 GyrA and 2 GyrB subunits [89]. For C. jejuni and
both ciprofloxacin and nalidixic acid, SNP and gene content + SNP pipelines recognize a mutation in
position 959,966 with respect to the reference genome (conversion of the original nucleotide to A) as the
most important feature. This nucleotide is in the gyrA gene. For nalidixic acid and C. jejuni, the mean
MIC of strains that have this mutation (N = 87) is 119.26 mg/L (standard deviation 25.56) and for
strains without (N = 394) it is 6.43 mg/L (standard deviation 13.91) for a K–W p-value of 9.88× 10−62.
The top three k-mers selected by the amino acid 5-mer method also hit this gene. For ciprofloxacin
and C. jejuni, average the MIC of strains that have this mutation (N = 87) is 7.27 mg/L (standard
deviation 7.06) and the average MIC of strains that do not have this mutation (N = 394) is 0.16 mg/L
(standard deviation 0.80), for a K–W p-value of 2.29× 10−53. Mutations in many other positions
of gyrA gene were also found for both antibiotics as important features for C. jejuni. Both SNP
and gene content + SNP methods also found mutations in gyrB as a less important features for both
antibiotics and C. jejuni. For C. jejuni and ciprofloxacin, the amino acid 5-mer pipeline found “PHGDT,”
“HGDTA,” “GDTAV” and “DTAVY” as the top four important features. These are parts of a longer
sequence “PHGDTAVY,” which aligns with a gene labeled “Campylobacter jejuni gyrA conferring
resistance to fluoroquinolones” in CARD database [27] (gene bank accession: AJY14066.1). The top
four features of amino acid 5-mers pipeline for C. jejuni and nalidixic acid are exactly the same.

For these antibiotics, models which use SNP features perform better at predicting MIC than
gene content, because the mutations in question occur at a finer resolution than simple gene
presence/absence/count. Long amino acid and nucleotide k-mers are also capable of detecting
these mutations, while shorter k-mers cannot distinguish these mutations from other genes with
the same motif. In the case of a short k-mer size, short motifs are more likely to occur across the
genome. The longer the k-mer, the more unique (i.e., only occurring once) it is likely to be; therefore,
the interpretation based on the k-mer count will be less ambiguous. This is reflected in the sparsity of
the feature matrix. For C. jejuni and nalidixic acid, sparsity (portion of matrix that is zero) of the feature
matrix for amino acid 3-mers is 1%. For 4-mers and 5-mers of amino acids, the values are 22% and 58%,
respectively. In the same manner, sparsity of the feature matrix for nucleotide 8-mers, 9-mers, 10 mers
and 11-mers is 4%, 14%, 28% and 42%, respectively. From Figure A6, it can be seen that pipelines of
nucleotide 8-mers, amino acid 3-mers and gene content perform worse at MIC prediction than longer
k-mer sizes and SNP methods.

The same pattern was observed for performance of models trained with different feature extraction
methods in [38] for classification of Pseudomonas aeruginosa strains as resistant or susceptible to
ciprofloxacin: Methods that did not account for SNPs performed worse than methods that accounted
for SNPs.
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In the case of C. jejuni and nalidixic acid, only one amino acid 5-mer is required to get the best
accuracy. For this data, the selected-feature pipeline (described in Section 2.5.3.2) with amino acid
5-mers reached a very good accuracy using only the top feature (AA 5-mer: “GDTAV”), which is
in “gyrase subunit A” (gene bank accession: AJY14066.1). In Figure 9a, the change of accuracy by
increasing number of features is depicted. It can be seen that the prediction with more than one 5-mer
feature only decreases accuracy. Additionally, in Figure A7 prediction performance via violin plot of
the error using only one feature (“GDTAV”) is depicted.

3.2.3. Resistance to Aminoglycoside Antibiotics

Aminoglycosides (AGs) are a class of antibiotics including tobramycin, gentamicin, amikacin,
streptomycin and kanamycin, which bind to the bacterial ribosome and interfere with bacterial
protein translation. Although in some rare cases mutations in the ribosomal target of AGs can
contribute to resistance, the most widespread mechanism of resistance to these antibiotics is achieved
by AG-modifying enzymes (AMEs) [90].

In Table A6, the most important genes discovered by amino acid 5-mers and gene content pipeline
for tobramycin and K. pneumoniae are provided. The gene content pipeline selected ANT(2′′)-la,
AAC(6’)-Ib and ANT(3′′)-la, which are all known AMEs [91] as important features. Amino acid 5-mer
pipeline selected “PYEET” and “DASMV,” which align with AAC(3)-IIe; “YAQSY,” which aligns with
AAC(6’)-Ib/AAC(6’)-II; and “DTTQV,” which aligns with ANT(2′′)-Ia. All of these genes are known
AMEs [91]. (“DTTQV” and “YAQSY” are not shown in Table A6). Models trained with SNP and short
k-mers are not able to detect these genes. The same relatively poor accuracy of SNP can be seen for
gentamicin and K. pneumoniae, Kanamycin and S. enterica and gentamicin and S. enterica.

In Table A6, the gene cluster that is represented by PATRIC ID fig573.12887.peg.5713 is labeled as
a hypothetical protein in the PATRIC database, but when we BLAST the protein sequence against NCBI
database, it matched a tunicamycin resistance protein in Escherichia coli (NCBI Reference Sequence:
WP_110074664.1) with 100% coverage and 100% identity. This shows that the same gene is correlated
with resistance for K. pneumoniae and tobramycin.

Both gene content and amino acid 5-mer pipelines also found the OXA-1, β-lactamase
gene (see Section 3.2.4), which is known for conferring resistance to β-lactam antibiotics in
K. pneumoniae [92]. In the case of the amino acid 5-mer pipeline, this gene was found via 5-mer
“QFLRK.” Here, both pipelines selected it as an important factor for tobramycin, which means that
there are multi-drug resistant strains in the data.

3.2.4. Resistance to β-Lactam Antibiotics

β-lactam antibiotics are among the most commonly prescribed antibiotics and each have a 3-carbon
and 1-nitrogen ring (β-lactam ring) [93]. The most important factor for resistance to these antibiotics is
production of beta-lactamases [93]. Other mechanisms of resistance are decreased penetration to the
target site, alteration of target site penicillin-binding proteins (PBPs) and efflux from the periplasmic
space through specific pumping mechanisms [93].

Carbapenem Antibiotics

It can be seen in Figure 7 that models trained with SNP features alone are not capable of providing
a good prediction for resistance of K. pneumoniae to imipenem and meropenem. Both of these antibiotics
belong to a class of β-lactam antibiotics called carbapenem [94]. According to [95], the most common
resistance mechanism of K. pneumoniae to carbapenem antibiotics is production of enzymes with
carbapenemase activity that hydrolyze β-lactam antibiotics. SNP features are not a very effective
feature extraction method for finding these genes. Gene content and long k-mers pipelines, on the
other hand, can find presence of these genes easily.
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(a) C. jejuni and nalidixic acid, amino acid 5-mers. (b) K. pneumoniae and imipenem, amino acid 5-mers.
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(c) S. enterica and trimethoprim–sulfamethoxazole, amino acid 5-mer. (d) S. enterica and trimethoprim–sulfamethoxazole, nucleotide 11-mers.
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Figure 9. Change in average accuracy of cross-validation when different numbers of features are included in the selected-feature pipeline. (a): C. jejuni and nalidixic
acid, amino acid 5-mers; (b): K. pneumoniae and imipenem, amino acid 5-mers; (c): S. enterica and trimethoprim–sulfamethoxazole, amino acid 5-mer; (d): S. enterica
and trimethoprim–sulfamethoxazole, nucleotide 11-mers; (e): S. enterica and ampicillin, gene content; (f): S. enterica and amoxicillin clavulanic acid, gene content.
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For imipenem, a class A β-lactamase genes was selected as important feature by the gene content
pipeline. The average MIC of strains that have this gene (N = 488) is 12.15 mg/L (standard deviation
5.37) and the average MIC of strains that do not have this gene (N = 1178) is 1.29 mg/L, (standard
deviation 2.21), for K–W p-value of 1.56 × 10−236 (see Table A7). The amino acid 5-mer pipeline
found “TCGVY” as the fourth important feature (not shown in Table A7). This 5-mer aligns with
“carbapenem-hydrolyzing class A beta-lactamas” on NCBI database. Interestingly, as soon as this
feature is included in the selected-feature pipeline (described in Section 2.5.3.2), the accuracy increases
significantly (see Figure 9b). Amino acid 5-mers “TCGVY” and “WELE” also align with classA
beta-lactamase genes.

Cephalosporin Antibiotics

Cephalosporins are a class of β-lactam antibiotics that includes cefoxitin, ceftiofur, ceftriaxone,
cefazolin, cefepime, cefpodoxime, cefixime, ceftazidime and cefuroxime [96]. Like other β-lactam
antibiotics, cephalosporins are inactivated by the β-lactamases produced by the bacteria [97]. Table A8
shows the features that amino acid 5-mer and gene content pipeline find for S. enterica and cefoxitin.
Based on this table, the found “class C β-lactamases” gene is making a significant difference in the MIC
value. Amino acid 5-mer pipeline found “ANKSY” as the most important 5-mer, which aligns with
the same gene. The model trained with SNP features is not capable of detecting such genes, and this is
why for cefoxitin, ceftiofur and ceftriaxone, SNP features perform relatively poorly compared to other
methods (see Figure 8).

Other β-Lactam Antibiotics

The same pattern can be observed for other β-lactam antibiotics (ampicillin and amoxicillin
clavulanic acid) and S. enterica in Figure 8: models trained with SNPs alone do not perform as good
as models trained with long k-mers and models trained with gene content. Important genes found
by amino acid 5-mer and gene content pipelines for S. enterica–ampicillin and S. enterica–amoxicillin
clavulanic acid are provided in Tables 2 and A9, respectively. It can be seen that for both antibiotics
presence of β-lactamase genes is increasing MIC significantly. SNPs are not the best feature extraction
method for detecting presence of these genes.

Figure 9e,f depicts results of gene content pipelines trained and tested with few selected features
on the datasets of ampicillin and amoxicillin clavulanic acid, respectively. For S. enterica and amoxicillin
clavulanic acid, the accuracy increases significantly when the third and the fifth features are included
(Figure 9e). These genes are “class C beta-lactamase (EC 3.5.2.6) => CMY/CMY-2/CFE/LAT family”
and “class A beta-lactamase (EC 3.5.2.6) => TEM family” respectively. For S. enterica and ampicillin,
the first two features are class A beta-lactamase genes; however, it is only after inclusion of the fifth
feature that the accuracy increases (Figure 9f). This gene is “lipocalin Blc.” Presence or absence of this
gene alone does not make a significant difference in MIC; however, it is involved in the dissemination
of antibiotic resistance genes [98] and that is why it plays an important role in MIC prediction.

For S. enterica and amoxicillin clavulanic acid, the amino acid 5-mer pipeline found “TDFLR,”
“AHTWI,” “VIDMA,” “QNEQK” and “ASWVH” as important features that align with β-lactamase
genes (see Table 2). Another important 5-mer is “NTAAN,” which aligns with “type IV conjugative
transfer system coupling protein TraD.” Conjugative plasmids harboring antibiotic resistance genes
can be transferred from one bacterium to another through physical contact. After conjugation,
the recipient bacterium harbors the antibiotic resistance genes and transfers the acquired plasmid to
other bacteria [99]. The amino acid 5-mer pipeline also selects “NQNYG,” that aligns with “cysteine
synthase family protein.” It has been reported that cysteine synthesis is associated with antibiotic
resistance of swarming S. enterica cells [100,101]. Another important 5-mer is “YWDYN,” which aligns
with TolC family protein. TolC is required for the function of several drug efflux systems in S. enterica
serovar Typhimurium [102]. The gene content pipeline found the gene whose product is tetracycline
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resistance regulatory protein TetR as an important feature for resistance to amoxicillin clavulanic acid.
This shows that the strains that have this gene are probably multi-drug resistant.

For S. enterica and ampicillin, top amino acid 5-mers, “WMRDD,” “TDFLR,” “ASWVH” and
“VIYQG” align with β-lactamase genes. “AMSQN” aligns with “response regulator transcription
factor,” which mediates a cell’s response to changes in its environment [103]. These proteins can
control the expression of genes that mediate antibiotic resistance as response to environmental
signals [103]. The pipeline also found “NTAAN,” which aligns with conjugative transfer system
coupling, and “YWDYN” aligns with TolC.

3.2.5. Resistance to Chloramphenicol

Chloramphenicol is a broad-spectrum antibiotic that inhibits bacterial growth by stopping the
protein synthesis [104]. Important genes found for S. enterica and chloramphenicol by amino acid
5-mer gene content pipelines are presented in Table A10. Top 5-mers, “WAYTL,” “YMVML” and
“MDIYL” align with “chloramphenicol/florfenicol efflux MFS transporter FloR,” which is known to
mediate resistance to chloramphenicol [105]. “TAWPV” aligns with “CmlA family chloramphenicol
efflux MFS transporter,” which confers non-enzymatic chloramphenicol resistance [106]; “CDGFH”
and “PVFTM” align with “type A chloramphenicol O-acetyltransferase,” which is a type of
chloramphenicol acetyltransferase (CAT) gene that confers enzymatic chloramphenicol resistance
to chloramphenicol [105,107–109]. “FAKFF” aligns with a Type IV secretion system protein, which
can have an antibiotic resistance function [110]. For the gene content pipeline, efflux genes appear
in the top genes. The pipeline found chloramphenicol acetyltransferases, which is known to cause
resistance to chloramphenicol [108,109]. The model also found LysR transcriptional regulator. The role
of this gene in regulation of antibiotic resistance for Aeromonas hydrophila was investigated in [111].
TetR resistance gene was found by the model as an important feature. This again shows multi-drug
resistance. The importance of all of these genes is causing the SNP method to perform relatively poorly
compared to other methods.

3.2.6. Resistance to Sulfonamide

Sulfonamide antibiotics are broad-spectrum antibiotics, including sulfisoxazole and
trimethoprim–sulfamethoxazole [112]. These antibiotics interfere with the synthesis of folic
acid [112]. Table A11 presented important genes found for S. enterica and sulfisoxazole. Amino acid
5-mer pipeline found 5-mers “LDPGM,” “DPGMG,” “GMGFF” and “MGFFL” that all align with
“sulfonamide-resistant dihydropteroate synthase Sul1.” In fact, these 5-mers are all different sections
of sequence “LDPGMGFFL.” “LDPGM” and “GMGFF” are among the top 50 features in all 10 folds,
but “MGFFL” and “DPGMG” only make it to the top features in seven folds (possibly because the
model does not need them since they are correlated with the other two important features), and that
is why they are not represented in Table A11. The gene content pipeline found two gene clusters
represented by sulfonamide resistance proteins as well as ANT(3′′)-Ia, which is an AG-resistance gene,
discussed in Section 3.2.3 and RmuC, which has been reported to be involved in the resistance against
norfloxacin [113].

For trimethoprim–sulfamethoxazole and S. enterica, the most important gene that the gene content
pipeline found is “dihydrofolate reductase,” which is known for conferring resistance to trimethoprim
in Salmonella typhimurium [114]. In Figure 9c,d, the accuracy of the selected-feature (i.e., reduced
feature number) pipeline is depicted for different numbers of feature for amino acid 5-mers and
nucleotide 11-mers, respectively. Interestingly, the amino acid 5-mer pipeline can predict MIC with
99% accuracy, using only two 5-mers: “IPWKI” and “TYNQW.” Both of these amino acid 5-mers
align with the same gene using NCBI BLAST, when the organisms is specified: For “IPWKI,” 48 out of
the top 50 matches, and for “TYNQW,” 47 out of the top 50 matches. For the same data, nucleotide
11-mers also reach very good accuracy using selected-features. In that case the best accuracy is
obtained when the top three 11-mers are used. These three nucleotide 11-mers are “TATTAGGACCA,”
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“ATATTAGGACC” and “CCCAATAGGAA.” No significant similarity was found by NCBI BLAST
when these nucleotide 11-mers were searched because of the short query length. Fortunately, in this
particular case, the first and second 11-mers belong to the same region shifted by one position.
This made us able to extract a longer 12-mer “ATATTAGGACCA” by combining the two. After the
extending the length, NCBI BLAST found significant matches for the query but was not able to identify
the gene because the pattern was similar to many other positions in the genome. There was no hit for a
“dihydrofolate reductase” gene in the top 50. Seven matches to the target gene were found when the
top 100 matches were considered. This example shows the superiority of amino acid k-mers compared
to nucleotide k-mers.

3.2.7. Resistance to Macrolide Antibiotics

Macrolide antibiotics are composed of more than two amino or neutral sugars attached to a
lactone ring [115]. These antibiotics include azithromycin and erythromycin [115].

For N. gonorrhoeae and erythromycin, the top selected feature by amino acid 5-mer pipeline is
“SKSET,” which aligns with two-component sensor histidine kinase. A two-component system (TCS) is
a mechanism in bacteria for receiving an external signal, for example, the presence of antibiotic, and a
response regulator that conveys a proper change in the bacterial cell physiology [116]. Expression of
antibiotic resistance determinants may be regulated by some TCSs [116]. Another important 5-mer
is “SINRE,” which aligns with pilus assembly/adherence protein PilC. Mutation in this gene in
Pseudomonas aeruginosa has been reported to cause resistance to aminoglycosides [117]. The gene
content pipeline found “RND efflux system” as an important feature, which is a widespread resistance
mechanism [118].

4. Discussion

When considering the choice of feature extraction method for machine learning AMR prediction,
our results demonstrate that different considerations support the use of alternative methods.
In particular, the optimal choice of feature extraction method depends on the importance of necessity
of gene assembly, quantitative AMR prediction accuracy, constraints on computational complexity
(i.e., speed and memory) and the ability to interpret the model to yield biological insight. Table 3
summarizes the comparison of different methods based on these issues. We discuss the comparative
performance in the context of the aforementioned practical issues of feature extraction method in
turn below.

Table 3. A summary of the comparison of different methods.

NT k-mers AA k-mers Gene Content SNP Gene Content + SNP

Advantages

Ability to capture
AMR determinants

Yes Yes Only for
some datasets

Only for
some datasets

Yes

Ability to interpret the
model by uniquely
finding product of the
top features

Only for very
long k-mers
that possibly
require a
large memory

Yes Yes Yes Yes

Requirements

Assembly of the genes Not required Required Required Not required Required

4.1. Requirement of Gene Assembly

Among the feature extraction methods we present here, nucleotide k-mers and SNPs do not require
the assembly of genes. The input to these methods can be nucleotide contigs obtained by assembling
short reads together, possibly using de novo assembly. In the case of SNP features, full assembly of the
genome is required only for the reference because each SNP must have a unique position with respect
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to the reference genome. The requirement of assembly just for the reference genome is usually not an
issue because the reference can be obtained from databases such as NCBI [53].

For amino acid k-mers and gene content (and consequently gene content + SNP) methods,
by contrast, the input to the feature extraction method is the amino acid sequence of the genes.
This means that just assembling the short reads to contigs is not enough and gene finding must be
performed to find the regions of the sequence that encode the genes and these regions must translated
to amino acid sequences. This adds an extra pre-processing step to these methods.

Not requiring gene assembly makes nucleotide k-mers an interesting option for clinical AMR
prediction, where next generation sequencing technologies can be used for predicting AMR in real-time
without using the culture-based methods [119,120]. In that situation, predicting AMR as fast as possible
and as cheaply as possible is the top priority. Thus, the best option will be a model that utilizes
selected-features (i.e., a reduced model based on the top features) that also does not require gene
assembly to generate features. For example, DNA microarrays can be employed to rapidly identify
presence or absence of certain nucleotide k-mers (selected features). On the other hand, in a scenario
where researchers want to train and interpret a model to learn more about AMR mechanisms and
possibly discover new mechanisms, assembly of the genes is not an issue. Thus, amino acid k-mers are
the better option because of the lower feature size and better interpretability of this method.

4.2. Predicting AMR Accurately

In Table 4, performance rankings of each method based on the average ±1 two-fold dilution
accuracy for all antibiotics combined are presented for different species. Amino acid 5-mers always get
the best performance. Then nucleotide 11-mers are second, except for S. enterica, where gene content is
the second best.

Generally, gene content features and SNP features, on their own when used separately, are unable
to capture all of the AMR determinants in all datasets. As in some cases genes cause resistance and
in other cases SNPs cause resistance. This was discussed in detail in Section 3.2. On the other hand,
k-mer counting methods can capture AMR phenotype from both genes and SNPs. If a certain gene
is causing AMR, k-mer features of that gene will only show in the resistant genomes and if a certain
SNP is causing AMR, k-mers can capture the changed nucleotide pattern. However, for both of these
tasks, the k-mer length must be long enough to be able to distinguish between the genomes that
have these patterns and those that don’t. Using long k-mers is hard because the number of features
increases exponentially with k (at least before a the saturation point limited by the entire species’ k-mer
vocabulary). However, we have shown that for amino acid k-mers this increase in feature size is less
severe than nucleotide k-mers. Moreover, amino acid k-mers achieve better performance in terms of
average ±1 two-fold dilution accuracy.

Table 4. Rankings of average accuracy among different methods for each species.

C. jejuni N. gonorrhoeae K. pneumoniae S. enterica

1 AA 5-mers AA 5-mers AA 5-mers AA 5-mers
2 NT 11-mers NT 11-mers NT 11-mers Gene content
3 NT 10-mers NT 10-mers Gene content + SNP NT 11-mers
4 AA 4-mers NT 9-mers AA 4-mers Gene content + SNP
5 Gene content + SNP AA 4-mers Gene content AA 4-mers
6 NT 9-mers NT 8-mers NT 10-mers NT 10-mers
7 SNP Gene content + SNP NT 9-mers NT 9-mers
8 Gene content SNP NT 8-mers NT 8-mers
9 NT 8-mers AA 3-mers SNP AA 3-mers

10 AA 3-mers Gene content AA 3-mers SNP
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4.3. Comparison of Required Number of Features

In machine learning, an excessive number of features can increase the required memory and
lead to over-fitting [121]. We have shown that longer k-mers reach better accuracies since they are
more likely to capture a certain gene or SNP that is causing AMR. However, after increasing the k-mer
length, the dataset becomes too large to handle by the machine learning algorithm. One advantage of
amino acid k-mers over nucleotide k-mers is that it is a more compact representation of the biological
information: each codon consists of three nucleotides and translates into one amino acid. Since the
alphabet size of a nucleotide is four, there are 43 nucleotide distinct codons but they translate to
20 amino acids. The biological redundancy in the nucleotide alphabet compared to that of amino
acids can be exploited to decrease the feature size and have a more compact representation of the data,
when amino acid k-mers are employed instead of nucleotide k-mers. A nucleotide k-mer of length k is
equivalent to an amino acid k-mer of length k/3. For the case of canonical nucleotide k-mers, the ratio
of the maximum number of nucleotide k-mers to the maximum number of equivalent amino acid
k-mers is as follows (proof of provided in Appendix B):{

1
2

4k

20k/3 ≈ 1
2 1.4736k if k is odd

1
2

4k+2k

20k/3 ≈ 1
2 (1.4736k + 0.7368k) if k is even

(3)

This can be seen in Figure 3, where the number of amino acid 5-mers (equivalent to nucleotide
15-mers) is approximately equal to nucleotide 11-mers. This is why Nguyen et al. had to break the
total number of strains into different parts and train a separate model for each part of the data to be
able train XGBoost with 15-mers of amino acid for S. enterica [24]. On the other hand, as we have
shown here, 5-mers of amino acid leads to a reasonable number of features. The number of features
for the gene content method is usually low compared to k-mer counting methods with long k-mers
(see Figure 3). For the SNP feature extraction method and combined gene content + SNP features,
the number of features is large for large datasets, like S. enterica. Required resources for dataset of one
antibiotic for each species are provided in Appendix I.

4.4. Interpretability of the Model

When the AMR prediction model is trained without any a priori knowledge, it does not have any
initial bias and learns the entire mechanism from the data. For such a model, a desired characteristic is
interpretability. Here, we call a model “interpretable” if it has the following properties:

• Validation: mechanisms predicted to be important in an interpretable model can be compared to
previously known AMR mechanisms, so that we know the model is working properly.

• Discovery: predictions of an interpretable model can be used to discover new AMR mechanisms
that have not been discovered before.

Unlike nucleotide k-mers, amino acid k-mers are easy to interpret. We interpreted the models
by analyzing the top features, selected by our proposed feature selection pipeline. The interpretation
of the models was performed in Section 3.2. For the gene content method, the important features
can be interpreted by finding the gene selected by the pipeline in databases, such as PATRIC [26],
NCBI [53] or CARD [27]. For SNP features the same process can be performed by finding the genes
in which the SNP has happened, and finding the position of the mutation and interpreting the gene
and the mutation. Thus, gene content and the SNP model are both easily interpretable, because the
genes always align uniquely to the corresponding subject using a method like BLAST. For the k-mers
features, interpreting the model can be achieved by blasting the important k-mers against databases,
such as NCBI [53] using BLAST [79] to see where the k-mers align. If k-mers do not align or align
with multiple genes with different functions, we can claim that the model is not easily interpretable.
In case of nucleotide k-mers, although 10-mers and 11-mers are able to have good accuracy in MIC
prediction, in many cases the important 11-mers are not long enough align with the right position when
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searched with tools like BLAST. This was analyzed in Section 3.1.4. For instance, Nguyen et al. noted
that they increased the k-mer length to 15 nucleotides to make the features identifiable using BLAST.
This increased the computational complexity of their analysis significantly [24]. On the other hand,
amino acid 5-mers can be easily searched using BLAST, and they align unambiguously to the target
genes. Thus, for amino acid k-mers, interpreting the top features using BLAST is easier compared to
nucleotide features.

5. Conclusions

In this paper, we proposed a new feature extraction method, amino acid k-mers, for predicting
MIC of an antibiotic on a bacterium from its genome and compared this method to different existing
methods, namely, nucleotide k-mers, gene content, SNP and gene content + SNP. We applied all of the
methods to MIC data of C. jejuni, S. enterica, N. gonorrhoeae and K. pneumoniae, finding that amino acid
k-mers provide comparable or superior performance across multiple metrics, in particular accuracy,
interpretability and computational complexity.

Notably, amino acid and nucleotide k-mers have different applications. k-mer counting methods
are robust in predicting AMR, particularly because they can capture absence or presence of a unique
gene and SNP. However, these methods are only effective when the k-mer length is long enough,
which can make the process of training computationally expensive because long k-mer length leads
to a large feature size. We have shown that amino acid k-mers are less prone to the problem of large
feature size compared to nucleotide k-mers. Moreover, amino acid k-mers are easier to interpret,
because their top features are more likely to be uniquely identified using search algorithms such as
BLAST. The main drawback of amino acid k-mers is that they require assembly of the genes. In a
situation where assembly of the genes is not a problem, we recommend amino acid k-mers. An example
of this situation is when researchers want to train a model to predict AMR in dataset of sequenced
genomes and learn more about AMR mechanisms by interpreting the model. On the other hand, in a
situation where assembling the genes is not possible, and the goal is to predict AMR and interpreting
the model is not the top priority; or enough resources are available and having a large enough number
of features is not an issue, nucleotide k-mers are an alternative option. An example of the latter scenario
is predicting AMR in a medical clinic. In such a scenario, we propose utilization of a feature selection
pipeline in which the most important features are selected and used to build models with a small
number of features. Such selected-feature models, in many cases, achieve better accuracy compared to
a model that uses all features. The selected-feature model can be useful in the clinical resistance test
applications, where resistance to an antibiotic must be tested in real time and at minimum cost.
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Appendix A. Number of Strains and MIC Distributions

Table A1. C. jejuni. Number of genomes for each antibiotic.

Antibiotic Initial Number of Strains Number of Strains after Filtering

erythromycin 481 476
azithromycin 481 477
gentamicin 481 478
clindamycin 481 479
telithromycin 481 472
ciprofloxacin 481 478
nalidixic acid 481 481
tetracycline 481 478
florfenicol 481 474

Table A2. N. gonorrhoeae. Number of genomes for each antibiotic.

Antibiotic Initial Number of Strains Number of Strains after Filtering

ceftriaxone 1926 1917
tetracycline 696 693
erythromycin 179 178
cefpodoxime 236 235
spectinomycin 655 653
cefixime 1907 1903
cefpodoximeproxetil 236 235
penicillin 655 650
azithromycin 911 905
ciprofloxacin 655 639

Table A3. K. pneumoniae. Number of genomes for each antibiotic.

Antibiotic Initial Number of Strains Number of Strains after Filtering

Aztreonam 1644 1644
Cefoxitin 1645 1645
Meropenem 1660 1652
Tobramycin 1666 1666
Gentamicin 1667 1667
Imipenem 1666 1665
Levofloxacin 1666 1666
Nitrofurantoin 895 895
Ampicillin 1666 1662
Tetracycline 1667 1667
Ceftazidime 1667 1667
Amikacin 1667 1667
Ceftriaxone 1667 1667
Cefuroximesodium 1575 1575
Cefazolin 1667 1667
Cefepime 1571 1571
Ciprofloxacin 1664 1664
Piperacillin 1662 1662
Trimethoprim 1667 1667
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Table A4. S. enterica. Number of genomes for each antibiotic.

Antibiotic Initial Number of Strains Number of Strains after Filtering

Ampicillin 5277 5269
Amoxicillin-clavulanic acid 5278 5278
Ceftriaxone 5278 5276
Azithromycin 2416 2416
Chloramphenicol 5277 5277
Ciprofloxacin 5277 5276
Trimethoprim-
sulfamethoxazole

5277 5271

Sulfisoxazole 4929 4929
Cefoxitin 5278 5278
Gentamicin 5278 5278
Kanamycin 924 919
Nalidixic acid 5278 5277
Streptomycin 2791 2791
Tetracycline 5277 5277
Ceftiofur 5278 5278
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Figure A1. Distribution of C. jejuni MIC values for different antibiotics. These are the values after
processing and conversion to log2 scale. The antibiotic’s name is printed on the title of each sub-figure.
The number of genomes is presented in parentheses.
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Figure A2. Distribution of N. gonorrhoeae MIC values for different antibiotics. These are the values after
processing and conversion to log2 scale. The antibiotic’s name is printed on the title of each sub-figure.
The number of genomes is presented in parentheses.
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Figure A3. Distribution of K. pneumoniae MIC values for different antibiotics. These are the values after
processing and conversion to log2 scale. The antibiotic’s name is printed on the title of each sub-figure.
The number of genomes is presented in parentheses.
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Figure A4. Distribution of S. enterica MIC values for different antibiotics. These are the values after
processing and conversion to log2 scale. The antibiotic’s name is printed on the title of each sub-figure.
The number of genomes is presented in parentheses.

Appendix B. Comparison of Number of Features for Nucleotide and Amino Acid k-mers

A nucleotide k-mer of length k is equivalent to an amino acid k-mer of length k/3. Since each
nucleotide has 4 choices and each amino acid has 20 choices, if all nucleotide k-mers are counted,
the ratio of maximum number of nucleotide k-mers to maximum number of amino acid k-mers will be

4k

20k/3 =
4k

(201/3)k = (
4

201/3 )
k ≈ 1.4736k (A1)

Now we calculate the same ratio for the scenario where only canonical nucleotide k-mers are
counted. For odd ks the maximum number of possible features will be halved because of half of the
k-mers are non-canonical. For even k-mers, the number is more than half, because there are palindromic
k-mers. Palindromic k-mers are k-mers that are equal to their reverse compliments. For example,
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the reverse compliment of “AATT” is “AATT.” If all of possible k-mers are listed alphabetically, all of
the k-mers in the first half of the list will be canonical. In the second half, only palindromic k-mers will
be canonical because the canonical counter parts of the rest have been considered in the first part of
the list. Hence, the total number of theoretically possible canonical k-mers for an even k is the number
of k-mers in the first half of the list, which is (k4)/2, plus the number of the palindromic k-mers is
the second half. Now, we must count the number of palindromic k-mers in the second half of the
list. We argue that the first base must be G or T; otherwise the k-mer would not be in the second half.
Moreover, if a palindromic k-mer is divided into 2 chunks of the same length, the second chunk must
be the reverse compliment of the first chunk to make it palindromic, so the second chunk is a function
of first chunk. To count all palindromic k-mer we just have to count all possible combinations of the
first chunk, which has k/2 bases. The first base has 2 options (G or T) and the rest of the k/2− 1 bases
have 4 options each. Hence, the total number of palindromic k-mers in the second half of the list will be

2× 4(
k
2−1) =

2× 4k/2

4
=

4k/2

2
=

(22)
k/2

2
=

2k

2
= 2k−1 (A2)

Thus, the total number of canonical k-mers for an even k will be

1
2
× (4k) + 2k−1 =

1
2
(4k + 2k) (A3)

Thus, generally the total number of canonical k-mers will be:

Number of canonical k-mers =

{
1
2 4k if k is odd
1
2 (4

k + 2k) if k is even
(A4)

Therefore, for odd ks the ratio of total number of amino acid k-mers to total number of
canonical nucleotide k-mers will be 1

2
4k

20k/3 ≈ 1
2 1.4736k and for an even k, the ratio will be

1
2

4k+2k

20k/3 ≈ 1
2 (1.4736k + 0.7368k) or in a more compact form:

{
1
2

4k

20k/3 ≈ 1
2 1.4736k if k is odd

1
2

4k+2k

20k/3 ≈ 1
2 (1.4736k + 0.7368k) = if k is even

(A5)

Appendix C. Violin Plots of Error in Different Methods

To visualize the prediction error in different methods, we collected the predicted MIC values
vs. the actual values of all predictions pooled across the 10 folds of cross-validation. For example,
if the actual value of MIC in one strain is 2, and the model predicts it to be 3, this would create the
data-point (2, 3). Then, we grouped all those pairs by the actual values and generated a violin plot of
distribution of the predictions for each target value. In these plots, the top and bottom horizontal lines
represent minimum and maximum predicted values and the middle horizontal line represents the mean
predicted value. The body of the violin is the kernel density estimation of the data. The ±1 two-fold
dilution accuracy of that target value, and in parentheses, the number of strains with that actual value
(i.e., the target sample size) is labeled under each violin. The green line represents a 1-to-1 perfect
prediction, and the yellow line represents the first order regression between the actual values and
the predicted values. The red lines represent the limits of ±1 two-fold dilution for the predictions of
the model.

Such plots are presented for predictions of tetracycline for C. jejuni in Figure A5. They show how
the actual versus predicted MIC values vary from a perfect prediction, within or outside the bounds
provided by the two-fold dilution error. Using SNP features, the correlation between the actual values
and the predictions is not as strong as in other methods and the slope of yellow regression line is not
close to the 45 degrees.
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In Figure A6, such plots are provided for C. jejuni and nalidixic acid. Here SNP features perform
better than gene content method.
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Figure A5. Violin plots of performances of different methods in predicting MIC of tetracycline for
C. jejuni. X-axis is the actual value and y-axis is the predicted value. Each violin shows the kernel
density estimation distribution of predictions for one MIC actual target value. Below each violin,
the ±1 two-fold dilution accuracy of that target value is mentioned, and below that, the number
of strains with that target value is mentioned in parentheses. The green line represents the perfect
prediction and the yellow line represents the first order regression between the actual values and
predicted values. The red lines represent the limits of the perfect predictions’s ±1 two-fold dilution.
(a) NT 11-mers, (b) AA-5mers, (c) gene content, (d) SNP, (e) gene content + SNP.
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Figure A6. Violin plots of performances of different methods in predicting MIC of nalidixic acid
for C. jejuni. X-axis is the actual value and y-axis is the predicted value. Each violin shows the
kernel density estimation distribution of predictions for one target value. Below each violin, the ±1
two-fold dilution accuracy of that target value is mentioned, and below that, the number of strains
with that target value is mentioned in parentheses. The green line represents the perfect prediction and
the yellow line represents the first order regression between the actual values and predicted values.
The red lines represent the limits of ±1 two-fold dilution. (a) NT 8-mers, (b) NT 11-mers, (c) AA-3mers,
(d) AA-5mers, (e) gene content, (f) SNP, (g) gene content + SNP.
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Figure A7. C. jejuni and nalidixic acid. Amino acid 5-mers. Violin plots of performance using only
one 5-mer (“GDTAV”). X-axis is the actual value and y-axis is the predicted value. Each violin shows
the kernel density estimation distribution of predictions for one target value. Below each violin,
the ±1 two-fold dilution accuracy of that target value is mentioned, and below that, the number
of strains with that target value is mentioned in parentheses. The green line represents the perfect
prediction and the yellow line represents the first order regression between the actual values and
predicted values. The red lines represent the limits of ±1 two-fold dilution.
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Appendix D. Important Features Found by the Models

Table A5. Important features found for K. pneumoniae and tetracycline by amino acid 5-mer and gene content methods.

Amino Acid 5-mers Gene Content

5-mer Gene Product Number of
+/− Strains

Mean (STD) MIC
of +/− Strains

p-Value Gene Product Number of
+/− Strains

Mean (STD) MIC
of +/− Strains

p-Value

DGLTT tetracycline resistance
transcriptional repressor TetR

635/1032 15.0 (3.3)/6.3 (5.1) 5× 10−160 Permease of the drug/metabolite transporter
(DMT) superfamily

341/1326 15.8 (1.6)/8.0 (5.9) 7.2× 10−87

HYGIL tetracycline efflux MFS
transporter Tet(A)

642/1025 15.0 (3.3)/6.2 (5.0) 2.5× 10−162 Tetracycline resistance regulatory protein TetR 282/1385 14.5 (4.0)/8.6 (6.0) 5.3× 10−45

IQWLI undecaprenyl- phosphate galactose
phosphotransferase WbaP

113/1554 12.1 (5.7)/9.4 (6.2) 3.6× 10−5 hypothetical protein (fig573.12878.peg.5387) 115/1552 7.0 (6.8)/9.8 (6.1) 2.4× 10−11

LRHCC 41/1626 5.2 (4.3)/9.7 (6.2) 10−5 Tetracycline resistance, MFS efflux pump => Tet(D) 73/1594 5.9 (4.6)/9.8 (6.2) 2.5× 10−6

Tetracycline resistance regulatory protein TetR 367/1300 15.8 (1.6)/7.9 (5.8) 1.2× 10−95

Tetracycline resistance, MFS efflux pump => Tet(A) 366/1301 15.8 (1.6)/7.9 (5.8) 2.6× 10−95

Tetracycline resistance, MFS efflux pump => Tet(D) 250/1417 15.7 (1.8)/8.5 (6.0) 3.9× 10−59

Class A beta-lactamase (EC 3.5.2.6) => CTX-M
family, extended-spectrum

1003/664 11.3 (5.9)/7.0 (5.6) 1.4× 10−44

hypothetical protein (fig573.12921.peg.5397) 14/1653 2.4 (3.8)/9.7 (6.1) 2× 10−8

Putative aminotransferase 11/1656 5.9 (6.5)/9.6 (6.2) 0.0061

FIG002577: Putative lipoprotein precursor 205/1462 13.8 (4.3)/9.0 (6.2) 8.3× 10−25

hypothetical protein (fig573.12941.peg.329) 18/1649 4.2 (5.3)/9.7 (6.1) 1.3× 10−6
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Table A6. Important genes found for K. pneumoniae and tobramycin by amino acid 5-mer gene content methods.

Amino Acid 5-mers Gene Content

5-mer Gene Product Number of
+/− Strains

Mean (STD) MIC
of +/− Strains

p-Value Gene Product Number of
+/− Strains

Mean (STD) MIC
of +/− Strains

p-Value

PYEET aminoglycoside N-acetyltransferase AAC(3)-IIe 627/1039 9.8 (5.7)/9.0 (6.5) 0.0016 Mobile element protein 324/1342 15.6 (2.0)/7.8 (6.0) 1.3× 10−85

QFLRK OXA-1 family class D beta-lactamase 764/902 14.2 (3.7)/5.2 (4.9) 1.9× 10−183 Class D beta-lactamase
(EC 3.5.2.6) => OXA-1 family

379/1287 13.4 (3.9)/8.1 (6.3) 1.1× 10−46

GSEMC 160/1506 6.2 (6.5)/9.7 (6.1) 5.9× 10−22 Chloramphenicol O-acetyltransferase
(EC 2.3.1.28) => CatB family

354/1312 13.3 (3.9)/8.3 (6.4) 5× 10−41

DASMV aminoglycoside N-acetyltransferase AAC(3)-IIe 1476/190 9.7 (6.3)/6.5 (4.9) 2.4× 10−10 Aminoglycoside N(6’)-acetyltransferase
(EC 2.3.1.82) => AAC(6’)-Ib/AAC(6’)-II

681/985 14.0 (3.7)/6.1 (5.6) 6× 10−141

Mobile element protein 58/1608 12.0 (5.9)/9.2 (6.3) 0.0015

hypothetical protein (fig573.14286.peg.4244) 379/1287 7.3 (5.2)/9.9 (6.4) 1.1× 10−9

hypothetical protein (fig573.14233.peg.3013) 431/1235 15.2 (3.0)/7.3 (5.8) 7.5× 10−108

Aminoglycoside 3”-nucleotidyltransferase
(EC 2.7.7.-) => ANT(3”)-Ia (AadA family)

84/1582 13.9 (4.7)/9.1 (6.2) 2.3× 10−11

hypothetical protein (fig573.12921.peg.5397) 14/1652 2.1 (3.9)/9.4 (6.2) 8.5× 10−9

hypothetical protein (fig573.14286.peg.510) 619/1047 5.9 (5.1)/11.3 (6.0) 1.7× 10−57

hypothetical protein (fig573.13822.peg.6818) 17/1649 5.8 (5.3)/9.4 (6.3) 0.025

Mobile element protein 38/1628 5.9 (4.5)/9.4 (6.3) 0.00096

hypothetical protein (fig573.12887.peg.5713) 220/1446 14.2 (3.7)/8.6 (6.2) 2.2× 10−34
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Table A7. Important genes found for K. pneumoniae and imipenem by amino acid 5-mer gene content methods.

Amino Acid 5-mers Gene Content

5-mer Gene Product Number of
+/− Strains

Mean (STD) MIC
of +/− Strains

p-Value Gene Product Number of
+/− Strains

Mean (STD) MIC
of +/− Strains

p-Value

SEPTR 169/1497 1.8 (4.4)/4.8 (6.1) 1.2e-76 Heat shock protein 60 kDa family chaperone GroEL 11/1655 16.0 (0.0)/4.4 (6.0) 1.4× 10−7

TCGVY carbapenem- hydrolyzing class A
beta-lactamase KPC

487/1179 12.2 (5.3)/1.3 (2.1) 3.1× 10−240 hypothetical protein (fig573.12981.peg.5967) 31/1635 3.1 (5.8)/4.5 (6.0) 3.2× 10−11

CIRDR 162/1504 1.6 (4.0)/4.8 (6.1) 1.6× 10−76 Anaerobic dimethyl sulfoxide reductase chain B
(EC 1.8.5.3), iron-sulfur binding subunit

261/1405 2.4 (4.7)/4.8 (6.2) 1.5× 10−54

GWIKI 16S rRNA (guanine(1405)- N(7))-
methyltransferase

15/1651 13.1 (5.1)/4.4 (6.0) 1.5× 10−6 hypothetical protein (fig573.14374.peg.5559) 11/1655 14.9 (3.4)/4.4 (6.0) 4.4× 10−7

LDFPD BNR-4 repeat-containing protein 16/1650 12.1 (6.1)/4.4 (6.0) 0.00011 Periplasmic divalent cation tolerance protein CutA 11/1655 16.0 (0.0)/4.4 (6.0) 1.4× 10−7

WELEL KPC family carbapenem-
hydrolyzing class A beta-lactamase

491/1175 12.2 (5.4)/1.3 (2.1) 2.4× 10−239 hypothetical protein (fig573.12878.peg.5387) 115/1551 1.6 (4.1)/4.7 (6.1) 1.8× 10−56

Transposase 477/1189 12.3 (5.3)/1.3 (2.3) 2.6× 10−232

Class A beta-lactamase (EC 3.5.2.6) => KPC family,
carbapenem-hydrolyzing

488/1178 12.2 (5.4)/1.3 (2.2) 1.6× 10−236

Transposase InsH for insertion sequence
element IS5

10/1656 0.2 (0.0)/4.5 (6.0) 4.9× 10−9

Mobile element protein 9/1657 1.4 (2.3)/4.5 (6.0) 0.0074

hypothetical protein (fig573.13500.peg.3164) 186/1480 1.3 (2.2)/4.9 (6.2) 3.6× 10−11

hypothetical protein (fig573.14417.peg.5283) 6/1660 11.0 (7.1)/4.4 (6.0) 0.025

Mobile element protein 479/1187 12.3 (5.3)/1.3 (2.2) 2.3× 10−233

Mobile element protein 56/1610 1.4 (2.1)/4.6 (6.1) 0.036

IS, phage, Tn; Transposon-related functions 10/1656 14.8 (3.6)/4.4 (6.0) 1.6× 10−6
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Table A8. Important genes found for S. enterica and cefoxitin by amino acid 5-mer gene content method.

Amino Acid 5-mers Gene Content

5-mer Gene Product Number of
+/− Strains

Mean (STD) MIC
of +/− Strains

p-Value Gene Product Number of
+/− Strains

Mean (STD) MIC
of +/− Strains

p-Value

ANKSY CMY-2 family class C beta-lactamase 714/4458 46.0 (18.7)/3.1 (3.3) 0.0 Outer membrane porin OmpD 4172/1106 8.8 (16.5)/10.3 (17.4) 1.7× 10−189

TWITV CMY-2 family class C beta-lactamase 713/4459 45.9 (18.7)/3.1 (3.4) 0.0 Mobile element protein 840/4438 38.2 (23.2)/3.6 (6.2) 0.0

GNTHP 9/5163 11.6 (18.7)/9.0 (16.6) 0.048 Class C beta-lactamase
(EC 3.5.2.6) => CMY/CMY-2/CFE/LAT family

736/4542 45.7 (18.7)/3.2 (3.7) 0.0

VRTFP 110/5062 4.4 (7.8)/9.1 (16.7) 0.00044 Putative outer membrane lipoprotein 6/5272 16.0 (0.0)/9.1 (16.7) 0.00088

QNTRI 12/5160 20.3 (23.0)/9.0 (16.6) 0.049 Small multidrug resistance (SMR)
efflux transporter => SugE,
quaternary ammonium compounds

696/4582 46.0 (18.6)/3.5 (5.4) 0.0

HTWIT CMY-2 family class C beta-lactamase 713/4459 45.9 (18.7)/3.1 (3.4) 0.0 FIG01046993: hypothetical protein 440/4838 42.5 (23.5)/6.1 (12.0) 2.6× 10−176

Cobalamin synthase (EC 2.7.8.26) 5/5273 33.6 (26.8)/9.1 (16.7) 0.0048

Table A9. Important genes found for S. enterica and ampicillin by amino acid 5-mer and gene content methods.

Amino Acid 5-mers Gene Content

5-mer Gene Product Number of
+/− Strains

Mean (STD) MIC
of +/− Strains

p-Value Gene Product Number of
+/− Strains

Mean (STD) MIC
of +/− Strains

p-Value

WMRDD class A beta-lactamase 56/5221 62.9 (8.3)/19.7 (28.6) 4.7× 10−24 Class A beta-lactamase (EC 3.5.2.6) => TEM family 815/4462 63.2 (7.1)/12.3 (23.9) 0.0

TDFLR class A beta-lactamase 143/5134 45.5 (28.7)/19.4 (28.5) 3× 10−20 Class A beta-lactamase (EC 3.5.2.6) => HER family 56/5221 62.9 (8.3)/19.7 (28.6) 4.7× 10−24

ASWVH CMY-2 family class C beta-lactamase 745/4532 62.9 (8.1)/13.1 (24.6) 0.0 Mobile element protein 294/4983 63.8 (3.7)/17.6 (27.6) 2.7× 10−130

AMSQN response regulator
transcription factor

10/5267 45.4 (28.4)/20.1 (28.8) 0.0051 hypothetical protein (fig590.14012.peg.5176) 106/5171 63.4 (6.0)/19.2 (28.4) 1.8× 10−46

TMSDN TEM family class A beta-lactamase 1091/4186 57.2 (19.5)/10.5 (22.3) 0.0 Class A beta-lactamase (EC 3.5.2.6) => CARB/PSE
family, carbenicillin-hydrolyzing

42/5235 61.1 (13.1)/19.8 (28.7) 10−17

RDIGY 26/5251 49.6 (26.3)/20.0 (28.8) 1.2× 10−7 Integrase 5/5272 64.0 (0.0)/20.1 (28.8) 0.002

NTAAN type IV conjugative transfer system
coupling protein TraD

868/4409 62.9 (8.3)/11.7 (23.5) 0.0 DNA replication protein 26/5251 49.6 (26.3)/20.0 (28.8) 1.2× 10−7

VIYQG CMY-2 family class C beta-lactamase 751/4526 62.5 (9.5)/13.1 (24.6) 0.0 Class C beta-lactamase
(EC 3.5.2.6) => CMY/CMY-2/CFE/LAT family

736/4541 63.1 (7.5)/13.2 (24.7) 0.0

YWDYN TolC family protein 42/5235 61.1 (13.1)/19.8 (28.7) 1× 10−17 ABC transporter involved in cytochrome c
biogenesis, ATPase component CcmA

4/5273 64.0 (0.0)/20.1 (28.8) 0.0056

hypothetical protein (fig590.17530.peg.3704) 4/5273 64.0 (0.0)/20.1 (28.8) 0.0056
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Table A10. Important genes found for S. enterica and chloramphenicol by amino acid 5-mer and gene content methods.

Amino Acid 5-mers Gene Content

5-mer Gene Product Number of
+/− Strains

Mean (STD) MIC
of +/− Strains

p-Value Gene Product Number of
+/− Strains

Mean (STD) MIC
of +/− Strains

p-Value

WAYTL chloramphenicol/florfenicol efflux
MFS transporter FloR

146/5131 63.3 (6.1)/6.8 (3.7) 8.8× 10−125 Chloramphenicol resistance,
MFS efflux pump => CmlA family

26/5251 56.0 (14.9)/8.2 (9.4) 5.1× 10−23

TAWPV CmlA family chloramphenicol efflux
MFS transporter

169/5108 57.7 (17.3)/6.8 (3.3) 1.1× 10−117 Chloramphenicol/florfenicol resistance,
MFS efflux pump => FloR family

146/5131 63.3 (6.1)/6.8 (3.7) 8.8× 10−125

CDGFH type A chloramphenicol
O-acetyltransferase

6/5271 64.0 (0.0)/8.3 (9.8) 1.8× 10−6 hypothetical protein (fig590.14843.peg.2228) 4061/1216 9.4 (10.9)/5.2 (4.9) 4× 10−266

QGSGN Select seq gbEAX8474651.1 RHS
repeat protein

1308/3969 6.4 (9.9)/9.0 (10.0) 5.1× 10−259 Small multidrug resistance (SMR)
efflux transporter => QacE, quaternary
ammonium compounds

13/5264 47.4 (18.9)/8.3 (9.8) 4.8× 10−11

YMVML chloramphenicol/florfenicol efflux
MFS transporter FloR

146/5131 63.3 (6.1)/6.8 (3.7) 8.8× 10−125 Transposase, IS3/IS911 family 692/4585 6.5 (5.8)/8.7 (10.5) 5.9× 10−20

MDIYL chloramphenicol/florfenicol efflux
MFS transporter FloR

146/5131 63.3 (6.1)/6.8 (3.7) 8.8× 10−125 Glycosyltransferase 1179/4098 6.6 (10.3)/8.9 (9.9) 6.8× 10−221

FRMAM amino acid adenylation
domain-containing protein

6/5271 64.0 (0.0)/8.3 (9.8) 1.8× 10−6 Transcriptional regulator, LysR family 107/5170 64.0 (0.0)/7.2 (6.1) 3.4× 10−92

PVFTM type A chloramphenicol
O-acetyltransferase

9/5268 45.8 (25.9)/8.3 (9.8) 1.7× 10−5 Tetracycline resistance regulatory protein TetR 38/5239 61.3 (11.6)/8.0 (8.9) 3× 10−32

FAKFF type IV secretion system
protein TraC

7/5270 17.1 (19.3)/8.4 (10.0) 0.0094 Inner membrane protein of type IV secretion of
T-DNA complex, TonB-like, VirB10

6/5271 17.3 (20.9)/8.4 (10.0) 0.041

Cytochrome c-type heme lyase subunit nrfE, nitrite
reductase complex assembly

1960/3317 10.3 (13.4)/7.3 (7.1) 2.5× 10−31

Type I secretion system ATPase, LssB family LapB 41/5236 5.3 (2.0)/8.4 (10.0) 2.8× 10−5

hypothetical protein (fig590.13820.peg.5180) 48/5229 52.2 (22.0)/8.0 (8.9) 5.4× 10−34

YbjA protein 4/5273 64.0 (0.0)/8.4 (9.9) 9.7× 10−5

Chloramphenicol O-acetyltransferase
(EC 2.3.1.28) => CatA1/CatA4 family

4/5273 64.0 (0.0)/8.4 (9.9) 9.7× 10−5

Transcriptional regulator, LysR family 2478/2799 8.3 (8.7)/8.5 (11.1) 2.6× 10−17

Mobile element protein 119/5158 59.9 (14.5)/7.2 (5.9) 8.9× 10−91

Phosphomannomutase (EC 5.4.2.8) 1180/4097 6.6 (10.3)/8.9 (9.9) 1.8× 10−220

Mercuric transport protein, MerT 450/4827 18.8 (22.3)/7.4 (7.2) 2.3× 10−59
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Table A11. Important genes found for S. enterica and sulfisoxazole by amino acid 5-mer and gene content methods.

Amino Acid 5-mers Gene Content

5-mer Gene Product Number of
+/− Strains

Mean (STD) MIC
of +/− Strains

p-Value Gene Product Number of
+/− Strains

Mean (STD) MIC
of +/− Strains

p-Value

LDPGM sulfonamide- resistant
dihydropteroate synthase Sul1

1565/3364 501.2 (69.6)/52.1 (59.6) 0.0 Mobile element protein 22/4907 512.0 (0.0)/193.3 (217.8) 8× 10−9

GMGFF sulfonamide- resistant
dihydropteroate synthase Sul1

1552/3377 505.0 (56.1)/52.1 (59.4) 0.0 Dihydropteroate synthase type-2 (EC 2.5.1.15) @
Sulfonamide resistance protein

578/4351 506.7 (49.0)/153.3 (197.6) 3.6× 10−209

hypothetical protein (fig590.17526.peg.3772) 802/4127 506.2 (51.5)/134.2 (184.1) 5.4× 10−305

Aminoglycoside 3”-nucleotidyltransferase
(EC 2.7.7.-) => ANT(3”)-Ia (AadA family)

138/4791 508.8 (38.0)/185.7 (214.6) 8.6× 10−48

Dihydropteroate synthase type-2 (EC 2.5.1.15) @
Sulfonamide resistance protein

985/3944 506.4 (50.7)/116.9 (169.1) 0.0

DNA recombination protein RmuC 18/4911 512.0 (0.0)/193.6 (217.9) 1.8× 10−7

Muconolactone isomerase (EC 5.3.3.4),putative 818/4111 485.0 (108.4)/137.0 (186.3) 1.6× 10−274
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Appendix E. Performance Evaluation

In this section, performances of the different methods are evaluated using different metrics
described in Section 2.4. The metrics are root mean square (RMSE), ±1 two-fold accuracy (DD1),
±2 two-fold accuracy (DD2), major error rate (ME) and very major error rate (VME). For each metric,
we report the mean and standard deviation of cross-validation labeled as CV and the value for
the held out set, labeled as H. For example, RMSE-CV means RMSE in cross-validation, which is
reported in terms of mean and standard deviation, in parentheses, across 10 folds. For the hold-out
set, only one value is reported. Results of each species—antibiotic combinations are presented in a
separate table. In each column, if one of the methods performed better than others we plotted it in
bold face. Since currently, there are no approved breakpoints for erythromycin and N. gonorrhoeae,
major error rate and and very major error rate were not calculated for this data set.

Appendix E.1. C. Jejuni

Table A12. C. jejuni–erythromycin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.65 (0.027) 0.457 0.872 (0.03) 0.936 0.991 (0.011) 1.000 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 9-mers 0.626 (0.038) 0.587 0.877 (0.021) 0.894 0.995 (0.009) 0.979 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 10-mers 0.607 (0.038) 0.554 0.877 (0.025) 0.915 1.0 (0.0) 1.000 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 11-mers 0.622 (0.035) 0.586 0.862 (0.025) 0.894 0.998 (0.007) 1.000 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 3-mers 0.615 (0.03) 0.553 0.888 (0.023) 0.915 0.995 (0.009) 1.000 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 4-mers 0.604 (0.034) 0.581 0.877 (0.029) 0.915 0.998 (0.007) 1.000 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 5-mers 0.598 (0.042) 0.566 0.895 (0.03) 0.915 1.0 (0.0) 1.000 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content 0.6 (0.041) 0.605 0.902 (0.014) 0.872 1.0 (0.0) 1.000 0.0 (0.0) 0.0 0.0 (0.0) 0.0
SNP 0.624 (0.046) 0.593 0.858 (0.026) 0.915 0.998 (0.007) 0.979 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content + SNP 0.612 (0.048) 0.596 0.898 (0.033) 0.894 1.0 (0.0) 1.000 0.0 (0.0) 0.0 0.0 (0.0) 0.0

Table A13. C. jejuni–azithromycin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.698 (0.052) 0.503 0.851 (0.039) 0.957 0.993 (0.011) 0.979 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 9-mers 0.696 (0.061) 0.549 0.858 (0.04) 0.915 0.993 (0.015) 0.979 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 10-mers 0.729 (0.06) 0.49 0.821 (0.05) 0.957 0.993 (0.011) 1.000 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 11-mers 0.717 (0.042) 0.538 0.853 (0.036) 0.894 0.998 (0.007) 1.000 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 3-mers 0.699 (0.073) 0.484 0.853 (0.051) 0.936 0.995 (0.009) 1.000 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 4-mers 0.689 (0.058) 0.572 0.856 (0.052) 0.915 0.998 (0.007) 0.979 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 5-mers 0.683 (0.054) 0.581 0.86 (0.053) 0.936 0.998 (0.007) 1.000 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content 0.687 (0.054) 0.693 0.87 (0.032) 0.787 1.0 (0.0) 1.000 0.0 (0.0) 0.0 0.0 (0.0) 0.0
SNP 0.729 (0.059) 0.582 0.835 (0.069) 0.936 0.998 (0.007) 1.000 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content + SNP 0.7 (0.063) 0.707 0.86 (0.036) 0.830 1.0 (0.0) 0.979 0.0 (0.0) 0.0 0.0 (0.0) 0.0

Table A14. C. jejuni–gentamicin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.657 (0.062) 0.507 0.865 (0.036) 0.915 0.993 (0.011) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 9-mers 0.664 (0.057) 0.502 0.872 (0.039) 0.894 0.988 (0.021) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 10-mers 0.665 (0.062) 0.505 0.882 (0.029) 0.936 0.991 (0.011) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 11-mers 0.653 (0.073) 0.499 0.877 (0.053) 0.936 0.993 (0.011) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 3-mers 0.656 (0.055) 0.504 0.863 (0.051) 0.894 0.991 (0.015) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 4-mers 0.644 (0.058) 0.547 0.886 (0.024) 0.894 0.993 (0.011) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 5-mers 0.654 (0.065) 0.528 0.877 (0.03) 0.915 0.993 (0.011) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content 0.622 (0.05) 0.665 0.886 (0.019) 0.851 0.998 (0.007) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
SNP 0.673 (0.071) 0.5 0.856 (0.024) 0.872 0.986 (0.024) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content + SNP 0.64 (0.053) 0.547 0.868 (0.028) 0.936 0.993 (0.011) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
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Table A15. C. jejuni–clindamycin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.913 (0.077) 0.49 0.775 (0.036) 0.957 0.954 (0.031) 1.0 0.0 (0.0) 0.0 0.009 (0.011) 0.021
NT 9-mers 0.855 (0.075) 0.614 0.799 (0.026) 0.915 0.968 (0.028) 0.979 0.0 (0.0) 0.0 0.007 (0.011) 0.043
NT 10-mers 0.87 (0.1) 0.624 0.778 (0.034) 0.936 0.972 (0.017) 0.979 0.0 (0.0) 0.0 0.007 (0.011) 0.043
NT 11-mers 0.867 (0.077) 0.585 0.776 (0.033) 0.957 0.968 (0.033) 0.979 0.0 (0.0) 0.0 0.009 (0.011) 0.043
AA 3-mers 0.892 (0.057) 0.685 0.778 (0.023) 0.872 0.968 (0.021) 0.979 0.0 (0.0) 0.0 0.007 (0.01) 0.043
AA 4-mers 0.866 (0.086) 0.674 0.764 (0.032) 0.894 0.968 (0.029) 0.979 0.0 (0.0) 0.0 0.007 (0.01) 0.043
AA 5-mers 0.848 (0.066) 0.628 0.766 (0.043) 0.915 0.977 (0.023) 0.979 0.0 (0.0) 0.0 0.007 (0.01) 0.043
Gene content 0.813 (0.073) 0.835 0.798 (0.062) 0.809 0.982 (0.02) 0.979 0.0 (0.0) 0.0 0.007 (0.01) 0.043
SNP 0.908 (0.085) 0.59 0.746 (0.035) 0.936 0.956 (0.03) 0.979 0.0 (0.0) 0.0 0.009 (0.011) 0.021
Gene content + SNP 0.859 (0.066) 0.837 0.785 (0.046) 0.787 0.977 (0.023) 0.957 0.0 (0.0) 0.0 0.009 (0.011) 0.043

Table A16. C. jejuni–telithromycin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.631 (0.047) 0.394 0.873 (0.046) 0.957 0.991 (0.012) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 9-mers 0.639 (0.038) 0.344 0.887 (0.036) 1.000 0.995 (0.009) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 10-mers 0.629 (0.043) 0.389 0.885 (0.036) 1.000 0.993 (0.015) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 11-mers 0.624 (0.042) 0.366 0.885 (0.033) 1.000 0.993 (0.011) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 3-mers 0.624 (0.025) 0.401 0.885 (0.027) 0.957 0.995 (0.009) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 4-mers 0.625 (0.037) 0.385 0.885 (0.033) 1.000 0.993 (0.011) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 5-mers 0.606 (0.03) 0.465 0.908 (0.025) 0.957 0.995 (0.009) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content 0.615 (0.043) 0.595 0.894 (0.026) 0.915 0.995 (0.01) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
SNP 0.641 (0.055) 0.308 0.88 (0.043) 1.000 0.993 (0.015) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content + SNP 0.604 (0.034) 0.535 0.904 (0.03) 0.957 0.995 (0.009) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
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Table A17. C. jejuni–ciprofloxacin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 2.35 (0.259) 1.708 0.494 (0.072) 0.830 0.736 (0.052) 0.915 0.035 (0.019) 0.000 0.095 (0.03) 0.064
NT 9-mers 1.629 (0.202) 0.915 0.675 (0.069) 0.787 0.863 (0.038) 0.936 0.016 (0.021) 0.000 0.032 (0.023) 0.000
NT 10-mers 0.936 (0.291) 0.618 0.875 (0.057) 0.936 0.979 (0.016) 1.000 0.005 (0.009) 0.000 0.007 (0.011) 0.000
NT 11-mers 0.929 (0.312) 0.587 0.877 (0.057) 0.894 0.977 (0.018) 1.000 0.005 (0.009) 0.000 0.009 (0.011) 0.000
AA 3-mers 2.357 (0.295) 1.7 0.499 (0.052) 0.787 0.691 (0.058) 0.872 0.03 (0.023) 0.000 0.091 (0.029) 0.064
AA 4-mers 1.053 (0.282) 0.698 0.828 (0.041) 0.894 0.951 (0.026) 0.979 0.002 (0.007) 0.000 0.014 (0.015) 0.000
AA 5-mers 0.883 (0.32) 0.563 0.879 (0.043) 0.936 0.981 (0.02) 1.000 0.002 (0.007) 0.000 0.007 (0.011) 0.000
Gene content 2.414 (0.181) 2.095 0.508 (0.056) 0.681 0.724 (0.044) 0.851 0.014 (0.029) 0.021 0.109 (0.036) 0.064
SNP 1.134 (0.355) 0.611 0.803 (0.056) 0.915 0.947 (0.031) 0.979 0.002 (0.007) 0.000 0.014 (0.018) 0.000
Gene content + SNP 1.208 (0.298) 0.797 0.759 (0.05) 0.851 0.928 (0.024) 0.957 0.002 (0.007) 0.000 0.012 (0.016) 0.000

Table A18. C. jejuni–nalidixic acid.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 1.693 (0.136) 1.485 0.628 (0.05) 0.812 0.804 (0.043) 0.896 0.044 (0.024) 0.0 0.081 (0.016) 0.083
NT 9-mers 1.077 (0.165) 1.124 0.776 (0.066) 0.812 0.928 (0.036) 0.938 0.009 (0.015) 0.0 0.025 (0.013) 0.042
NT 10-mers 0.66 (0.223) 0.563 0.956 (0.024) 0.938 0.984 (0.018) 1.0 0.005 (0.009) 0.0 0.007 (0.01) 0.000
NT 11-mers 0.643 (0.228) 0.659 0.961 (0.026) 0.938 0.986 (0.015) 0.979 0.005 (0.009) 0.0 0.007 (0.01) 0.000
AA 3-mers 1.765 (0.187) 1.432 0.619 (0.067) 0.792 0.772 (0.066) 0.917 0.032 (0.021) 0.0 0.099 (0.023) 0.083
AA 4-mers 0.783 (0.168) 0.841 0.915 (0.041) 0.917 0.968 (0.021) 0.958 0.005 (0.009) 0.0 0.009 (0.011) 0.042
AA 5-mers 0.647 (0.215) 0.639 0.963 (0.021) 0.938 0.986 (0.015) 0.979 0.005 (0.009) 0.0 0.007 (0.01) 0.021
Gene content 1.788 (0.111) 1.573 0.536 (0.1) 0.729 0.779 (0.067) 0.896 0.025 (0.016) 0.0 0.09 (0.026) 0.083
SNP 0.847 (0.248) 0.779 0.861 (0.051) 0.896 0.975 (0.026) 0.958 0.007 (0.011) 0.0 0.014 (0.023) 0.021
Gene content + SNP 0.912 (0.241) 0.762 0.841 (0.063) 0.812 0.968 (0.034) 0.958 0.005 (0.009) 0.0 0.014 (0.023) 0.021
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Table A19. C. jejuni–tetracycline.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 1.145 (0.584) 2.533 0.847 (0.07) 0.894 0.956 (0.041) 0.915 0.012 (0.016) 0.043 0.007 (0.015) 0.021
NT 9-mers 1.016 (0.482) 2.525 0.831 (0.078) 0.83 0.977 (0.018) 0.894 0.005 (0.009) 0.043 0.005 (0.009) 0.021
NT 10-mers 1.007 (0.513) 2.126 0.858 (0.069) 0.894 0.97 (0.031) 0.936 0.007 (0.011) 0.021 0.005 (0.009) 0.021
NT 11-mers 0.97 (0.435) 2.424 0.854 (0.042) 0.872 0.979 (0.016) 0.936 0.005 (0.009) 0.043 0.005 (0.009) 0.021
AA 3-mers 1.183 (0.508) 2.417 0.803 (0.046) 0.872 0.956 (0.03) 0.915 0.009 (0.015) 0.043 0.007 (0.011) 0.021
AA 4-mers 0.909 (0.359) 2.463 0.849 (0.051) 0.915 0.986 (0.015) 0.936 0.005 (0.009) 0.043 0.002 (0.007) 0.021
AA 5-mers 0.923 (0.45) 2.533 0.856 (0.051) 0.83 0.977 (0.028) 0.936 0.005 (0.009) 0.043 0.005 (0.009) 0.021
Gene content 1.181 (0.425) 2.239 0.817 (0.041) 0.872 0.963 (0.021) 0.936 0.005 (0.009) 0.043 0.005 (0.009) 0.021
SNP 3.445 (0.544) 4.4 0.459 (0.07) 0.532 0.617 (0.065) 0.638 0.109 (0.039) 0.17 0.06 (0.028) 0.085
Gene content + SNP 1.111 (0.389) 2.279 0.801 (0.034) 0.894 0.963 (0.015) 0.936 0.007 (0.011) 0.043 0.005 (0.009) 0.021

Table A20. C. jejuni–florfenicol.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.535 (0.024) 0.355 0.953 (0.018) 0.979 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 9-mers 0.528 (0.043) 0.381 0.946 (0.026) 0.979 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 10-mers 0.521 (0.048) 0.388 0.951 (0.017) 0.957 0.998 (0.007) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 11-mers 0.52 (0.036) 0.369 0.948 (0.023) 1.000 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 3-mers 0.513 (0.036) 0.402 0.953 (0.021) 0.936 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 4-mers 0.52 (0.039) 0.39 0.949 (0.017) 0.936 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 5-mers 0.51 (0.037) 0.397 0.949 (0.023) 0.979 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content 0.511 (0.037) 0.501 0.953 (0.018) 0.936 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
SNP 0.537 (0.042) 0.272 0.934 (0.033) 1.000 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content + SNP 0.516 (0.036) 0.454 0.955 (0.02) 0.957 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
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Appendix E.2. N. gonorrhoeae

Table A21. N. gonorrhoeae–ceftriaxone.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.87 (0.08) 0.59 0.812 (0.026) 0.927 0.959 (0.016) 0.979 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 9-mers 0.839 (0.074) 0.538 0.818 (0.031) 0.932 0.968 (0.014) 0.995 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 10-mers 0.846 (0.076) 0.604 0.823 (0.019) 0.932 0.966 (0.017) 0.990 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 11-mers 0.83 (0.068) 0.571 0.814 (0.017) 0.916 0.97 (0.013) 0.990 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 3-mers 0.891 (0.046) 0.492 0.799 (0.026) 0.921 0.957 (0.009) 0.990 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 4-mers 0.84 (0.075) 0.596 0.812 (0.033) 0.927 0.966 (0.01) 0.984 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 5-mers 0.796 (0.067) 0.463 0.835 (0.023) 0.963 0.974 (0.012) 0.995 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content 0.873 (0.068) 0.683 0.797 (0.024) 0.895 0.961 (0.015) 0.984 0.0 (0.0) 0.0 0.0 (0.0) 0.0
SNP 0.852 (0.071) 0.673 0.812 (0.031) 0.843 0.963 (0.018) 0.995 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene + SNP 0.86 (0.075) 0.59 0.801 (0.033) 0.916 0.965 (0.015) 0.995 0.0 (0.0) 0.0 0.0 (0.0) 0.0

Table A22. N. gonorrhoeae–tetracycline.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 1.001 (0.141) 0.774 0.771 (0.052) 0.812 0.944 (0.018) 0.971 0.006 (0.008) 0.000 0.0 (0.0) 0.0
NT 9-mers 0.979 (0.142) 0.824 0.785 (0.053) 0.783 0.939 (0.032) 0.986 0.008 (0.008) 0.000 0.0 (0.0) 0.0
NT 10-mers 0.963 (0.131) 0.694 0.794 (0.042) 0.913 0.939 (0.032) 0.971 0.005 (0.007) 0.000 0.0 (0.0) 0.0
NT 11-mers 0.967 (0.112) 0.905 0.787 (0.023) 0.812 0.942 (0.029) 0.928 0.005 (0.007) 0.000 0.0 (0.0) 0.0
AA 3-mers 0.999 (0.134) 0.861 0.787 (0.051) 0.841 0.941 (0.029) 0.928 0.005 (0.007) 0.000 0.0 (0.0) 0.0
AA 4-mers 1.029 (0.063) 0.834 0.757 (0.026) 0.87 0.936 (0.02) 0.928 0.005 (0.007) 0.000 0.0 (0.0) 0.0
AA 5-mers 0.971 (0.116) 0.838 0.791 (0.039) 0.899 0.936 (0.02) 0.957 0.003 (0.006) 0.014 0.0 (0.0) 0.0
Gene content 0.979 (0.132) 0.666 0.768 (0.064) 0.899 0.947 (0.033) 0.986 0.005 (0.01) 0.000 0.0 (0.0) 0.0
SNP 1.034 (0.121) 0.679 0.784 (0.031) 0.884 0.926 (0.023) 0.986 0.01 (0.011) 0.000 0.0 (0.0) 0.0
Gene + SNP 0.955 (0.107) 0.724 0.779 (0.029) 0.87 0.952 (0.026) 0.971 0.005 (0.007) 0.000 0.0 (0.0) 0.0
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Table A23. N. gonorrhoeae–erythromycin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 1.196 (0.383) 1.367 0.77 (0.115) 0.824 0.938 (0.048) 0.882 - - - -
NT 9-mers 1.2 (0.426) 1.314 0.753 (0.135) 0.824 0.932 (0.051) 0.941 - - - -
NT 10-mers 1.166 (0.365) 1.316 0.752 (0.1) 0.882 0.932 (0.043) 0.882 - - - -
NT 11-mers 1.279 (0.362) 1.476 0.77 (0.098) 0.824 0.913 (0.064) 0.941 - - - -
AA 3-mers 1.371 (0.428) 0.356 0.672 (0.1) 0.941 0.864 (0.06) 1.000 - - - -
AA 4-mers 1.228 (0.311) 1.595 0.733 (0.055) 0.824 0.913 (0.03) 0.882 - - - -
AA 5-mers 1.17 (0.35) 1.247 0.776 (0.057) 0.882 0.938 (0.038) 0.941 - - - -
Gene content 1.263 (0.367) 1.008 0.739 (0.088) 0.706 0.913 (0.041) 0.941 - - - -
SNP 1.226 (0.402) 0.669 0.752 (0.081) 0.824 0.926 (0.067) 1.000 - - - -
Gene + SNP 1.277 (0.395) 0.846 0.764 (0.061) 0.882 0.913 (0.057) 0.941 - - - -

Table A24. N. gonorrhoeae–cefpodoxime.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 1.731 (0.328) 1.064 0.597 (0.11) 0.75 0.827 (0.062) 0.75 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 9-mers 1.699 (0.283) 0.607 0.598 (0.099) 0.75 0.831 (0.077) 1.00 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 10-mers 1.785 (0.283) 1.037 0.542 (0.092) 0.75 0.766 (0.079) 1.00 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 11-mers 1.698 (0.318) 1.2 0.623 (0.102) 0.50 0.809 (0.094) 0.75 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 3-mers 1.654 (0.307) 1.558 0.572 (0.117) 0.50 0.814 (0.056) 0.75 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 4-mers 1.625 (0.286) 0.841 0.615 (0.073) 0.75 0.823 (0.052) 1.00 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 5-mers 1.734 (0.261) 1.402 0.593 (0.097) 0.75 0.813 (0.059) 0.75 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content 1.722 (0.281) 0.903 0.528 (0.088) 0.75 0.783 (0.065) 1.00 0.0 (0.0) 0.0 0.0 (0.0) 0.0
SNP 1.662 (0.319) 1.086 0.615 (0.086) 0.25 0.827 (0.051) 1.00 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene + SNP 1.618 (0.34) 1.126 0.602 (0.118) 0.75 0.831 (0.069) 0.75 0.0 (0.0) 0.0 0.0 (0.0) 0.0
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Table A25. N. gonorrhoeae–spectinomycin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.352 (0.082) 0.082 0.985 (0.016) 1.000 0.995 (0.008) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 9-mers 0.337 (0.101) 0.109 0.986 (0.013) 1.000 0.995 (0.011) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 10-mers 0.305 (0.049) 0.161 0.995 (0.011) 1.000 0.998 (0.005) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 11-mers 0.323 (0.057) 0.148 0.983 (0.013) 1.000 0.995 (0.008) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 3-mers 0.38 (0.117) 0.109 0.973 (0.022) 1.000 0.995 (0.008) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 4-mers 0.332 (0.088) 0.227 0.98 (0.021) 0.985 0.997 (0.007) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 5-mers 0.332 (0.137) 0.154 0.988 (0.015) 1.000 0.997 (0.01) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content 0.36 (0.08) 0.177 0.98 (0.015) 1.000 0.997 (0.007) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
SNP 0.722 (0.183) 0.224 0.889 (0.033) 1.000 0.968 (0.025) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene + SNP 0.402 (0.119) 0.153 0.961 (0.022) 1.000 0.997 (0.007) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0

Table A26. N. gonorrhoeae–cefixime.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.94 (0.076) 0.637 0.81 (0.025) 0.932 0.952 (0.014) 0.989 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 9-mers 0.944 (0.122) 0.617 0.808 (0.029) 0.958 0.953 (0.016) 0.979 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 10-mers 0.959 (0.069) 0.635 0.82 (0.027) 0.932 0.949 (0.011) 0.974 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 11-mers 0.91 (0.105) 0.537 0.825 (0.03) 0.932 0.956 (0.018) 0.995 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 3-mers 0.981 (0.12) 0.456 0.809 (0.031) 0.958 0.938 (0.02) 0.984 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 4-mers 0.895 (0.09) 0.62 0.839 (0.029) 0.937 0.953 (0.014) 0.979 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 5-mers 0.938 (0.098) 0.535 0.819 (0.039) 0.937 0.951 (0.015) 0.979 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content 0.902 (0.084) 0.754 0.821 (0.031) 0.868 0.961 (0.014) 0.974 0.0 (0.0) 0.0 0.0 (0.0) 0.0
SNP 0.943 (0.11) 0.689 0.804 (0.036) 0.879 0.953 (0.021) 0.989 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene + SNP 0.916 (0.078) 0.66 0.811 (0.027) 0.916 0.957 (0.011) 0.968 0.0 (0.0) 0.0 0.0 (0.0) 0.0
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Table A27. N. gonorrhoeae–cefpodoximeproxetil.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 1.146 (0.268) 0.096 0.745 (0.079) 1.000 0.935 (0.039) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 9-mers 1.162 (0.196) 0.096 0.754 (0.049) 1.000 0.922 (0.038) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 10-mers 1.119 (0.26) 0.174 0.758 (0.099) 1.000 0.913 (0.055) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 11-mers 1.148 (0.236) 0.849 0.75 (0.073) 0.667 0.922 (0.043) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 3-mers 1.143 (0.256) 0.194 0.736 (0.085) 1.000 0.914 (0.073) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 4-mers 1.143 (0.282) 0.143 0.732 (0.084) 1.000 0.913 (0.062) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 5-mers 1.117 (0.29) 0.230 0.758 (0.092) 1.000 0.922 (0.054) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content 1.122 (0.278) 0.210 0.71 (0.108) 1.000 0.918 (0.05) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
SNP 1.088 (0.267) 0.180 0.784 (0.059) 1.000 0.913 (0.034) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene + SNP 1.104 (0.296) 0.162 0.766 (0.079) 1.000 0.931 (0.056) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0

Table A28. N. gonorrhoeae–penicillin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.867 (0.093) 0.648 0.848 (0.043) 0.923 0.947 (0.019) 0.985 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 9-mers 0.903 (0.108) 0.63 0.826 (0.034) 0.954 0.944 (0.022) 0.985 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 10-mers 0.899 (0.125) 0.583 0.829 (0.048) 0.892 0.944 (0.025) 1.000 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 11-mers 0.894 (0.133) 0.725 0.851 (0.057) 0.846 0.945 (0.02) 0.985 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 3-mers 0.886 (0.133) 0.59 0.836 (0.041) 0.923 0.949 (0.026) 0.954 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 4-mers 0.83 (0.124) 0.552 0.838 (0.064) 0.908 0.956 (0.031) 0.969 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 5-mers 0.754 (0.112) 0.529 0.855 (0.059) 0.954 0.969 (0.017) 0.969 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content 0.876 (0.102) 0.61 0.821 (0.05) 0.908 0.957 (0.035) 1.000 0.0 (0.0) 0.0 0.0 (0.0) 0.0
SNP 0.923 (0.176) 0.846 0.828 (0.046) 0.877 0.942 (0.031) 0.938 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene + SNP 0.854 (0.149) 0.788 0.836 (0.047) 0.769 0.959 (0.028) 1.000 0.0 (0.0) 0.0 0.0 (0.0) 0.0
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Table A29. N. gonorrhoeae–azithromycin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 1.271 (0.175) 1.229 0.771 (0.052) 0.911 0.906 (0.021) 0.933 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 9-mers 1.146 (0.226) 0.815 0.793 (0.05) 0.911 0.928 (0.018) 0.967 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 10-mers 1.093 (0.273) 0.744 0.818 (0.046) 0.944 0.935 (0.033) 0.978 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 11-mers 1.064 (0.202) 0.636 0.826 (0.041) 0.889 0.944 (0.025) 0.989 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 3-mers 1.31 (0.203) 0.829 0.764 (0.028) 0.900 0.912 (0.022) 0.956 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 4-mers 1.195 (0.239) 0.747 0.789 (0.041) 0.922 0.913 (0.027) 0.989 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 5-mers 1.245 (0.251) 0.414 0.802 (0.046) 0.944 0.92 (0.024) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content 1.225 (0.152) 0.821 0.745 (0.02) 0.867 0.911 (0.017) 0.967 0.0 (0.0) 0.0 0.0 (0.0) 0.0
SNP 1.39 (0.161) 0.712 0.718 (0.042) 0.911 0.891 (0.017) 0.978 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene + SNP 1.241 (0.214) 0.77 0.753 (0.038) 0.944 0.912 (0.026) 0.978 0.0 (0.0) 0.0 0.0 (0.0) 0.0

Table A30. N. gonorrhoeae–ciprofloxacin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 1.691 (0.594) 1.44 0.807 (0.047) 0.921 0.902 (0.05) 0.984 0.012 (0.018) 0.000 0.01 (0.009) 0.016
NT 9-mers 1.4 (0.565) 0.448 0.84 (0.043) 0.937 0.941 (0.031) 1.000 0.01 (0.012) 0.000 0.007 (0.009) 0.000
NT 10-mers 1.521 (0.5) 0.547 0.854 (0.051) 0.905 0.944 (0.023) 0.968 0.01 (0.012) 0.000 0.01 (0.012) 0.000
NT 11-mers 1.563 (0.548) 1.696 0.847 (0.049) 0.857 0.939 (0.032) 0.905 0.012 (0.008) 0.032 0.012 (0.014) 0.000
AA 3-mers 1.987 (0.836) 1.526 0.828 (0.052) 0.952 0.892 (0.052) 0.968 0.016 (0.018) 0.000 0.019 (0.02) 0.016
AA 4-mers 1.403 (0.775) 1.424 0.858 (0.033) 0.952 0.939 (0.038) 0.984 0.009 (0.012) 0.000 0.009 (0.014) 0.016
AA 5-mers 1.665 (0.698) 1.235 0.885 (0.033) 0.968 0.953 (0.036) 0.984 0.017 (0.019) 0.000 0.012 (0.011) 0.016
Gene content 1.772 (0.567) 0.484 0.802 (0.048) 0.937 0.91 (0.032) 1.000 0.017 (0.017) 0.000 0.014 (0.017) 0.000
SNP 1.54 (0.507) 1.622 0.828 (0.03) 0.889 0.929 (0.028) 0.952 0.01 (0.012) 0.000 0.004 (0.007) 0.016
Gene + SNP 1.504 (0.422) 0.745 0.838 (0.034) 0.937 0.934 (0.03) 0.968 0.009 (0.016) 0.000 0.007 (0.012) 0.000
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Appendix E.3. K. pneumoniae

Table A31. K. pneumoniae–aztreonam.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 1.128 (0.056) 1.258 0.77 (0.017) 0.787 0.903 (0.014) 0.878 0.046 (0.008) 0.067 0.007 (0.005) 0.012
NT 9-mers 1.093 (0.081) 1.22 0.787 (0.017) 0.762 0.91 (0.015) 0.866 0.045 (0.006) 0.067 0.005 (0.004) 0.006
NT 10-mers 1.057 (0.062) 1.135 0.805 (0.026) 0.774 0.914 (0.015) 0.896 0.043 (0.008) 0.049 0.007 (0.006) 0.006
NT 11-mers 1.046 (0.08) 1.064 0.819 (0.019) 0.805 0.915 (0.017) 0.902 0.043 (0.01) 0.049 0.008 (0.009) 0.006
AA 3-mers 1.129 (0.047) 1.175 0.782 (0.018) 0.774 0.896 (0.021) 0.884 0.048 (0.01) 0.055 0.005 (0.005) 0.012
AA 4-mers 1.076 (0.081) 1.161 0.801 (0.024) 0.756 0.911 (0.012) 0.890 0.043 (0.011) 0.061 0.005 (0.006) 0.006
AA 5-mers 1.022 (0.082) 1.145 0.834 (0.024) 0.793 0.922 (0.017) 0.902 0.043 (0.014) 0.055 0.005 (0.004) 0.006
Gene content 1.037 (0.045) 1.145 0.816 (0.021) 0.811 0.918 (0.009) 0.884 0.043 (0.014) 0.061 0.003 (0.003) 0.006
SNP 1.124 (0.085) 1.199 0.798 (0.026) 0.774 0.898 (0.016) 0.884 0.047 (0.008) 0.055 0.006 (0.008) 0.006
Gene + SNP 1.106 (0.073) 1.177 0.803 (0.024) 0.787 0.901 (0.015) 0.902 0.046 (0.011) 0.079 0.008 (0.009) 0.0

Table A32. K. pneumoniae–cefoxitin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.889 (0.049) 0.907 0.766 (0.026) 0.750 0.951 (0.017) 0.945 0.001 (0.004) 0.006 0.032 (0.012) 0.037
NT 9-mers 0.894 (0.043) 0.938 0.776 (0.026) 0.756 0.948 (0.013) 0.927 0.001 (0.002) 0.000 0.04 (0.01) 0.049
NT 10-mers 0.887 (0.061) 0.918 0.773 (0.031) 0.762 0.949 (0.017) 0.945 0.001 (0.002) 0.000 0.034 (0.009) 0.037
NT 11-mers 0.9 (0.051) 0.865 0.778 (0.024) 0.774 0.945 (0.014) 0.951 0.001 (0.002) 0.000 0.037 (0.011) 0.043
AA 3-mers 0.898 (0.039) 0.976 0.758 (0.023) 0.720 0.956 (0.014) 0.945 0.001 (0.002) 0.000 0.028 (0.013) 0.037
AA 4-mers 0.865 (0.054) 0.91 0.785 (0.028) 0.750 0.955 (0.015) 0.951 0.0 (0.0) 0.000 0.029 (0.01) 0.037
AA 5-mers 0.854 (0.053) 0.887 0.788 (0.024) 0.744 0.955 (0.011) 0.951 0.001 (0.002) 0.000 0.034 (0.013) 0.043
Gene content 0.87 (0.047) 0.866 0.766 (0.02) 0.774 0.959 (0.016) 0.963 0.0 (0.0) 0.000 0.03 (0.013) 0.018
SNP 0.885 (0.057) 0.93 0.765 (0.034) 0.768 0.959 (0.015) 0.927 0.001 (0.002) 0.000 0.032 (0.01) 0.049
Gene + SNP 0.87 (0.065) 0.905 0.77 (0.032) 0.756 0.955 (0.016) 0.951 0.001 (0.003) 0.000 0.03 (0.009) 0.037
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Table A33. K. pneumoniae–meropenem.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.934 (0.094) 0.44 0.84 (0.024) 0.976 0.948 (0.01) 0.994 0.011 (0.009) 0.000 0.004 (0.004) 0.000
NT 9-mers 0.849 (0.128) 0.564 0.867 (0.028) 0.958 0.95 (0.015) 0.982 0.012 (0.008) 0.006 0.004 (0.004) 0.006
NT 10-mers 0.846 (0.096) 0.627 0.87 (0.024) 0.964 0.951 (0.01) 0.976 0.013 (0.008) 0.012 0.003 (0.003) 0.006
NT 11-mers 0.824 (0.126) 0.528 0.873 (0.021) 0.97 0.952 (0.018) 0.988 0.012 (0.009) 0.006 0.003 (0.003) 0.006
AA 3-mers 0.996 (0.101) 0.527 0.803 (0.034) 0.952 0.933 (0.021) 0.988 0.016 (0.01) 0.000 0.01 (0.006) 0.012
AA 4-mers 0.868 (0.098) 0.529 0.869 (0.021) 0.97 0.948 (0.014) 0.982 0.015 (0.007) 0.012 0.007 (0.006) 0.000
AA 5-mers 0.794 (0.122) 0.527 0.882 (0.023) 0.958 0.956 (0.021) 0.988 0.015 (0.009) 0.006 0.004 (0.004) 0.006
Gene content 0.845 (0.125) 0.634 0.854 (0.03) 0.945 0.95 (0.018) 0.982 0.015 (0.011) 0.000 0.005 (0.004) 0.012
SNP 1.18 (0.109) 0.85 0.762 (0.024) 0.879 0.892 (0.02) 0.945 0.026 (0.009) 0.012 0.009 (0.005) 0.006
Gene + SNP 0.889 (0.114) 0.594 0.861 (0.031) 0.952 0.945 (0.021) 0.988 0.02 (0.011) 0.000 0.006 (0.005) 0.012

Table A34. K. pneumoniae–tobramycin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.841 (0.075) 0.925 0.795 (0.046) 0.753 0.965 (0.012) 0.934 0.0 (0.0) 0.0 0.015 (0.008) 0.054
NT 9-mers 0.73 (0.079) 0.748 0.861 (0.03) 0.843 0.972 (0.015) 0.97 0.0 (0.0) 0.0 0.015 (0.009) 0.024
NT 10-mers 0.669 (0.079) 0.693 0.897 (0.025) 0.91 0.976 (0.012) 0.952 0.0 (0.0) 0.0 0.015 (0.008) 0.042
NT 11-mers 0.644 (0.08) 0.698 0.89 (0.027) 0.916 0.981 (0.011) 0.97 0.0 (0.0) 0.0 0.011 (0.007) 0.024
AA 3-mers 0.808 (0.046) 0.802 0.803 (0.026) 0.801 0.971 (0.011) 0.976 0.0 (0.0) 0.0 0.013 (0.008) 0.018
AA 4-mers 0.667 (0.076) 0.739 0.889 (0.033) 0.861 0.976 (0.008) 0.976 0.0 (0.0) 0.0 0.014 (0.011) 0.018
AA 5-mers 0.641 (0.055) 0.671 0.904 (0.027) 0.873 0.981 (0.007) 0.982 0.0 (0.0) 0.0 0.01 (0.006) 0.012
Gene content 0.649 (0.063) 0.668 0.9 (0.021) 0.904 0.982 (0.009) 0.976 0.0 (0.0) 0.0 0.012 (0.007) 0.018
SNP 0.856 (0.089) 0.891 0.797 (0.037) 0.801 0.953 (0.019) 0.964 0.001 (0.002) 0.0 0.023 (0.014) 0.024
Gene + SNP 0.625 (0.081) 0.7 0.909 (0.017) 0.886 0.979 (0.013) 0.97 0.0 (0.0) 0.0 0.012 (0.008) 0.024
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Table A35. K. pneumoniae–gentamicin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.879 (0.043) 0.812 0.799 (0.02) 0.813 0.943 (0.011) 0.952 0.001 (0.002) 0.000 0.038 (0.01) 0.042
NT 9-mers 0.781 (0.055) 0.762 0.847 (0.027) 0.849 0.958 (0.015) 0.964 0.001 (0.002) 0.000 0.027 (0.011) 0.030
NT 10-mers 0.676 (0.068) 0.585 0.909 (0.021) 0.922 0.966 (0.01) 0.982 0.002 (0.003) 0.000 0.022 (0.006) 0.018
NT 11-mers 0.629 (0.053) 0.546 0.912 (0.018) 0.922 0.973 (0.01) 0.982 0.001 (0.002) 0.000 0.019 (0.006) 0.018
AA 3-mers 0.869 (0.07) 0.851 0.789 (0.028) 0.765 0.951 (0.023) 0.964 0.001 (0.003) 0.006 0.028 (0.014) 0.018
AA 4-mers 0.664 (0.075) 0.646 0.905 (0.022) 0.880 0.973 (0.012) 0.982 0.001 (0.003) 0.000 0.017 (0.004) 0.012
AA 5-mers 0.608 (0.081) 0.57 0.924 (0.026) 0.910 0.975 (0.01) 0.988 0.001 (0.003) 0.000 0.015 (0.007) 0.012
Gene content 0.634 (0.044) 0.557 0.913 (0.017) 0.922 0.975 (0.011) 0.982 0.001 (0.002) 0.000 0.019 (0.007) 0.018
SNP 0.766 (0.075) 0.657 0.873 (0.027) 0.916 0.951 (0.018) 0.964 0.001 (0.003) 0.000 0.033 (0.012) 0.030
Gene + SNP 0.636 (0.039) 0.587 0.926 (0.011) 0.904 0.972 (0.008) 0.988 0.0 (0.0) 0.000 0.021 (0.007) 0.012

Table A36. K. pneumoniae–imipenem.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.91 (0.131) 0.758 0.847 (0.037) 0.892 0.94 (0.024) 0.97 0.019 (0.014) 0.006 0.005 (0.004) 0.000
NT 9-mers 0.845 (0.095) 0.773 0.865 (0.019) 0.904 0.949 (0.019) 0.964 0.019 (0.01) 0.012 0.005 (0.008) 0.000
NT 10-mers 0.831 (0.098) 0.725 0.877 (0.026) 0.898 0.954 (0.018) 0.958 0.019 (0.011) 0.006 0.002 (0.004) 0.000
NT 11-mers 0.819 (0.099) 0.771 0.886 (0.027) 0.916 0.951 (0.023) 0.97 0.019 (0.013) 0.012 0.005 (0.007) 0.000
AA 3-mers 0.97 (0.099) 0.74 0.824 (0.032) 0.898 0.933 (0.022) 0.97 0.02 (0.015) 0.0 0.009 (0.007) 0.000
AA 4-mers 0.827 (0.099) 0.63 0.883 (0.024) 0.916 0.953 (0.017) 0.982 0.021 (0.011) 0.006 0.005 (0.004) 0.006
AA 5-mers 0.799 (0.104) 0.751 0.878 (0.027) 0.922 0.958 (0.02) 0.964 0.019 (0.014) 0.012 0.005 (0.006) 0.006
Gene content 0.825 (0.084) 0.708 0.874 (0.029) 0.892 0.956 (0.017) 0.97 0.021 (0.012) 0.018 0.003 (0.004) 0.000
SNP 1.053 (0.087) 0.93 0.789 (0.03) 0.801 0.921 (0.021) 0.964 0.034 (0.016) 0.018 0.006 (0.007) 0.012
Gene + SNP 0.82 (0.105) 0.78 0.872 (0.026) 0.916 0.956 (0.02) 0.964 0.02 (0.012) 0.018 0.006 (0.008) 0.006
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Table A37. K. pneumoniae–levofloxacin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.584 (0.108) 0.599 0.905 (0.027) 0.898 0.977 (0.02) 0.988 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 9-mers 0.57 (0.077) 0.539 0.907 (0.021) 0.916 0.979 (0.014) 0.988 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 10-mers 0.553 (0.093) 0.627 0.927 (0.02) 0.880 0.979 (0.014) 0.976 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 11-mers 0.523 (0.113) 0.494 0.932 (0.019) 0.934 0.977 (0.018) 0.982 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 3-mers 0.613 (0.07) 0.605 0.901 (0.018) 0.886 0.976 (0.015) 0.976 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 4-mers 0.559 (0.068) 0.656 0.92 (0.014) 0.880 0.978 (0.01) 0.970 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 5-mers 0.51 (0.086) 0.548 0.937 (0.021) 0.928 0.979 (0.011) 0.970 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content 0.56 (0.06) 0.553 0.918 (0.018) 0.940 0.98 (0.012) 0.976 0.0 (0.0) 0.0 0.0 (0.0) 0.0
SNP 0.549 (0.06) 0.576 0.929 (0.017) 0.910 0.977 (0.009) 0.970 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene + SNP 0.514 (0.113) 0.538 0.938 (0.022) 0.940 0.98 (0.014) 0.970 0.0 (0.0) 0.0 0.0 (0.0) 0.0

Table A38. K. pneumoniae–nitrofurantoin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.575 (0.069) 0.504 0.929 (0.019) 0.933 0.985 (0.007) 1.000 0.0 (0.0) 0.0 0.004 (0.006) 0.000
NT 9-mers 0.58 (0.065) 0.516 0.922 (0.014) 0.933 0.986 (0.007) 1.000 0.0 (0.0) 0.0 0.002 (0.005) 0.000
NT 10-mers 0.613 (0.075) 0.646 0.921 (0.027) 0.91 0.979 (0.011) 0.989 0.0 (0.0) 0.0 0.007 (0.01) 0.011
NT 11-mers 0.576 (0.046) 0.581 0.928 (0.015) 0.933 0.984 (0.008) 0.989 0.0 (0.0) 0.0 0.005 (0.008) 0.011
AA 3-mers 0.58 (0.037) 0.531 0.927 (0.019) 0.921 0.984 (0.008) 1.000 0.001 (0.004) 0.0 0.002 (0.005) 0.000
AA 4-mers 0.565 (0.051) 0.46 0.932 (0.027) 0.966 0.983 (0.006) 1.000 0.001 (0.004) 0.0 0.002 (0.005) 0.000
AA 5-mers 0.535 (0.044) 0.469 0.944 (0.02) 0.944 0.988 (0.008) 1.000 0.0 (0.0) 0.0 0.001 (0.004) 0.000
Gene content 0.558 (0.044) 0.482 0.933 (0.016) 0.955 0.985 (0.007) 1.000 0.0 (0.0) 0.0 0.001 (0.004) 0.000
SNP 0.528 (0.055) 0.549 0.943 (0.02) 0.921 0.989 (0.007) 1.000 0.0 (0.0) 0.0 0.001 (0.004) 0.000
Gene + SNP 0.539 (0.066) 0.555 0.94 (0.015) 0.91 0.988 (0.01) 1.000 0.0 (0.0) 0.0 0.001 (0.004) 0.000
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Table A39. K. pneumoniae–ampicillin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.111 (0.013) 0.084 1.0 (0.0) 1.0 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 9-mers 0.108 (0.012) 0.11 1.0 (0.0) 1.0 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 10-mers 0.12 (0.008) 0.083 1.0 (0.0) 1.0 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 11-mers 0.107 (0.012) 0.106 1.0 (0.0) 1.0 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 3-mers 0.111 (0.014) 0.096 1.0 (0.0) 1.0 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 4-mers 0.108 (0.007) 0.105 1.0 (0.0) 1.0 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 5-mers 0.113 (0.009) 0.098 1.0 (0.0) 1.0 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content 0.107 (0.008) 0.118 1.0 (0.0) 1.0 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
SNP 0.115 (0.002) 0.143 1.0 (0.0) 1.0 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene + SNP 0.109 (0.012) 0.104 1.0 (0.0) 1.0 1.0 (0.0) 1.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0

Table A40. K. pneumoniae–tetracycline.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.95 (0.042) 0.966 0.738 (0.039) 0.753 0.949 (0.012) 0.928 0.0 (0.0) 0.0 0.025 (0.01) 0.036
NT 9-mers 0.897 (0.053) 0.899 0.758 (0.04) 0.765 0.957 (0.01) 0.970 0.001 (0.002) 0.0 0.025 (0.009) 0.018
NT 10-mers 0.846 (0.043) 0.761 0.775 (0.032) 0.831 0.971 (0.009) 0.970 0.001 (0.003) 0.0 0.017 (0.01) 0.018
NT 11-mers 0.844 (0.056) 0.792 0.793 (0.037) 0.825 0.966 (0.01) 0.964 0.001 (0.003) 0.0 0.021 (0.009) 0.036
AA 3-mers 0.95 (0.044) 0.894 0.725 (0.036) 0.747 0.96 (0.015) 0.952 0.001 (0.003) 0.0 0.011 (0.011) 0.024
AA 4-mers 0.847 (0.04) 0.844 0.791 (0.041) 0.801 0.959 (0.008) 0.958 0.001 (0.003) 0.0 0.023 (0.006) 0.030
AA 5-mers 0.798 (0.047) 0.722 0.804 (0.025) 0.855 0.977 (0.01) 0.970 0.0 (0.0) 0.0 0.014 (0.01) 0.024
Gene content 0.79 (0.048) 0.795 0.794 (0.041) 0.837 0.977 (0.007) 0.970 0.001 (0.003) 0.0 0.014 (0.004) 0.030
SNP 1.022 (0.068) 0.997 0.69 (0.041) 0.729 0.949 (0.014) 0.946 0.001 (0.002) 0.0 0.015 (0.009) 0.030
Gene + SNP 0.812 (0.049) 0.785 0.793 (0.041) 0.861 0.969 (0.007) 0.964 0.001 (0.003) 0.0 0.021 (0.009) 0.024



Biology 2020, 9, 365 58 of 91

Table A41. K. pneumoniae–ceftazidime.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 1.016 (0.097) 0.955 0.855 (0.014) 0.825 0.929 (0.016) 0.916 0.017 (0.008) 0.018 0.008 (0.006) 0.000
NT 9-mers 0.975 (0.134) 0.861 0.863 (0.016) 0.843 0.937 (0.009) 0.94 0.011 (0.011) 0.012 0.008 (0.005) 0.000
NT 10-mers 0.953 (0.132) 0.719 0.871 (0.025) 0.873 0.935 (0.019) 0.964 0.007 (0.007) 0.018 0.012 (0.008) 0.000
NT 11-mers 0.906 (0.1) 0.834 0.869 (0.009) 0.825 0.948 (0.014) 0.946 0.006 (0.007) 0.012 0.007 (0.008) 0.000
AA 3-mers 1.1 (0.093) 0.928 0.839 (0.022) 0.843 0.921 (0.014) 0.928 0.017 (0.01) 0.012 0.008 (0.008) 0.000
AA 4-mers 0.977 (0.112) 0.778 0.865 (0.02) 0.867 0.938 (0.014) 0.952 0.01 (0.007) 0.012 0.01 (0.01) 0.000
AA 5-mers 0.877 (0.122) 0.712 0.885 (0.016) 0.88 0.955 (0.014) 0.97 0.006 (0.006) 0.018 0.011 (0.008) 0.000
Gene content 0.889 (0.112) 0.706 0.885 (0.017) 0.904 0.947 (0.017) 0.964 0.007 (0.006) 0.018 0.005 (0.004) 0.000
SNP 1.06 (0.101) 1.021 0.862 (0.017) 0.88 0.925 (0.014) 0.928 0.01 (0.006) 0.030 0.015 (0.008) 0.006
Gene + SNP 0.959 (0.105) 0.911 0.871 (0.014) 0.855 0.939 (0.015) 0.934 0.007 (0.008) 0.018 0.009 (0.006) 0.012

Table A42. K. pneumoniae–amikacin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.522 (0.045) 0.408 0.931 (0.02) 0.952 0.989 (0.007) 0.994 0.0 (0.0) 0.0 0.007 (0.005) 0.006
NT 9-mers 0.505 (0.057) 0.384 0.939 (0.014) 0.964 0.989 (0.009) 1.000 0.0 (0.0) 0.0 0.007 (0.005) 0.000
NT 10-mers 0.476 (0.058) 0.375 0.945 (0.015) 0.952 0.991 (0.007) 1.000 0.0 (0.0) 0.0 0.006 (0.006) 0.000
NT 11-mers 0.478 (0.063) 0.341 0.946 (0.012) 0.964 0.989 (0.008) 1.000 0.0 (0.0) 0.0 0.006 (0.005) 0.000
AA 3-mers 0.521 (0.07) 0.431 0.931 (0.022) 0.934 0.989 (0.01) 1.000 0.0 (0.0) 0.0 0.007 (0.005) 0.000
AA 4-mers 0.488 (0.07) 0.361 0.942 (0.014) 0.982 0.989 (0.009) 1.000 0.0 (0.0) 0.0 0.006 (0.006) 0.000
AA 5-mers 0.48 (0.063) 0.323 0.944 (0.019) 0.988 0.991 (0.006) 1.000 0.0 (0.0) 0.0 0.005 (0.005) 0.000
Gene content 0.5 (0.07) 0.369 0.942 (0.014) 0.964 0.987 (0.012) 1.000 0.0 (0.0) 0.0 0.007 (0.005) 0.000
SNP 0.549 (0.057) 0.455 0.934 (0.021) 0.958 0.986 (0.008) 0.994 0.0 (0.0) 0.0 0.008 (0.005) 0.006
Gene + SNP 0.494 (0.067) 0.363 0.945 (0.018) 0.97 0.989 (0.007) 0.994 0.0 (0.0) 0.0 0.007 (0.005) 0.006
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Table A43. K. pneumoniae–ceftriaxone.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 1.139 (0.137) 0.73 0.83 (0.021) 0.873 0.913 (0.021) 0.97 0.012 (0.008) 0.000 0.0 (0.0) 0.0
NT 9-mers 0.999 (0.125) 0.682 0.857 (0.019) 0.904 0.929 (0.017) 0.958 0.009 (0.008) 0.006 0.001 (0.002) 0.0
NT 10-mers 0.891 (0.131) 0.68 0.875 (0.016) 0.892 0.949 (0.014) 0.958 0.006 (0.006) 0.000 0.001 (0.003) 0.0
NT 11-mers 0.862 (0.129) 0.789 0.873 (0.026) 0.873 0.947 (0.019) 0.946 0.003 (0.004) 0.006 0.0 (0.0) 0.0
AA 3-mers 1.136 (0.112) 0.92 0.839 (0.008) 0.867 0.909 (0.013) 0.958 0.016 (0.01) 0.012 0.0 (0.0) 0.0
AA 4-mers 0.937 (0.2) 0.674 0.88 (0.025) 0.898 0.946 (0.023) 0.97 0.011 (0.009) 0.000 0.003 (0.004) 0.0
AA 5-mers 0.749 (0.142) 0.444 0.916 (0.026) 0.958 0.963 (0.016) 0.988 0.003 (0.003) 0.000 0.001 (0.002) 0.0
Gene content 0.893 (0.096) 0.651 0.867 (0.027) 0.922 0.937 (0.01) 0.97 0.015 (0.008) 0.000 0.0 (0.0) 0.0
SNP 1.255 (0.121) 0.923 0.831 (0.017) 0.849 0.898 (0.01) 0.946 0.031 (0.009) 0.018 0.0 (0.0) 0.0
Gene + SNP 0.89 (0.123) 0.84 0.891 (0.026) 0.898 0.951 (0.015) 0.952 0.006 (0.007) 0.000 0.0 (0.0) 0.0

Table A44. K. pneumoniae–cefuroximesodium.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.335 (0.069) 0.391 0.978 (0.007) 0.968 0.99 (0.006) 0.987 0.0 (0.0) 0.0 0.001 (0.002) 0.000
NT 9-mers 0.34 (0.065) 0.366 0.975 (0.009) 0.968 0.992 (0.005) 0.994 0.001 (0.002) 0.0 0.0 (0.0) 0.000
NT 10-mers 0.325 (0.079) 0.471 0.981 (0.009) 0.962 0.992 (0.007) 0.981 0.0 (0.0) 0.0 0.0 (0.0) 0.000
NT 11-mers 0.322 (0.048) 0.361 0.982 (0.009) 0.975 0.991 (0.006) 0.994 0.0 (0.0) 0.0 0.0 (0.0) 0.000
AA 3-mers 0.362 (0.064) 0.378 0.968 (0.011) 0.968 0.992 (0.008) 0.987 0.0 (0.0) 0.0 0.0 (0.0) 0.000
AA 4-mers 0.323 (0.048) 0.422 0.978 (0.006) 0.968 0.992 (0.005) 0.987 0.0 (0.0) 0.0 0.0 (0.0) 0.000
AA 5-mers 0.327 (0.05) 0.475 0.98 (0.008) 0.962 0.993 (0.004) 0.981 0.001 (0.002) 0.0 0.0 (0.0) 0.006
Gene content 0.377 (0.059) 0.424 0.968 (0.008) 0.955 0.989 (0.007) 0.987 0.0 (0.0) 0.0 0.0 (0.0) 0.000
SNP 0.499 (0.063) 0.477 0.933 (0.014) 0.911 0.982 (0.012) 0.994 0.0 (0.0) 0.0 0.0 (0.0) 0.000
Gene + SNP 0.398 (0.069) 0.371 0.968 (0.011) 0.975 0.986 (0.009) 0.987 0.0 (0.0) 0.0 0.0 (0.0) 0.000
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Table A45. K. pneumoniae–cefazolin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.658 (0.132) 0.249 0.932 (0.011) 0.988 0.966 (0.015) 1.0 0.005 (0.005) 0.000 0.013 (0.008) 0.0
NT 9-mers 0.627 (0.125) 0.442 0.928 (0.015) 0.934 0.966 (0.014) 0.994 0.003 (0.003) 0.000 0.021 (0.013) 0.018
NT 10-mers 0.662 (0.1) 0.403 0.921 (0.014) 0.964 0.965 (0.009) 0.994 0.001 (0.003) 0.000 0.019 (0.009) 0.006
NT 11-mers 0.628 (0.083) 0.475 0.927 (0.011) 0.952 0.968 (0.01) 0.982 0.001 (0.002) 0.000 0.024 (0.01) 0.024
AA 3-mers 0.814 (0.069) 0.582 0.915 (0.01) 0.934 0.951 (0.009) 0.976 0.007 (0.006) 0.000 0.021 (0.012) 0.006
AA 4-mers 0.658 (0.102) 0.416 0.939 (0.02) 0.952 0.963 (0.013) 0.988 0.002 (0.003) 0.000 0.014 (0.011) 0.012
AA 5-mers 0.592 (0.136) 0.445 0.939 (0.017) 0.964 0.971 (0.015) 0.988 0.001 (0.003) 0.000 0.015 (0.01) 0.006
Gene content 0.627 (0.154) 0.569 0.937 (0.024) 0.952 0.969 (0.014) 0.982 0.003 (0.005) 0.000 0.011 (0.007) 0.012
SNP 0.847 (0.094) 0.628 0.898 (0.023) 0.934 0.947 (0.012) 0.958 0.008 (0.005) 0.006 0.037 (0.02) 0.042
Gene + SNP 0.719 (0.161) 0.406 0.928 (0.024) 0.952 0.958 (0.02) 0.994 0.009 (0.007) 0.000 0.017 (0.013) 0.018

Table A46. K. pneumoniae–cefepime.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 1.961 (0.075) 1.744 0.434 (0.028) 0.452 0.679 (0.021) 0.726 0.03 (0.008) 0.013 0.018 (0.012) 0.006
NT 9-mers 1.91 (0.067) 1.73 0.458 (0.027) 0.478 0.698 (0.024) 0.701 0.024 (0.007) 0.006 0.018 (0.008) 0.006
NT 10-mers 1.871 (0.064) 1.796 0.481 (0.03) 0.503 0.721 (0.016) 0.72 0.025 (0.013) 0.006 0.018 (0.005) 0.006
NT 11-mers 1.842 (0.079) 1.677 0.493 (0.039) 0.484 0.722 (0.019) 0.732 0.028 (0.012) 0.013 0.015 (0.014) 0.000
AA 3-mers 1.982 (0.077) 1.793 0.41 (0.024) 0.420 0.665 (0.042) 0.72 0.027 (0.009) 0.006 0.014 (0.011) 0.006
AA 4-mers 1.863 (0.089) 1.617 0.472 (0.031) 0.522 0.716 (0.025) 0.777 0.027 (0.013) 0.006 0.014 (0.01) 0.000
AA 5-mers 1.786 (0.066) 1.583 0.506 (0.033) 0.510 0.74 (0.032) 0.783 0.025 (0.015) 0.006 0.011 (0.009) 0.000
Gene content 1.814 (0.059) 1.556 0.448 (0.031) 0.522 0.713 (0.022) 0.745 0.023 (0.008) 0.013 0.005 (0.006) 0.000
SNP 1.947 (0.109) 1.67 0.421 (0.036) 0.471 0.676 (0.039) 0.732 0.025 (0.016) 0.006 0.013 (0.013) 0.006
Gene + SNP 1.856 (0.112) 1.554 0.455 (0.036) 0.522 0.711 (0.045) 0.796 0.028 (0.012) 0.006 0.01 (0.006) 0.006
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Table A47. K. pneumoniae–ciprofloxacin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.529 (0.059) 0.579 0.914 (0.019) 0.898 0.985 (0.01) 0.970 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 9-mers 0.514 (0.043) 0.553 0.927 (0.014) 0.922 0.984 (0.009) 0.976 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 10-mers 0.473 (0.051) 0.541 0.933 (0.015) 0.922 0.99 (0.009) 0.988 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 11-mers 0.392 (0.056) 0.433 0.958 (0.014) 0.940 0.993 (0.006) 0.994 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 3-mers 0.571 (0.058) 0.66 0.901 (0.02) 0.880 0.978 (0.01) 0.970 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 4-mers 0.444 (0.033) 0.407 0.947 (0.017) 0.958 0.99 (0.006) 0.988 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 5-mers 0.349 (0.056) 0.405 0.966 (0.008) 0.958 0.996 (0.004) 0.994 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content 0.441 (0.062) 0.548 0.944 (0.016) 0.886 0.992 (0.007) 0.982 0.0 (0.0) 0.0 0.0 (0.0) 0.0
SNP 0.526 (0.058) 0.541 0.917 (0.017) 0.904 0.985 (0.008) 0.982 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene + SNP 0.411 (0.05) 0.479 0.959 (0.015) 0.928 0.987 (0.01) 0.982 0.0 (0.0) 0.0 0.0 (0.0) 0.0

Table A48. K. pneumoniae–piperacillin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 1.377 (0.048) 1.36 0.67 (0.027) 0.657 0.844 (0.028) 0.837 0.003 (0.003) 0.0 0.026 (0.013) 0.024
NT 9-mers 1.33 (0.067) 1.306 0.678 (0.023) 0.639 0.856 (0.016) 0.843 0.003 (0.003) 0.0 0.027 (0.016) 0.006
NT 10-mers 1.334 (0.072) 1.306 0.695 (0.028) 0.645 0.856 (0.021) 0.873 0.003 (0.004) 0.0 0.022 (0.012) 0.018
NT 11-mers 1.296 (0.078) 1.269 0.696 (0.021) 0.675 0.865 (0.021) 0.861 0.001 (0.002) 0.0 0.019 (0.012) 0.012
AA 3-mers 1.36 (0.101) 1.198 0.658 (0.015) 0.62 0.839 (0.023) 0.892 0.003 (0.004) 0.0 0.017 (0.014) 0.0
AA 4-mers 1.262 (0.072) 1.246 0.688 (0.019) 0.669 0.872 (0.022) 0.873 0.001 (0.003) 0.0 0.013 (0.012) 0.006
AA 5-mers 1.241 (0.075) 1.264 0.693 (0.021) 0.669 0.882 (0.015) 0.88 0.003 (0.003) 0.0 0.014 (0.009) 0.012
Gene content 1.218 (0.099) 1.296 0.689 (0.028) 0.645 0.881 (0.024) 0.88 0.001 (0.003) 0.0 0.011 (0.01) 0.012
SNP 1.318 (0.098) 1.385 0.678 (0.019) 0.663 0.86 (0.027) 0.843 0.003 (0.004) 0.0 0.02 (0.014) 0.024
Gene + SNP 1.243 (0.097) 1.285 0.693 (0.027) 0.663 0.878 (0.024) 0.831 0.003 (0.003) 0.0 0.013 (0.008) 0.006
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Table A49. K. pneumoniae–trimethoprim.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.719 (0.069) 0.7 0.848 (0.027) 0.88 0.973 (0.011) 0.958 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 9-mers 0.66 (0.056) 0.621 0.887 (0.017) 0.904 0.972 (0.012) 0.988 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 10-mers 0.601 (0.065) 0.551 0.911 (0.022) 0.922 0.975 (0.01) 0.982 0.0 (0.0) 0.0 0.0 (0.0) 0.0
NT 11-mers 0.601 (0.061) 0.632 0.92 (0.019) 0.886 0.973 (0.012) 0.97 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 3-mers 0.763 (0.048) 0.728 0.837 (0.027) 0.849 0.968 (0.013) 0.97 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 4-mers 0.621 (0.055) 0.611 0.908 (0.018) 0.91 0.975 (0.009) 0.982 0.0 (0.0) 0.0 0.0 (0.0) 0.0
AA 5-mers 0.588 (0.066) 0.554 0.917 (0.02) 0.928 0.976 (0.01) 0.982 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content 0.579 (0.07) 0.583 0.927 (0.02) 0.91 0.976 (0.013) 0.982 0.0 (0.0) 0.0 0.0 (0.0) 0.0
SNP 0.736 (0.057) 0.697 0.852 (0.027) 0.867 0.965 (0.012) 0.976 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene + SNP 0.602 (0.081) 0.605 0.928 (0.025) 0.916 0.969 (0.015) 0.976 0.0 (0.0) 0.0 0.0 (0.0) 0.0

Appendix E.4. S. enterica

Table A50. S. enterica–amoxicillinclavulanicacid.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.961 (0.097) 0.881 0.843 (0.026) 0.869 0.943 (0.015) 0.949 0.002 (0.002) 0.000 0.013 (0.005) 0.009
NT 9-mers 0.768 (0.106) 0.694 0.911 (0.015) 0.934 0.97 (0.006) 0.975 0.002 (0.002) 0.000 0.008 (0.004) 0.006
NT 10-mers 0.626 (0.106) 0.73 0.962 (0.009) 0.954 0.984 (0.007) 0.983 0.001 (0.002) 0.006 0.004 (0.004) 0.006
NT 11-mers 0.608 (0.135) 0.625 0.964 (0.008) 0.962 0.986 (0.007) 0.985 0.002 (0.002) 0.000 0.003 (0.003) 0.006
AA 3-mers 1.01 (0.083) 0.902 0.813 (0.021) 0.85 0.935 (0.013) 0.958 0.002 (0.002) 0.000 0.013 (0.006) 0.011
AA 4-mers 0.65 (0.136) 0.615 0.957 (0.015) 0.958 0.984 (0.009) 0.981 0.002 (0.002) 0.000 0.003 (0.003) 0.004
AA 5-mers 0.643 (0.129) 0.563 0.967 (0.009) 0.962 0.984 (0.007) 0.987 0.003 (0.002) 0.000 0.004 (0.003) 0.004
Gene content 0.634 (0.132) 0.509 0.958 (0.01) 0.981 0.984 (0.007) 0.994 0.002 (0.002) 0.002 0.004 (0.002) 0.002
SNP 1.449 (0.081) 1.37 0.763 (0.022) 0.772 0.877 (0.017) 0.879 0.003 (0.002) 0.002 0.055 (0.011) 0.036
Gene + SNP 0.627 (0.115) 0.693 0.955 (0.012) 0.956 0.985 (0.005) 0.977 0.002 (0.002) 0.000 0.003 (0.003) 0.008
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Table A51. S. enterica–ampicillin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 1.25 (0.094) 0.577 0.784 (0.03) 0.952 0.906 (0.022) 0.983 0.003 (0.003) 0.000 0.031 (0.01) 0.004
NT 9-mers 1.009 (0.096) 0.665 0.864 (0.021) 0.958 0.942 (0.011) 0.977 0.003 (0.003) 0.000 0.016 (0.006) 0.01
NT 10-mers 0.817 (0.111) 0.456 0.935 (0.012) 0.975 0.976 (0.005) 0.989 0.003 (0.003) 0.002 0.011 (0.006) 0.002
NT 11-mers 0.763 (0.097) 0.593 0.946 (0.011) 0.981 0.98 (0.004) 0.99 0.004 (0.002) 0.002 0.008 (0.005) 0.006
AA 3-mers 1.32 (0.122) 0.906 0.747 (0.038) 0.838 0.892 (0.022) 0.952 0.004 (0.003) 0.000 0.036 (0.013) 0.01
AA 4-mers 0.824 (0.114) 0.669 0.941 (0.012) 0.964 0.975 (0.01) 0.979 0.005 (0.002) 0.000 0.01 (0.005) 0.01
AA 5-mers 0.758 (0.116) 0.526 0.959 (0.008) 0.981 0.983 (0.006) 0.99 0.005 (0.003) 0.000 0.008 (0.005) 0.004
Gene content 0.787 (0.1) 0.484 0.948 (0.007) 0.981 0.979 (0.006) 0.992 0.004 (0.002) 0.000 0.01 (0.005) 0.006
SNP 1.532 (0.073) 1.079 0.76 (0.025) 0.854 0.875 (0.02) 0.93 0.004 (0.003) 0.000 0.06 (0.009) 0.034
Gene + SNP 0.762 (0.086) 0.583 0.953 (0.007) 0.966 0.979 (0.006) 0.989 0.003 (0.002) 0.002 0.01 (0.004) 0.006

Table A52. S. enterica–azithromycin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.527 (0.025) 0.454 0.94 (0.005) 0.954 0.996 (0.004) 1.000 0.0 (0.0) 0.0 0.003 (0.002) 0.000
NT 9-mers 0.532 (0.032) 0.406 0.938 (0.018) 0.975 0.996 (0.003) 1.000 0.0 (0.0) 0.0 0.003 (0.002) 0.000
NT 10-mers 0.526 (0.025) 0.404 0.942 (0.006) 0.975 0.998 (0.002) 0.996 0.0 (0.0) 0.0 0.003 (0.002) 0.000
NT 11-mers 0.509 (0.028) 0.516 0.95 (0.014) 0.950 0.997 (0.002) 1.000 0.0 (0.0) 0.0 0.003 (0.002) 0.000
AA 3-mers 0.531 (0.03) 0.447 0.933 (0.013) 0.979 0.996 (0.003) 1.000 0.0 (0.0) 0.0 0.003 (0.002) 0.004
AA 4-mers 0.514 (0.03) 0.405 0.943 (0.013) 0.983 0.998 (0.003) 1.000 0.0 (0.0) 0.0 0.003 (0.002) 0.000
AA 5-mers 0.506 (0.035) 0.471 0.95 (0.011) 0.950 0.998 (0.002) 1.000 0.0 (0.0) 0.0 0.003 (0.002) 0.004
Gene content 0.51 (0.032) 0.388 0.941 (0.009) 0.983 0.999 (0.002) 0.996 0.0 (0.0) 0.0 0.001 (0.002) 0.000
SNP 0.521 (0.03) 0.424 0.943 (0.016) 0.967 0.996 (0.003) 1.000 0.0 (0.0) 0.0 0.003 (0.002) 0.000
Gene + SNP 0.522 (0.027) 0.356 0.94 (0.015) 0.983 0.996 (0.003) 1.000 0.0 (0.0) 0.0 0.003 (0.002) 0.000
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Table A53. S. enterica–cefoxitin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.774 (0.045) 0.831 0.868 (0.019) 0.858 0.975 (0.008) 0.97 0.001 (0.001) 0.004 0.011 (0.004) 0.009
NT 9-mers 0.684 (0.048) 0.63 0.895 (0.015) 0.909 0.985 (0.007) 0.994 0.001 (0.001) 0.004 0.005 (0.003) 0.000
NT 10-mers 0.65 (0.067) 0.528 0.91 (0.015) 0.934 0.989 (0.007) 0.998 0.002 (0.002) 0.000 0.004 (0.003) 0.000
NT 11-mers 0.629 (0.051) 0.597 0.917 (0.01) 0.915 0.99 (0.004) 0.994 0.001 (0.001) 0.002 0.004 (0.003) 0.000
AA 3-mers 0.765 (0.046) 0.793 0.865 (0.017) 0.879 0.976 (0.005) 0.968 0.001 (0.002) 0.002 0.007 (0.003) 0.011
AA 4-mers 0.617 (0.052) 0.77 0.919 (0.013) 0.92 0.992 (0.005) 0.979 0.001 (0.001) 0.008 0.003 (0.003) 0.008
AA 5-mers 0.621 (0.061) 0.622 0.926 (0.006) 0.919 0.99 (0.005) 0.996 0.002 (0.002) 0.004 0.004 (0.003) 0.000
Gene content 0.624 (0.037) 0.58 0.924 (0.01) 0.909 0.99 (0.005) 0.992 0.002 (0.001) 0.000 0.004 (0.003) 0.002
SNP 1.163 (0.058) 1.211 0.768 (0.013) 0.765 0.915 (0.014) 0.907 0.001 (0.001) 0.004 0.045 (0.012) 0.038
Gene + SNP 0.622 (0.046) 0.621 0.923 (0.009) 0.911 0.991 (0.005) 0.987 0.001 (0.001) 0.002 0.004 (0.003) 0.002

Table A54. S. enterica–ceftiofur.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.724 (0.079) 0.739 0.899 (0.016) 0.905 0.974 (0.012) 0.975 0.001 (0.001) 0.004 0.01 (0.006) 0.009
NT 9-mers 0.61 (0.053) 0.574 0.94 (0.013) 0.956 0.988 (0.007) 0.992 0.002 (0.002) 0.004 0.004 (0.002) 0.004
NT 10-mers 0.573 (0.053) 0.452 0.958 (0.006) 0.966 0.992 (0.004) 1.0 0.002 (0.002) 0.000 0.005 (0.003) 0.0
NT 11-mers 0.548 (0.053) 0.522 0.961 (0.009) 0.964 0.993 (0.004) 0.994 0.002 (0.002) 0.004 0.004 (0.003) 0.002
AA 3-mers 0.71 (0.075) 0.7 0.897 (0.021) 0.892 0.977 (0.009) 0.983 0.002 (0.002) 0.000 0.007 (0.004) 0.008
AA 4-mers 0.56 (0.065) 0.583 0.96 (0.006) 0.954 0.992 (0.005) 0.992 0.002 (0.003) 0.002 0.005 (0.003) 0.006
AA 5-mers 0.546 (0.057) 0.553 0.965 (0.008) 0.975 0.993 (0.004) 0.992 0.003 (0.003) 0.000 0.004 (0.003) 0.008
Gene content 0.553 (0.051) 0.537 0.961 (0.005) 0.964 0.993 (0.005) 0.994 0.002 (0.002) 0.002 0.005 (0.003) 0.004
SNP 1.161 (0.058) 1.147 0.777 (0.014) 0.789 0.909 (0.014) 0.911 0.003 (0.003) 0.000 0.042 (0.011) 0.047
Gene + SNP 0.549 (0.051) 0.646 0.958 (0.007) 0.954 0.993 (0.003) 0.985 0.001 (0.001) 0.006 0.004 (0.003) 0.008
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Table A55. S. enterica–ceftriaxone.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.965 (0.141) 0.615 0.893 (0.014) 0.951 0.953 (0.011) 0.979 0.004 (0.003) 0.002 0.012 (0.007) 0.004
NT 9-mers 0.782 (0.107) 0.408 0.928 (0.012) 0.975 0.975 (0.007) 0.994 0.003 (0.002) 0.000 0.007 (0.003) 0.002
NT 10-mers 0.647 (0.122) 0.541 0.958 (0.011) 0.966 0.986 (0.006) 0.989 0.003 (0.002) 0.002 0.006 (0.004) 0.004
NT 11-mers 0.671 (0.132) 0.292 0.959 (0.006) 0.992 0.986 (0.005) 0.998 0.003 (0.003) 0.000 0.006 (0.003) 0.002
AA 3-mers 0.919 (0.077) 0.674 0.891 (0.016) 0.951 0.957 (0.007) 0.975 0.004 (0.002) 0.002 0.009 (0.003) 0.004
AA 4-mers 0.66 (0.12) 0.531 0.954 (0.006) 0.968 0.985 (0.005) 0.989 0.003 (0.002) 0.002 0.006 (0.004) 0.004
AA 5-mers 0.673 (0.123) 0.292 0.963 (0.009) 0.987 0.986 (0.005) 0.994 0.003 (0.003) 0.000 0.006 (0.003) 0.000
Gene content 0.644 (0.1) 0.402 0.961 (0.008) 0.979 0.987 (0.004) 0.994 0.002 (0.002) 0.002 0.006 (0.003) 0.000
SNP 1.588 (0.098) 1.580 0.78 (0.021) 0.808 0.875 (0.016) 0.89 0.006 (0.004) 0.006 0.046 (0.009) 0.051
Gene + SNP 0.648 (0.133) 0.700 0.955 (0.008) 0.96 0.985 (0.006) 0.979 0.003 (0.002) 0.000 0.006 (0.004) 0.011

Table A56. S. enterica–chloramphenicol.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.495 (0.035) 0.437 0.962 (0.012) 0.977 0.994 (0.002) 1.000 0.001 (0.001) 0.000 0.001 (0.001) 0.000
NT 9-mers 0.473 (0.03) 0.45 0.963 (0.022) 0.977 0.995 (0.002) 0.998 0.001 (0.001) 0.002 0.001 (0.001) 0.000
NT 10-mers 0.456 (0.025) 0.436 0.973 (0.005) 0.975 0.997 (0.001) 0.998 0.0 (0.001) 0.000 0.001 (0.001) 0.000
NT 11-mers 0.45 (0.019) 0.413 0.972 (0.002) 0.979 0.997 (0.002) 1.000 0.0 (0.001) 0.000 0.001 (0.001) 0.000
AA 3-mers 0.507 (0.045) 0.449 0.958 (0.01) 0.979 0.993 (0.003) 1.000 0.0 (0.001) 0.000 0.002 (0.002) 0.000
AA 4-mers 0.459 (0.029) 0.445 0.967 (0.016) 0.991 0.997 (0.002) 0.998 0.0 (0.001) 0.002 0.001 (0.002) 0.000
AA 5-mers 0.435 (0.023) 0.423 0.979 (0.005) 0.977 0.998 (0.002) 0.998 0.0 (0.001) 0.000 0.001 (0.001) 0.002
Gene content 0.443 (0.028) 0.427 0.977 (0.005) 0.985 0.998 (0.002) 0.996 0.0 (0.0) 0.002 0.001 (0.002) 0.002
SNP 0.521 (0.048) 0.486 0.956 (0.024) 0.97 0.99 (0.003) 0.994 0.002 (0.003) 0.000 0.002 (0.002) 0.002
Gene + SNP 0.446 (0.025) 0.449 0.978 (0.005) 0.975 0.997 (0.002) 0.998 0.0 (0.001) 0.000 0.001 (0.001) 0.002
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Table A57. S. enterica–ciprofloxacin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.64 (0.048) 0.54 0.902 (0.016) 0.932 0.987 (0.004) 0.991 0.0 (0.0) 0.0 0.0 (0.001) 0.0
NT 9-mers 0.628 (0.045) 0.58 0.906 (0.015) 0.915 0.987 (0.005) 0.991 0.0 (0.0) 0.0 0.001 (0.001) 0.0
NT 10-mers 0.604 (0.039) 0.51 0.907 (0.009) 0.92 0.989 (0.003) 0.992 0.0 (0.0) 0.0 0.001 (0.001) 0.0
NT 11-mers 0.561 (0.034) 0.458 0.913 (0.008) 0.953 0.991 (0.003) 0.994 0.0 (0.0) 0.0 0.0 (0.001) 0.0
AA 3-mers 0.65 (0.035) 0.585 0.903 (0.014) 0.901 0.987 (0.003) 0.991 0.0 (0.001) 0.0 0.0 (0.001) 0.0
AA 4-mers 0.617 (0.038) 0.489 0.906 (0.014) 0.922 0.987 (0.003) 0.996 0.0 (0.0) 0.0 0.0 (0.001) 0.0
AA 5-mers 0.541 (0.036) 0.437 0.921 (0.012) 0.947 0.992 (0.003) 0.998 0.0 (0.0) 0.0 0.0 (0.0) 0.0
Gene content 0.618 (0.061) 0.517 0.904 (0.01) 0.935 0.987 (0.004) 0.994 0.0 (0.0) 0.0 0.0 (0.0) 0.0
SNP 0.611 (0.036) 0.542 0.909 (0.017) 0.937 0.989 (0.004) 0.992 0.0 (0.0) 0.0 0.001 (0.001) 0.0
Gene + SNP 0.572 (0.057) 0.495 0.91 (0.015) 0.956 0.99 (0.004) 0.992 0.0 (0.0) 0.0 0.0 (0.0) 0.0

Table A58. S. enterica–gentamicin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 1.123 (0.097) 0.978 0.806 (0.033) 0.848 0.932 (0.016) 0.956 0.001 (0.001) 0.002 0.024 (0.008) 0.006
NT 9-mers 0.989 (0.083) 0.77 0.847 (0.026) 0.888 0.958 (0.009) 0.985 0.002 (0.002) 0.002 0.014 (0.007) 0.002
NT 10-mers 0.901 (0.077) 0.846 0.866 (0.026) 0.888 0.97 (0.01) 0.968 0.002 (0.002) 0.0 0.011 (0.004) 0.006
NT 11-mers 0.787 (0.063) 0.972 0.89 (0.014) 0.911 0.981 (0.006) 0.975 0.001 (0.001) 0.004 0.005 (0.003) 0.011
AA 3-mers 1.172 (0.108) 0.94 0.791 (0.033) 0.843 0.928 (0.018) 0.962 0.002 (0.002) 0.008 0.026 (0.009) 0.004
AA 4-mers 0.866 (0.085) 0.773 0.88 (0.017) 0.898 0.975 (0.008) 0.981 0.002 (0.001) 0.002 0.009 (0.003) 0.000
AA 5-mers 0.797 (0.051) 0.745 0.895 (0.013) 0.905 0.983 (0.004) 0.991 0.002 (0.002) 0.002 0.005 (0.003) 0.004
Gene content 0.81 (0.06) 0.766 0.892 (0.015) 0.926 0.981 (0.005) 0.989 0.001 (0.001) 0.004 0.006 (0.003) 0.000
SNP 1.093 (0.088) 1.057 0.843 (0.021) 0.865 0.952 (0.009) 0.964 0.005 (0.005) 0.006 0.018 (0.005) 0.013
Gene + SNP 0.795 (0.055) 0.914 0.889 (0.017) 0.89 0.982 (0.005) 0.972 0.001 (0.001) 0.004 0.005 (0.003) 0.011
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Table A59. S. enterica–kanamycin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.788 (0.155) 0.714 0.901 (0.021) 0.912 0.957 (0.024) 0.956 0.005 (0.006) 0.000 0.023 (0.017) 0.022
NT 9-mers 0.525 (0.167) 0.484 0.951 (0.02) 0.967 0.981 (0.016) 0.978 0.0 (0.0) 0.000 0.011 (0.014) 0.011
NT 10-mers 0.423 (0.148) 0.345 0.965 (0.018) 0.967 0.989 (0.008) 1.000 0.0 (0.0) 0.000 0.006 (0.008) 0.000
NT 11-mers 0.401 (0.188) 0.155 0.981 (0.013) 1.000 0.988 (0.011) 1.000 0.001 (0.004) 0.000 0.01 (0.012) 0.000
AA 3-mers 0.641 (0.157) 0.554 0.932 (0.024) 0.945 0.97 (0.021) 0.978 0.002 (0.005) 0.000 0.014 (0.014) 0.022
AA 4-mers 0.458 (0.102) 0.393 0.972 (0.013) 0.989 0.985 (0.007) 0.989 0.001 (0.004) 0.000 0.008 (0.006) 0.011
AA 5-mers 0.321 (0.179) 0.15 0.986 (0.013) 0.989 0.993 (0.01) 1.000 0.0 (0.0) 0.000 0.006 (0.008) 0.000
Gene content 0.402 (0.14) 0.126 0.98 (0.019) 1.000 0.99 (0.009) 1.000 0.0 (0.0) 0.000 0.007 (0.008) 0.000
SNP 0.788 (0.175) 0.752 0.914 (0.022) 0.912 0.953 (0.021) 0.945 0.006 (0.008) 0.011 0.028 (0.026) 0.011
Gene + SNP 0.503 (0.086) 0.256 0.943 (0.025) 0.978 0.987 (0.01) 1.000 0.0 (0.0) 0.000 0.007 (0.01) 0.000

Table A60. S. enterica–nalidixic acid.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.556 (0.026) 0.394 0.947 (0.013) 0.979 0.99 (0.003) 1.000 0.0 (0.0) 0.0 0.007 (0.003) 0.000
NT 9-mers 0.546 (0.023) 0.498 0.955 (0.006) 0.972 0.991 (0.002) 0.994 0.0 (0.001) 0.0 0.007 (0.002) 0.006
NT 10-mers 0.511 (0.023) 0.434 0.953 (0.009) 0.973 0.993 (0.002) 0.998 0.0 (0.0) 0.0 0.005 (0.002) 0.002
NT 11-mers 0.475 (0.036) 0.452 0.96 (0.011) 0.96 0.996 (0.003) 1.000 0.0 (0.001) 0.0 0.002 (0.001) 0.000
AA 3-mers 0.559 (0.035) 0.512 0.945 (0.019) 0.972 0.99 (0.002) 0.991 0.0 (0.0) 0.0 0.007 (0.002) 0.008
AA 4-mers 0.523 (0.037) 0.454 0.957 (0.006) 0.97 0.994 (0.004) 0.992 0.0 (0.0) 0.0 0.005 (0.003) 0.004
AA 5-mers 0.475 (0.031) 0.431 0.961 (0.008) 0.973 0.995 (0.003) 1.000 0.0 (0.0) 0.0 0.003 (0.002) 0.000
Gene content 0.539 (0.03) 0.429 0.953 (0.005) 0.973 0.992 (0.004) 0.994 0.0 (0.0) 0.0 0.007 (0.002) 0.004
SNP 0.535 (0.044) 0.438 0.954 (0.007) 0.973 0.99 (0.003) 0.998 0.0 (0.0) 0.0 0.006 (0.002) 0.000
Gene + SNP 0.513 (0.036) 0.501 0.958 (0.005) 0.964 0.995 (0.002) 0.994 0.0 (0.0) 0.0 0.005 (0.003) 0.002
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Table A61. S. enterica–streptomycin.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.87 (0.064) 0.835 0.833 (0.028) 0.842 0.956 (0.01) 0.971 0.02 (0.011) 0.022 0.021 (0.012) 0.025
NT 9-mers 0.77 (0.074) 0.731 0.867 (0.03) 0.867 0.972 (0.012) 0.978 0.012 (0.007) 0.018 0.021 (0.013) 0.022
NT 10-mers 0.742 (0.052) 0.723 0.884 (0.014) 0.896 0.975 (0.009) 0.968 0.01 (0.006) 0.014 0.023 (0.01) 0.025
NT 11-mers 0.731 (0.073) 0.692 0.89 (0.021) 0.9 0.976 (0.012) 0.975 0.008 (0.005) 0.011 0.021 (0.012) 0.039
AA 3-mers 0.891 (0.077) 0.824 0.811 (0.032) 0.832 0.953 (0.017) 0.961 0.022 (0.016) 0.018 0.023 (0.014) 0.011
AA 4-mers 0.741 (0.097) 0.712 0.89 (0.034) 0.889 0.974 (0.014) 0.975 0.009 (0.008) 0.004 0.026 (0.016) 0.029
AA 5-mers 0.721 (0.072) 0.724 0.891 (0.014) 0.896 0.974 (0.011) 0.975 0.008 (0.005) 0.007 0.026 (0.01) 0.025
Gene content 0.724 (0.078) 0.7 0.894 (0.024) 0.918 0.978 (0.01) 0.982 0.008 (0.005) 0.007 0.025 (0.015) 0.029
SNP 0.754 (0.06) 0.749 0.873 (0.019) 0.878 0.973 (0.01) 0.978 0.013 (0.007) 0.007 0.014 (0.012) 0.025
Gene + SNP 0.723 (0.047) 0.778 0.886 (0.013) 0.875 0.977 (0.008) 0.971 0.007 (0.005) 0.007 0.019 (0.013) 0.036

Table A62. S. enterica–sulfisoxazole.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.896 (0.053) 0.812 0.813 (0.014) 0.85 0.954 (0.014) 0.963 0.001 (0.002) 0.000 0.051 (0.015) 0.020
NT 9-mers 0.798 (0.063) 0.713 0.85 (0.025) 0.856 0.971 (0.01) 0.982 0.001 (0.001) 0.002 0.032 (0.014) 0.014
NT 10-mers 0.741 (0.051) 0.69 0.879 (0.014) 0.884 0.978 (0.009) 0.982 0.0 (0.001) 0.000 0.018 (0.007) 0.012
NT 11-mers 0.721 (0.047) 0.702 0.879 (0.013) 0.904 0.98 (0.005) 0.978 0.001 (0.001) 0.000 0.014 (0.005) 0.012
AA 3-mers 0.951 (0.081) 0.869 0.792 (0.027) 0.791 0.945 (0.014) 0.972 0.001 (0.002) 0.002 0.063 (0.02) 0.028
AA 4-mers 0.738 (0.031) 0.826 0.87 (0.015) 0.856 0.979 (0.007) 0.97 0.0 (0.001) 0.002 0.019 (0.004) 0.010
AA 5-mers 0.713 (0.035) 0.736 0.888 (0.009) 0.88 0.982 (0.004) 0.976 0.001 (0.001) 0.000 0.011 (0.006) 0.014
Gene content 0.715 (0.044) 0.712 0.885 (0.009) 0.878 0.983 (0.006) 0.986 0.0 (0.0) 0.000 0.014 (0.003) 0.010
SNP 0.805 (0.055) 0.739 0.864 (0.013) 0.874 0.971 (0.007) 0.976 0.001 (0.001) 0.000 0.021 (0.008) 0.016
Gene + SNP 0.721 (0.041) 0.71 0.879 (0.013) 0.886 0.982 (0.005) 0.98 0.0 (0.001) 0.004 0.015 (0.006) 0.014
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Table A63. S. enterica–tetracycline.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.821 (0.135) 0.699 0.87 (0.051) 0.886 0.948 (0.027) 0.968 0.023 (0.015) 0.019 0.001 (0.001) 0.000
NT 9-mers 0.647 (0.1) 0.665 0.931 (0.034) 0.947 0.972 (0.012) 0.973 0.012 (0.007) 0.017 0.001 (0.002) 0.000
NT 10-mers 0.592 (0.087) 0.556 0.944 (0.038) 0.96 0.979 (0.006) 0.983 0.007 (0.004) 0.009 0.001 (0.001) 0.000
NT 11-mers 0.563 (0.061) 0.48 0.959 (0.006) 0.968 0.982 (0.006) 0.989 0.007 (0.003) 0.002 0.001 (0.002) 0.000
AA 3-mers 0.802 (0.111) 0.81 0.865 (0.052) 0.869 0.957 (0.016) 0.954 0.02 (0.009) 0.03 0.003 (0.003) 0.000
AA 4-mers 0.562 (0.07) 0.548 0.962 (0.014) 0.958 0.982 (0.005) 0.985 0.008 (0.002) 0.006 0.001 (0.001) 0.000
AA 5-mers 0.545 (0.076) 0.402 0.969 (0.008) 0.985 0.982 (0.006) 0.992 0.007 (0.004) 0.004 0.0 (0.001) 0.000
Gene content 0.509 (0.081) 0.604 0.973 (0.01) 0.968 0.985 (0.006) 0.979 0.005 (0.002) 0.015 0.0 (0.0) 0.000
SNP 0.869 (0.13) 0.768 0.882 (0.051) 0.899 0.941 (0.027) 0.956 0.028 (0.019) 0.015 0.001 (0.001) 0.002
Gene + SNP 0.539 (0.066) 0.597 0.963 (0.024) 0.97 0.984 (0.006) 0.979 0.006 (0.003) 0.009 0.001 (0.001) 0.000

Table A64. S. enterica–trimethoprimSulfamethoxazole.

RMSE-CV RMSE-H DD1-CV DD1-H DD2-CV DD2-H ME-CV ME-H VME-CV VME-H

NT 8-mers 0.578 (0.05) 0.284 0.957 (0.007) 0.983 0.988 (0.002) 0.996 0.0 (0.001) 0.000 0.008 (0.002) 0.002
NT 9-mers 0.557 (0.083) 0.469 0.957 (0.011) 0.973 0.989 (0.004) 0.994 0.0 (0.0) 0.000 0.008 (0.003) 0.004
NT 10-mers 0.506 (0.067) 0.323 0.957 (0.01) 0.972 0.989 (0.002) 0.998 0.0 (0.0) 0.000 0.007 (0.002) 0.000
NT 11-mers 0.394 (0.063) 0.327 0.968 (0.006) 0.981 0.994 (0.003) 0.998 0.001 (0.001) 0.002 0.003 (0.003) 0.000
AA 3-mers 0.573 (0.072) 0.232 0.96 (0.008) 0.987 0.988 (0.003) 1.000 0.0 (0.001) 0.000 0.009 (0.002) 0.000
AA 4-mers 0.443 (0.077) 0.247 0.964 (0.008) 0.975 0.991 (0.004) 0.998 0.0 (0.001) 0.000 0.005 (0.003) 0.002
AA 5-mers 0.349 (0.064) 0.224 0.98 (0.005) 0.991 0.996 (0.002) 1.000 0.0 (0.001) 0.000 0.001 (0.001) 0.000
Gene content 0.346 (0.055) 0.324 0.971 (0.01) 0.981 0.996 (0.002) 0.998 0.0 (0.001) 0.000 0.002 (0.002) 0.002
SNP 0.532 (0.09) 0.364 0.961 (0.009) 0.972 0.989 (0.003) 0.994 0.0 (0.0) 0.000 0.007 (0.003) 0.006
Gene + SNP 0.436 (0.091) 0.319 0.966 (0.009) 0.972 0.992 (0.004) 0.994 0.0 (0.0) 0.000 0.005 (0.003) 0.006
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Appendix F. Canonical and Non-Canonical Nucleotide k-mers

Using lexicographical order, nucleotide k-mers can be divided into two groups: canonical or
non-canonical. A k-mer is called canonical if its lexicographical order is smaller than or equal to
the order of its Watson–Crick reverse complement [57]. For example, in the case of a 3-mer like
“TTT,” the lexicographical order of the Watson-Crick reverse complement, “AAA” is smaller, so “AAA”
is canonical and “TTT” is non-canonical.

As mentioned in Section 2.2.1, for nucleotide k-mers two scenarios are possible: converting all
of the non-canonical k-mers to their canonical counter parts and counting them after conversion,
or counting every k-mer, canonical or otherwise [57]. We tested both scenarios and compared the
results. for k-mers of length 8, 9, 19 and 11, results of running the model with both scenarios are
presented in Appendix F, Figures A8–A11.
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Figure A8. Distribution of accuracies in different nucleotide k-mers for C. jejuni. Plots are similar
to Figure 5.
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Figure A9. Distribution of accuracies in different nucleotide k-mers for N. gonorrhoeae. Plots are similar
to Figure 5.
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to Figure 5.
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Figure A11. Distribution of accuracies in different nucleotide k-mers for S. enterica. Plots are similar
to Figure 5.

When non-canonical k-mers are converted to canonical form, the accuracy of MIC prediction
becomes significantly better compared to a scenario in which all k-mers are counted. To investigate the
reasons for this observation, we hypothesized that when all (canonical and non-canonical) k-mers are
counted separately, counts of non-canonical k-mers are correlated with counts of canonical counterparts,
e.g., frequency of an 8-mer like “TTTTTTTT” is correlated with frequency of “AAAAAAAA.”
This hypothesis was based on the generalization of the second Chargaff rule, which states that “k-mer
frequency counted on a single chromosomal strand equals the frequency of the reverse-complement
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k-mer,” which holds for many species in both prokaryotes and eukaryotes [122]. Having correlated
features increases the feature to strain ratio, without actually adding information and worsens learning
performance [123], particularly in cases when number of strains is low compared to number of features
like the data that we have.

To test this hypothesis, we tried calculating the correlations between the frequencies of canonical
and non-canonical features; both frequencies were counted separately (no conversion to canonical
form was applied). For each k-mer length, in each genome, we calculated the Pearson correlation
coefficient between 1000 randomly selected non-canonical features and their canonical counterparts.
The distribution of correlation coefficient across the genomes is depicted in Figure A12. It can be
seen that there is a strong correlation between the features. This correlation is the reason for poor
performance of k-mer counting methods when both canonical and non-canonical k-mers are counted
and no conversion is applied.
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Figure A12. Distribution of correlation coefficient between the frequencies of canonical and
non-canonical features, when both frequencies are counted separately across the genomes for different
microbes and different k-mer lengths. In each box plot, the whiskers represents the maximum and
minimum. The boxes represent the first and the third quartiles. The orange line represents the median
and the green line represents the mean.
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Appendix G. Measuring Feature Stability in Different Methods

The stability of a feature selection algorithm refers to the robustness of its feature preferences,
with respect to changes in the data. In an unstable algorithm, a small change in data leads to large
changes in the chosen features [124]. In N-cross-validation technique, feature stability can be measured
by comparing the feature preference in different folds: the feature selection algorithm is stable if the
same features are selected as important features in different folds [125]. In order to measure feature
stability of cross-validation, we implemented an algorithm proposed by Kalousis et al. in [125]. Briefly,
this algorithm measures similarity of two sets of features by calculating the Spearman’s correlation
coefficients [126] between the ranks of of the features. Since in N-fold cross-validation, there are N
sets of feature ranks, the algorithm proposes calculating the correlation for all N(N − 1)/2 pairwise
combinations of folds and averaging over all N(N − 1)/2 values to get the final value [125]. To get the
ranks of the features we sorted them based on their absolute SHAP values (see Section 2.5.3).

For each feature extraction method and each species–antibiotic combination we measured
the feature stability. Then, to compare feature stability of models trained with different feature
extraction methods, we averaged the score of each feature extraction method over all species–antibiotic
combinations. Average feature stability scores are presented in Table A65.

Table A65. Average feature stability scores of different methods methods across all
species–antibiotic combinations.

Method Score

NT 8-mers 0.98275
NT 9-mers 0.99636
NT 10-mers 0.99919
NT 11-mers 0.99978
AA 3-mers 0.90825
AA 4-mers 0.99675
AA 5-mers 0.99973

Gene content 0.99536
SNP 0.99952

Gene content + SNP 0.99973

Based on results of Table A65, when features are selected based on the absolute SHAP value,
they become stable, using all features extraction methods, except for short k-mers, which are not able to
capture information. For k-mer counting methods, feature stability increases with k. This was expected
because longer k’s are more likely to capture the patterns of genome and lead to better accuracy.
For amino acid 5-mers, nucleotide 11-mers, SNP and SNP + gene content pipelines, the average
Pearson correlation coefficient between ranks of features of different folds was 0.999. The gene content
method had a slightly lower feature stability score.

Appendix H. Performances of the Selected-Feature Model Pipelines

To quantify performances of the selected-feature pipelines, we asked two question: First, in how
many species–antibiotic combinations did the selected-feature pipeline perform better than the pipeline
that used all features in terms of average cross-validation accuracy? Second, when it did, how many
features did it need to reach an accuracy higher than the pipeline that used all features? For example,
in case of S. enterica and ampicillin, the gene content pipeline reached a better accuracy than all features
pipeline using 5 features (see figure in Figure 9e). Results of this analysis are presented in Table A66.
In most cases, the selected-feature pipelines performed better than pipelines that used all features.
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Table A66. Evaluation of the performance of the selected-feature pipeline, compared to the
all-features pipeline.

Method Average (STD Accuracy of
All Feature Pipeline)

Ratio of Datasets Where
Selected-Feature Pipeline
Reaches a Better Accuracy

Average (STD) of Required
Features to Reach a
Better Accuracy

NT 8-mers 0.8316 (0.1112) 0.9811 11.3774 (9.2456)
NT 9-mers 0.8545 (0.0985) 0.9245 10.6604 (10.7842)
NT 10-mers 0.8723 (0.0993) 0.8679 14.283 (12.7817)
NT 11-mers 0.8784 (0.0943) 0.9245 13.4528 (12.509)
AA 3-mers 0.8233 (0.116) 0.9057 13.5094 (12.438)
AA 4-mers 0.8716 (0.0979) 0.9057 11.6038 (11.0288)
AA 5-mers 0.8849 (0.0963) 0.717 17.8491 (15.4607)
Gene content 0.8561 (0.1258) 0.6604 21.0566 (16.1986)
SNP 0.8239 (0.1101) 0.6792 19.7547 (16.4511)
Gene content + SNP 0.8696 (0.1005) 0.717 19.3962 (15.838)

Appendix I. Resources Used for Example Datasets

In this section we mention the requested resources for one example antibiotic for each species,
to give the reader a sense of computational complexity of the problem. The wall-time was for training
and testing the model with all features, and training and testing the model with the selected features,
which was done for different numbers of of features, as described in the methods section.

Table A67. Resources for C. jejuni–erythromycin.

Method Number of Features Number of Cores Maximum Memory Usage Wall-Clock

NT 8-mers 32,808 2 3 GB 00:25:19
NT 9-mers 124,591 2 20 GB 00:41:28

NT 10-mers 404,690 2 28 GB 01:25:03
NT 11-mers 1,029,088 2 41 GB 03:13:57
AA 3-mer 8035 2 2 GB 00:22:47
AA 4-mer 140,093 2 25 GB 00:53:54
AA 5-mer 935,293 2 38 GB 03:28:11

Gene content 14,981 2 2 GB 00:24:24
SNP 331,936 2 30 GB 01:08:55

Gene content + SNP 346,917 2 31 GB 00:56:31

Table A68. Resources for N. gonhoriae–penicillin.

Method Number of Features Number of Cores Maximum Memory Usage Wall-Clock

NT 8-mers 32,896 2 3 GB 00:27:54
NT 9-mers 131,012 2 23 GB 00:45:16

NT 10-mers 507,346 10 30 GB 00:58:07
NT 11-mers 1,588,941 10 90 GB 02:22:14
AA 3-mer 8818 2 2 GB 00:23:38
AA 4-mer 149,817 2 25 GB 00:37:49
AA 5-mer 1,057,709 5 54 GB 01:37:41

Gene content 36,458 2 3 GB 00:30:07
SNP 300,296 2 32 GB 01:09:56

Gene content + SNP 336,754 2 33 GB 01:18:53

Table A69. Resources for K. pneumoniae–amikacin.

Method Number of Features Number of Cores Maximum Memory Usage Wall-Clock

NT 8-mers 32,896 2 7 GB 01:02:34
NT 9-mers 131,072 2 23 GB 01:57:17

NT 10-mers 524,798 10 91 GB 03:08:46
NT 11-mers 2,095,237 22 309 GB 07:29:17
AA 3-mer 8091 2 2 GB 00:46:07
AA 4-mer 159,859 2 27 GB 01:39:31
AA 5-mer 2,463,537 10 283 GB 06:10:21

Gene content 129,175 2 13 GB 00:49:22
SNP 2,508,568 10 238 GB 03:58:14

Gene content + SNP 2,637,743 10 251 GB 04:29:25
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Table A70. Resources for S. enterica–ampicillin.

Method Number of Features Number of Cores Maximum Memory Usage Wall-Clock

NT 8-mers 32,896 2 19 GB 02:39:14
NT 9-mers 131,072 6 73 GB 04:52:28

NT 10-mers 524,799 21 282 GB 06:47:57
NT 11-mers 2,092,713 62 1002 GB 22:52:44
AA 3-mer 9090 2 5 GB 01:40:46
AA 4-mer 164,507 4 86 GB 03:30:33
AA 5-mer 2,389,091 62 876 GB 20:32:39

Gene content 128,290 4 39 GB 01:56:19
SNP 2,472,276 10 739 GB 00:51:39

Gene content + SNP 2,600,566 10 815 GB 01:34:59

Appendix J. Chemical Structure of Antibiotics

In this section, the chemical structures of the antibiotics and their classifications are provided.
The chemical structure images were obtained from PATRIC database [127].

Classification Antibiotic Name Structure

Aminoglycosides streptomycin

Aminoglycosides amikacin
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Classification Antibiotic Name Structure

Aminoglycosides kanamycin

Aminoglycosides tobramycin

Aminoglycosides spectinomycin

Aminoglycosides gentamicin
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Classification Antibiotic Name Structure

Tetracyclines tetracycline

Amphenicols chloramphenicol

Amphenicols florfenicol

Macrolides azithromycin



Biology 2020, 9, 365 80 of 91

Classification Antibiotic Name Structure

Macrolides erythromycin

Macrolides telithromycin

Lincosamides clindamycin

Antifolates trimethoprim
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Classification Antibiotic Name Structure

Antifolates sulfisoxazole

Quinolones nalidixic acid

Quinolones ciprofloxacin

Quinolones levofloxacin
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Classification Antibiotic Name Structure

Nitrofurans nitrofurantoin

Penicillins penicillin

Penicillins amoxicillin

Penicillins ampicillin
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Classification Antibiotic Name Structure

Penicillins piperacillin

Carbapenems imipenem

Carbapenems meropenem

Cephalosporins/Cephamycins cefazolin
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Classification Antibiotic Name Structure

Cephalosporins/Cephamycins ceftriaxone

Cephalosporins/Cephamycins cefepime

Cephalosporins/Cephamycins cefoxitin

Cephalosporins/Cephamycins cefixime



Biology 2020, 9, 365 85 of 91

Classification Antibiotic Name Structure

Cephalosporins/Cephamycins ceftazidime/clavulanic
acid

Cephalosporins/Cephamycins cefpodoxime proxetil

Cephalosporins/Cephamycins ceftiofur

Monobactams aztreonam
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