Apoptosis of Eosinophil Granulocytes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Protective Role of Eosinophils
3. Eosinophils as Antigen-Presenting Cells
4. Significance of Apoptosis of Eosinophil Granulocytes in Allergies and Asthma
5. Apoptotic Signals in Eosinophils
6. Possibilities for Influencing Inflammation by Pharmacological Means
7. Process of Eosinophil Apoptosis
8. Research Perspectives in the Area of Eosinophil Apoptosis
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anderson, D.C.; Schmalsteig, F.C.; Finegold, M.J.; Hughes, B.J.; Rothlein, R.; Miller, L.J.; Kohl, S.; Tosi, M.F.; Jacobs, R.L.; Waldrop, T.C.; et al. The severe and moderate phenotypes of heritable Mac-1, LFA/1 deficiency: Their quantitative definition and regulation to leukocyte dysfunction and clinical features. J. Infect. Dis. 1985, 152, 668–689. [Google Scholar] [CrossRef]
- Sanfilippo, A.M.; Furuya, Y.; Roberts, S.; Salmon, S.L.; Metzger, D.W. Allergic lung inflammation reduces tissue invasion and enhances survival from pulmonary pneumococcal infection in mice, which correlates with increased expression of transforming growth factor β1 and SiglecF(low) alveolar macrophages. Infect. Immun. 2015, 83, 2976–2983. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, C.J. Interleukin-5, eosinophils and diseases. Blood 1992, 79, 3101–3109. [Google Scholar] [CrossRef]
- Specht, S.; Saeftel, M.; Arndt, M.; Endl, E.; Dubben, B.; Lee, N.A.; Lee, J.J.; Hoerauf, A. Lack of eosinophil peroxidase or major basic protein impairs defense against murine filarial infection. Infect. Immun. 2006, 74, 5236–5243. [Google Scholar] [CrossRef] [Green Version]
- Minupuri, A.; Ramireddy, K.; Patel, R.; Hossain, S.; Noain, J.S. Hyper-eosinophilic syndrome masquerading as myocardial infarction, stroke and cancer. Cereus 2020, 12, e9630. [Google Scholar] [CrossRef]
- George, L.; Brightling, C.E. Eosinophilic airway inflammation: Role in asthma and chronic obstructive pulmonary disease. Ther. Adv. Chronic Dis. 2016, 7, 34–51. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Moguel, I.; Campos, R.D.; Charterina, S.A.; Rodriguez, C.F.; Crespo, J.F. COVID-19, severe asthma, and biologics. Ann. Allergy Asthma Immunol. 2020, 124, 2–12. [Google Scholar] [CrossRef]
- Min, D.Y.; Lee, Y.H.; Ryu, J.S.; Ahn, M.H.; Chung, Y.B.; Sim, S.; Shin, M.H. Caspase-3-mediated apoptosis of human eosinophils by the tissue-invading helminth Paragonimus westermani. Int. Arch. Allergy Immunol. 2004, 133, 357–364. [Google Scholar] [CrossRef]
- Wen, T.; Rothenberg, M.E. The regulatory function of eosinophils. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Stern, M.; Meagher, L.; Savill, J.; Haslett, C. Apoptosis in human eosinophils. Programmed cell death in the eosinophil leads to phagocytosis by macrophages and is modulated by IL-5. J. Immunol. 1992, 148, 3543–3549. [Google Scholar]
- Walsh, G.M. Eosinophil apoptosis and clearance in asthma. J. Cell Death 2013, 6, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadin, M.; Butmarc, J.; Elovic, K.; Wong, D. Eosinophils are the major source of transforming growth factor- ß1 in nodular sclerosing Hodgkin´s disease. Am. J. Pathol. 1993, 142, 11–16. [Google Scholar] [PubMed]
- Munitz, A.; Hogan, S.P. Alarming eosinophils to combat tumors. Nat. Immunol. 2019, 20, 250–252. [Google Scholar] [CrossRef]
- Shi, H.Z. Eosinophils function as antigen-presenting cells. J. Leukoc. Biol. 2004, 76, 520–527. [Google Scholar] [CrossRef]
- Padigel, U.M.; Hess, J.A.; Lee, J.J.; Lok, J.B.; Nolan, T.J.; Schad, G.A.; Abraham, D. Eosinophils act as antigen-presenting cells to induce immunity to Strongyloides stercoralis in mice. J. Infect. Dis. 2007, 196, 1844–1851. [Google Scholar] [CrossRef] [Green Version]
- Lin, A.; Lore, K. Granulocytes: New members of the antigen-presenting cell family. Front. Immunol. 2017, 8, 1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedgwick, J.B.; Calhoun, W.J.; Vrtis, R.F.; Bates, M.E.; McAllister, P.K.; Busse, W.W. Comparison of airway and blood eosinophil function after in vivo antigen challenge. J. Immunol. 1992, 149, 3710–3718. [Google Scholar] [PubMed]
- Weller, P.F.; Rand, T.H.; Barrett, T.; Elovic, A.; Wong, D.T.; Finberg, R.W. Accessory cell of human eosinophils: HLA-DR dependent, MHC-restricted antigen presentation and IL-1 alpha expression. J. Immunol. 1993, 150, 2554–2562. [Google Scholar] [PubMed]
- Jacobsen, E.A.; Helmers, R.A.; Lee, J.J.; Lee, N.A. The expanding role(s) of eosinophils in health and disease. Blood 2012, 120, 3882–3890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: The balancing act of BLC-2 family proteins. Nat. Rev. Mol. Cell Biol. 2019, 20, 175–193. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Silva-Sanchez, A.; Carragher, D.M.; de la Luz Garcia-Hernandez, M.; Rangel-Moreno, J.; Randall, T.D. Inducible bronchus-associated lymphoid tissue (iBALT) attenuates pulmonary pathology in a mouse model of allergic airway disease. Front. Immunol. 2020, 11, 570661. [Google Scholar] [CrossRef] [PubMed]
- Duong-Quy, S.; Le-Thi-Minh, H.; Nguyen-Thi-Bich, H.; Pham-Thu, H.; Thom, V.T.; Pham-Thi-Hong, N.; Duong-Thi-Ly, H.; Nguyen-Huy, B.; Ngo-Minh, X.; Nguyen-Thi-Dieu, T.; et al. Correlations between exhaled nitric oxide, rs28364072 polymorphism of FCER2 gene, asthma control, and inhaled corticosteroid responsiveness in children with asthma. J. Breath Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, A.J. Molecular basis for selective eosinophil trafficking in asthma: A multistep paradigm. J. Allergy Clin. Immunol. 1999, 104, 917–926. [Google Scholar] [CrossRef]
- Pavord, I.D.; Lettis, S.; Locantore, N. Blood eosinophils and inhaled corticosteroid/long-acting β-2 agonist efficacy in COPD. Thorax 2016, 71, 118–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, V.; Campeau, N.G.; Kita, H.; Hagan, J.B. Blood and sputum eosinophil levels in asthma and their relationship to sinus computed tomographic findings. Mayo Clin. Proc. 2008, 83, 671–678. [Google Scholar] [CrossRef]
- Santing, R.E.; Hoekstra, Y.; Pasman, Y.; Zaagsma, J.; Meurs, H. The importance of eosinophil activation for the development of allergen-induced bronchial hyperreactivity in conscious, unrestrained guinea-pigs. Clin. Exp. Allergy 1994, 24, 1157–1163. [Google Scholar] [CrossRef]
- Walsh, G.M.; Dewson, G.; Wardlaw, A.J.; Levi-Schaffer, F.; Moqbel, R. A comparative study of the different methods for assessment of apoptosis and necrosis in human eosinophils. J. Immunol. Methods 1998, 217, 153–163. [Google Scholar] [CrossRef]
- Sexton, D.W.; Blaylock, M.G.; Walsh, G.M. Human alveolar epithelial cells engulf apoptotic eosinophils by means of integrin- and phosphatidylserine receptor-dependent mechanisms: A process upregulated by dexamethasone. J. Allergy Clin. Immunol. 2001, 108, 962–969. [Google Scholar] [CrossRef]
- Sexton, D.W.; Al-Rabia, M.; Blaylock, M.G.; Walsh, G.M. Phagocytosis of apoptotic eosinophils but not neutrophils by bronchial epithelial cells. Clin. Exp. Allergy 2004, 34, 1514–1524. [Google Scholar] [CrossRef]
- Walsh, G.M. Mechanisms of human eosinophil survival and apoptosis. Clin. Exp. Allergy 1997, 27, 482–487. [Google Scholar] [CrossRef]
- Walsh, G.M. Eosinophils, their accumulation activation and fate. Br. J. Haematol. 1997, 97, 701–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vignola, A.M.; Chanez, P.; Chiappara, G. Evaluation of apoptosis of eosinophils, macrophages and T lymphocytes in mucosal biopsy specimens of patients with asthma and chronic bronchitis. J. Allergy Clin. Immunol. 1999, 103, 563–573. [Google Scholar] [CrossRef]
- Leifferman, K.M. A current perspective on the role of eosinophils in dermatologic diseases. J. Am. Acad. Dermatol. 1991, 24, 1101–1112. [Google Scholar] [CrossRef]
- Davis, M.D.P.; Plager, D.A.; George, T.J.; Weiss, E.A.; Gleich, G.J.; Leiferman, K.M. Interactions of eosinophil granule proteins with skin: Limits of detection, persistence, and vasopermeabilization. J. Allergy Clin. Immunol. 2003, 112, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.M.; Bochner, B.S. Eosinophil survival and apoptosis in health and disease. Allergy Asthma Immunol. Res. 2010, 2, 87–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lampinen, M.; Carlson, M.; Hakansson, L.D.; Venge, P. Cytokine-regulated accumulation of eosinophils in inflammatory disease. Allergy 2004, 59, 793–805. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.; Willebrand, R.; Huber, S.; Rupec, R.A.; Wu, D.; Locksley, R.; Voehringer, D. Eosinophil-specific deletion of IκBα in mice reveals a critical role of NF-κB–induced Bcl-xL for inhibition of apoptosis. Blood 2015, 125, 3896–3904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kano, G.; Almanan, M.; Bochner, B.S.; Zimmermann, N. Mechanism of Siglec-8-mediated cell death in IL-5-activated Eosinophils: Role for reactive oxygen species-enhanced MEK/ERK activation. J. Allergy Clin. Immunol. 2013, 132, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Tsuyuki, S.; Bertrand, C.; Erard, F.; Trifilieff, A.; Tsuyuki, J.; Wesp, M.; Anderson, G.P.; Coyle, A.J. Activation of the Fas receptor on lung eosinophils leads to apoptosis and the resolution of eosinophilic inflammation of the airways. J. Clin. Investig. 1995, 96, 2924–2931. [Google Scholar] [CrossRef]
- Uller, E.; Rydell-Törmänen, K.; Persson, C.G.A.; Erjefalt, J.S. Anti-Fas mAb-induced apoptosis and cytolysis of airway tissue eosinophils aggravates rather than resolves established inflammation. Respir. Res. 2005, 6, 90. [Google Scholar] [CrossRef] [Green Version]
- Kankaanranta, H.; Lindsay, M.A.; Giembycz, M.A.; Zhang, X.; Moilanen, E.; Barnes, P.J. Delayed eosinophil apoptosis in asthma. J. Allergy Clin. Immunol. 2000, 106, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.Y. Molecular basis of allergic diseases. Mol. Genet. Metab. 1998, 63, 157–167. [Google Scholar] [CrossRef]
- O´Sullivan, J.A.; Bochner, B.S. Eosinophils and eosinophil-associated diseases: An update. J. Allergy Clin. Immunol. 2018, 141, 505–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, C.; Bode, E.; Boer, L.; Hansel, T.T.; Blaser, K.; Virchow, J.C., Jr. Allergic and nonallergic asthmatics have distinct patterns of T-cell activation and cytokine production in peripheral blood and bronchoalveolar lavage. Am. Rev. Respir. Dis. 1992, 146, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Cohen<sc>, J.J. Apoptosis: Mechanisms of life and death in the immune system. J. Allergy Clin. Immunol. 1999, 103, 548–554. [Google Scholar]
- Cheng, J.F.; Ott, N.L.; Peterson, E.A.; George, T.J.; Hukee, M.J.; Gleich, G.J.; Leiferman, K.M. Dermal eosinophils in atopic dermatitis undergo cytolytic degeneration. J. Allergy Clin. Immunol. 1997, 99, 683–692. [Google Scholar] [CrossRef]
- Horvathova, M. Human eosinophils as potent inflammatory cells and their apoptosis. Bratisl. Lek. Listy. 2004, 105, 359–361. [Google Scholar] [PubMed]
- Savill, J. Recognition and phagocytosis of cells undergoing apoptosis. Br. Med Bull. 1997, 53, 491–508. [Google Scholar] [CrossRef] [PubMed]
- Fadok, V.A.; Voelker, D.R.; Campbell, P.A.; Cohen, J.J.; Bratton, D.L.; Henson, P.M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 1992, 148, 2207–2216. [Google Scholar] [PubMed]
- Watkins, A.D.; Hatfield, C.A.; Fidler, S.F.; Winterrowd, D.E.; Brashler, J.R.; Sun, F.F.; Taylor, B.M.; Vonderfecht, S.L.; Conder, G.A.; Holgate, S.T.; et al. Phenotypic analysis of airway eosinophils and lymphocytes in a Th-2-driven murine model of pulmonary inflammation. Am. J. Respir. Cell Mol. Biol. 1996, 15, 20–34. [Google Scholar] [CrossRef]
- Slama, P.; Sladek, Z.; Rysanek, D.; Buresova, I. The effect of temperature on apoptosis of bovine blood eosinophil granulocytes in vitro. Acta Univ. Agric.Silvic. Mendel. Brun. 2008, 56, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Ponath, P.D.; Qin, S.; Ringler, D.J.; Clark-Lewis, I.; Wang, J.; Kassam, N.; Smith, H.; Shi, X.; Gonzalo, J.A.; Newman, W.; et al. Cloning of the human eosinophil chemoattractant, eotaxin. Expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment of eosinophils. J. Clin. Investig. 1996, 97, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Pasparakis, M.; Vandenabeele, P. Necroptosis and its role in inflammation. Nature 2015, 517, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Radonjic-Hoesli, S.; Wang, X.; de Graauw, E.; Stoeckle, C.; Styp-Rekowska, B.; Hlushchuk, R.; Simon, D.; Spaeth, P.J.; Yousefi, S.; Simon, H.U. Adhesion-induced eosinophil cytolysis requires thereceptor-interacting protein kinase 3 (RIPK3)–mixedlineage kinase-like (MLKL) signaling pathway, which is counterregulated by autophagy. J. Allergy Clin. Immunol. 2017, 140, 1632–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, K.; Mathew, R.; Lau, A.; Kamphorst, J.J.; Fan, J.; Chen, J.; Chen, H.Y.; Ghavami, A.; Stein, M.; DiPaola, R.S.; et al. Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition. PLoS ONE 2012, 7, e41831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basit, F.; Cristofanon, S.; Fulda, S. Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ. 2014, 21, 1183–1184. [Google Scholar] [CrossRef] [Green Version]
- Radonjic-Hoesli, S.; Valent, P.; Klion, A.D.; Wechsler, M.E.; Simon, H.U. Novel targeted therapies for eosinophil-associated diseases and allergy. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 633–656. [Google Scholar] [CrossRef] [Green Version]
- Sharmi, R.; Xenakis, J.J.; Spencer, L.A. Eosinophils in innate immunity: An evolving story. Cell Tissue Res. 2011, 343, 57–83. [Google Scholar]
- Tefferi, A.; Gotlib, J.; Pardanani, A. Hypereosinophilic syndrome and clonal eosinophilia: Point-of-care diagnostic algorithm and treatment update. Mayo Clin. Proc. 2010, 85, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Dal Berto, A.S.; Camina, R.H.; Machado, E.S.; Baptistella, A.R. FIP1L1-PDGFRA fusion-negative hypereosinophilic syndrome with uncommon cardiac involvement responding to imatinib treatment: A case report. Mol. Clin. Oncol. 2018, 9, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Gleich, G.J.; Leiferman, K.M.; Pardanani, A.; Tefferi, A.; Butterfield, J.H. Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet 2002, 359, 1577–1578. [Google Scholar] [CrossRef]
- Havelange, V.; Demoulin, J.B. Review of current classification, molecular alterations, and tyrosine kinase inhibitor therapies in myeloproliferative disorders with hypereosinophilia. J. Blood Med. 2013, 4, 111–121. [Google Scholar] [PubMed] [Green Version]
- Fukakusa, M.; Bergeron, C.; Tulic, M.K.; Fiset, P.O.; Al Dewachi, O.; Laviolette, M.; Hamid, O.; Chakir, J. Oral corticosteroids decrease eosinophil and CC chemokine expression but increase neutrophil, IL-8, and IFN-γ–inducible protein 10 expression in asthmatic airway mucosa. J. Allergy Clin. Immunol. 2005, 115, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Stellato, C.; Matsukura, S.; Fal, A.; White, J.; Beck, L.A.; Proud, L.A.; Schleimer, R.P. Differential regulation of epithelial-derived C-C chemokine expression by IL-4 and the glucocorticoid budesonide. J. Immunol. 1999, 163, 5624–5632. [Google Scholar]
- Bates, M.E.; Busse, W.W.; Bertics, P.J. Interleukin 5 signals through Shc and Grb2 in human eosinophils. Am. J. Respir. Cell Mol. Biol. 1998, 18, 75–83. [Google Scholar] [CrossRef]
- Pazdrak, K.; Moon, Y.; Straub, C.; Stafford, S.; Kurosky, A. Eosinophil resistance to glucocorticoid-induced apoptosis is mediated by the transcription factor NFIL3. Apoptosis 2016, 21, 421–431. [Google Scholar] [CrossRef]
- Rothenberg, M.E. Eosinophilia. N. Engl. J. Med. 1998, 338, 1592–1600. [Google Scholar] [CrossRef]
- Aldebert, D.; Lamkhioued, B.; Desaint, C.; Gounni, A.S.; Goldman, M.; Capron, A.; Prin, L.; Capron, M. Eosinophils express a functional receptor for interferon α: Inhibitory role of interferon α on the release of mediators. Blood 1996, 87, 2354–2360. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, C.; Mishra, A.; Saito-Akei, H.; Monk, P.; Anderson, I.; Rothenberg, M.E. Inhibition of human interleukin-13-induced respiratory and oesophageal inflammation by anti-human-interleukin-13 antibody (CAT-354). Clin. Exp. Allergy 2005, 35, 1096–1103. [Google Scholar] [CrossRef]
- Hunt, L.W.; Frigas, E.; Butterfield, J.H.; Kita, H.; Blomgren, J.; Dunnette, S.L.; Offord, K.P.; Gleich, G.J. Treatment of asthma with nebulized lidocaine: A randomized, placebo-controlled study. J. Allergy Clin. Immunol. 2004, 113, 853–859. [Google Scholar] [CrossRef]
- Kane, G.C.; Pollice, M.; Kim, C.J.; Cohn, J.; Dworski, R.T.; Murray, J.J.; Sheller, J.R.; Fish, J.E.; Peters, S.P. A controlled trial of the effects of the 5-lipoxygenase inhibitor, zileuton, on lung inflammation produced by segmental antigen challenge in human beings. J. Allergy Clin. Immunol. 1996, 97, 646–654. [Google Scholar] [CrossRef]
- Gaddy, J.N.; Margolskee, D.J.; Bush, R.K.; Williams, V.C.; Busse, W.W. Bronchodilation with a potent and selective leukotriene D4 (LTD4) receptor antagonist (MK-571) in patients with asthma. Am. Rev. Respir. Dis. 1992, 146, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Snyman, J.R.; Sommers, D.K.; Gregorowski, M.D.; Boraine, H. Effect of cetirizine, ketotifen and chlorpheniramine on the dynamics of the cutaneous hypersensitivity reaction: A comparative study. Eur. J. Clin. Pharmacol. 1992, 42, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Rand, T.H.; Lopez, A.F.; Gamble, J.R. Nedocromil sodium and cromolyn (sodium cromoglycate) selectively inhibit antibody-dependent granulocyte-mediated cytotoxicity. Int. Arch. Allergy Appl. Immunol. 1988, 87, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Wegner, C.D.; Gundel, R.H.; Reilly, P.; Haynes, N.; Letts, L.G.; Rothlein, R. Intracellular adhesion molekule-1 (ICAM-1) in the pathogenesis of asthma. Science 1990, 247, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Kuijpers, T.W.; Mul, E.P.; Blom, M.; Kovach, N.L.; Gaeta, F.C. Freezing adhesion molecules in a state of high-avidity binding blocks eosinophil migration. J. Exp. Med. 1993, 178, 279–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusuf-Makagiansar, H.; Anderson, M.E.; Yakovleva, T.V.; Murray, J.S.; Siahaan, T.J. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med. Res. Rev. 2002, 22, 146–167. [Google Scholar] [CrossRef]
- Egan, R.W.; Athwahl, D.; Chou, C.C. Inhibition of pulmonary eosinophilia and hyperaktivity by antibodies to interleukin 5. Int. Arch. Immunol. 1995, 107, 321–322. [Google Scholar] [CrossRef]
- Mauser, P.J.; Pitman, A.M.; Fernandez, X. Effects of an antibody to interleukin-5 in a money model of asthma. Am. J. Respir. Crit. Care Med. 1995, 152, 467–472. [Google Scholar] [CrossRef]
- Zimmermann, N.; Hershey, G.K.; Foster, P.S. Chemokines in asthma: Cooperative interaction between chemokines and IL-13. J. Allergy Clin. Immunol. 2003, 111, 227–242. [Google Scholar]
- Nutku, E.; Aizawa, H.; Hudson, S.A.; Bochner, B.S. Ligation of Siglec-8: A selective mechanism for induction of human eosinophil apoptosis. Blood 2003, 101, 5014–5020. [Google Scholar] [CrossRef] [Green Version]
- Seguier, J.; Gelsi-Boyer, V. Autoimmune diseases in myelodysplastic syndrome favors patient’s survival: A case control study and literature review. Autoimmun. Rev. 2019, 1, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Haldar, P.; Brightling, C.E.; Hargadon, B.; Gupta, S.; Monteiro, W.; Sousa, A.; Marshall, R.P.; Bradding, P.; Green, R.H.; Wardlaw, A.J.; et al. Mepolizumab and exacerbations of refractory eosinophilic asthma N. Engl. J. Med. 2009, 360, 973–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matera, M.G.; Calzetta, L.; Rinaldi, B.; Cazzola, M. Pharmacokinetic/pharmacodynamic drug evaluation of benralizumab for the treatment of asthma. Expert Opin. Drug Metab. Toxicol. 2017, 13, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Pelaia, C.; Calabrese, C.; Vatrella, A.; Busceti, M.T.; Garofalo, E.; Lombardo, N.; Terracciano, R.; Pelaia, G. Benralizumab: From the basic mechanism of action to the potential use in the biological therapy of severe eosinophilic asthma. Biomed Res. Int. 2018, 2018, 4839230. [Google Scholar] [CrossRef]
- Slama, P.; Sladek, Z.; Rysanek, D.; Langrova, T. Effect of Staphylococcus aureus and Streptococcus uberis on apoptosis of bovine mammary gland lymphocytes. Res. Vet. Sci. 2009, 87, 233–238. [Google Scholar] [CrossRef]
- Slama, P.; Kabourkova, E.; Sladek, Z.; Zavadilova, T.; Kratochvilova, L.; Kharkevich, K.; Roychoudhury, S.; Pavlik, A.; Roztocilova, A.; Uhrincat, M.; et al. Effect of lipopolysaccharide and muramyl dipeptide on apoptosis of bovine mammary gland lymphocytes. Animals 2020, 10, 990. [Google Scholar] [CrossRef]
- Slama, P.; Sladek, Z.; Rysanek, D. Effect of isolation techniques on viability of bovine blood neutrophils. Acta Vet. Brno 2006, 75, 343–353. [Google Scholar] [CrossRef]
- Slama, P.; Sladek, Z.; Rysanek, D. The thermal treatment effects on bovine blood neutrophil granulocytes apoptosis and necrosis in vitro. Gen. Physiol. Biophys. 2007, 26, 118–125. [Google Scholar]
- Luo, X.Q.; Ma, F.; Wang, S.; Zhao, M.Z.; Shao, J.B.; Geng, X.R.; Liu, J.Q.; Mo, L.H.; Guan, L.; Liu, Z.G.; et al. Interleukin-5 induces apoptotic defects in CD4 + T cells of patients with allergic rhinitis. J. Leukoc. Biol. 2020, 105, 719–727. [Google Scholar] [CrossRef]
- Yang, G.; Liu, J.Q.; Mo, L.H.; Luo, X.Q.; Li, J.; Liu, Z.O.; Liu, D.B.; Liu, Z.G.; Yang, P.C.; Shi, J.B. Bcl2 like protine-12 (Bcl2L12) facilitates experimental airway allergic inflammation by inducing autocrine eotaxin in eosinophils. Immunol. Lett. 2020, 228, 93–102. [Google Scholar] [CrossRef]
- Gonzalo, J.A.; Jia, G.Q.; Aguirre, V.; Friend, D.; Coyle, A.J.; Jenkins, N.A.; Lin, G.S.; Katz, H.; Lichtman, A.; Copeland, N.; et al. Mouse eotaxin expression parallels eosinophil accumulation during lung allergic inflammation but it is not restricted to a Th2-type response. Immunity 1996, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Simon, H.U.; Grotzer, M.; Nikolaizik, W.H.; Blaser, K.; Schöni, M.H. High altitude climate therapy reduces peripheral blood T lymphocyte activation, eosinophilia, and bronchial obstruction in children with house-dust mite allergic asthma. Pediatric Pulmonol. 1994, 17, 304–311. [Google Scholar] [CrossRef]
- Rankin, J.A.; Picarella, D.E.; Geba, G.P.; Temann, U.A.; Prasad, B.; DiCosmo, B.; Tarallo, A.; Stripp, B.; Whitsett, J.; Flavell, R.A. Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: Lymphocytic and eosinophilic inflammation without airway hyperreactivity. Proc. Natl. Acad. Sci. USA 1996, 93, 7821–7825. [Google Scholar] [CrossRef] [Green Version]
- Jakobi, M.; Kiefer, A.; Mirzakhani, H.; Rauh, M.; Zimmermann, T.; Xepapadaki, P.; Stanic, B.; Akdis, M.; Papadopoulos, N.G.; Raby, B.A.; et al. Role of nuclear factor of activated T cells 2 (NFATc2) in allergic asthma. Immun. Inflamm. Dis. 2020. [Google Scholar] [CrossRef]
- Robinson, D.S.; Hamid, Q.; Ying, S.; Tsicopoulos, A.; Barkans, J.; Bentley, A.M.; Corrigan, C.; Durham, S.R.; Kay, A.B. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. New Engl. J. Med. 1992, 326, 298–304. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Suda, T.; Ohta, S.; Tominaga, K.; Miura, Y.; Kasahara, T. Analysis of the survival of mature human eosinophils: Interleukin-5 prevents apoptosis in mature human eosinophils. Blood 1991, 78, 2542–2547. [Google Scholar] [CrossRef] [Green Version]
- Morita, M.; Lamkhioued, B.; Gounni, A.S.; Aldebert, D.; Delaporte, E.; Capron, A.; Capron, M. Induction by interferons of human eosinophil apoptosis and regulation by interleukin-3, granulocyte/macrophage-colony stimulating factor and interleukin-5. Eur. Cytokine Netw. 1996, 7, 725–732. [Google Scholar]
- Ilmarinen, P.; Moilanen, E.; Kankaanranta, H. Regulation of spontaneous eosinophil apoptosis—A neglected area of importance. J. Cell Death 2014, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pazdrak, K.; Straub, C.; Maroto, R.; Stafford, S.; White, W.I.; Calhoun, W.J.; Kurosky, A. Cytokine-Induced Glucocorticoid Resistance from Eosinophil Activation: Protein Phosphatase 5 Modulation of Glucocorticoid Receptor Phosphorylation and Signaling. J. Immunol. 2016, 197, 3782–3791. [Google Scholar] [CrossRef] [Green Version]
- Moser, R.; Fehr, J.; Bruijnzeel, P.L. IL-4 controls the selective endothelium-driven transmigration of eosinophils from allergic individuals. J. Immunol. 1992, 149, 1432–1438. [Google Scholar]
- Kemeny, D.M.; Noble, A.; Holmes, B.J.; Diaz-Sanchez, D. Immune regulation: A new role for the CD8+ T cell. Immunol. Today 1994, 15, 107–110. [Google Scholar] [CrossRef]
- Montefort, S.; Gratziou, C.; Goulding, D.; Polosa, R.; Haskard, D.O.; Howarth, P.H.; Holgate, S.T.; Carroll, M.P. Bronchial biopsy evidence for leukocyte infiltration and upregulation of leukocyte-endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitized asthmatic airways. J. Clin. Investig. 1994, 93, 1411–1421. [Google Scholar] [CrossRef] [Green Version]
- Erriah, M.; Pabreja, K.; Fricker, M.; Baines, K.J.; Donnelly, L.E.; Bylund, J.; Karlsson, A.; Simpson, J.L. Galectin-3 enhances monocyte-derived macrophage efferocytosis of apoptotic granulocytes in asthma. Respir. Res. 2019, 20, 1. [Google Scholar] [CrossRef]
- Lacy, P.; Moqbel, R. Eosinophil cytokines. Chem. Immunol. 2000, 76, 134–155. [Google Scholar]
- Reis, A.C.; Alessandri, A.L.; Athayde, R.M.; Perez, D.A.; Vago, J.P.; Avila, T.V.; Ferreira, T.P.T.; de Arantes, A.C.S.; de Sa Coutinho, D.; Rachid, M.A.; et al. Induction of eosinophil apoptosis by hydrogen peroxide promotes the resolution of allergic inflammation. Cell Death Dis. 2015, 6, e1632. [Google Scholar] [CrossRef]
- Woolley, K.L.; Gibson, P.G.; Carty, K.; Wilson, A.J.; Twaddell, S.H.; Woolley, M.J. Eosinophil apoptosis and the resolution of airway inflammation in asthma. Am. J. Respir. Crit. Care Med. 1996, 154, 237–243. [Google Scholar] [CrossRef]
- Wedi, B.; Raap, U.; Lewrick, H.; Kapp, A. Delayed eosinophil programmed cell death in vitro: A common feature of inhalant allergy and extrinsic and intrinsic atopic dermatitis. J. Allergy Clin. Immunol. 1997, 100, 536–543. [Google Scholar] [CrossRef]
- Barthel, S.R.; Johansson, M.W.; McNamee, D.M.; Mosher, D.F. Roles of integrin activation in eosinophil function and the eosinophilic inflammation of asthma. J. Leukoc. Biol. 2008, 83, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Schleimer, R.P.; Bochner, B.S. The effects of glucocorticoids on human eosinophils. J. Allergy Clin. Immunol. 1994, 94, 1202–1213. [Google Scholar] [CrossRef]
- Schleimer, R.P.; Sterbinsky, S.A.; Kaiser, J. IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM-1. J. Immunol. 1992, 148, 1086–1092. [Google Scholar]
- Sakkal, S.; Miller, S.; Apostolopoulos, V.; Nurgali, K. Eosinophils in cancer: Favourable or unfavourable? Curr. Med. Chem. 2016, 23, 650–666. [Google Scholar] [CrossRef]
- Nielsen, H.J.; Hanse, U.; Christensen, I.J.; Reimert, C.M.; Brunner, N.; Moesgaard, F. Independent prognostic value of eosinophil and mast cell infiltration in colorectal cancer tissue. J. Pathol. 1999, 189, 487–495. [Google Scholar] [CrossRef]
- Yousefi, S.; Green, D.R.; Blaser, K.; Simon, H.U. Protein-tyrosine phosphorylation regulates apoptosis in human eosinophils and neutrophils. Proc. Natl. Acad. Sci. USA 1994, 91, 10868–10872. [Google Scholar] [CrossRef] [Green Version]
- Ying, S.; Meng, Q.; Taborda-Barata, L.; Kay, A.B. Association of apoptosis of neutrophils and eosinophils and their ingestion by macrophages with resolution of the-allergen induced cutaneous late-phase response in atopic human subjects. Proc. Assoc. Am. Phys. 1997, 109, 42–50. [Google Scholar]
- Idzko, M.; Panther, E.; Bremer, H.C.; Sorichter, S.; Luttmann, W.; Virchow, C.J., Jr.; Di Virgilio, F.; Herouy, J.; Norgauer, J.; Ferrari, D. Stimulation of P2 purinergic receptors induces the release of eosinophil cationic protein and interleukin-8 from human eosinophils. Br. J. Pharmacol. 2003, 138, 1244–1250. [Google Scholar] [CrossRef] [Green Version]
- French, B.M.; Sendil, S.; Sepuru, K.M.; Ranek, J.; Burdorf, L.; Harris, D.; Redding, E.; Cheng, X.; Laird, C.; Zhao, Y.; et al. Interleukin-8 mediates neutrophil-endothelial interactions in pig-to-human xenogeneic models. Xenotransplantation 2018, 25, e12385. [Google Scholar] [CrossRef]
- Dibbert, B.; Daigle, I.; Braun, D.; Schranz, C.; Weber, M.; Blaser, K.; Zangemeister-Wittke, U.; Akbar, A.N.; Simon, H.U. Role for Bcl-xL in delayed eosinophil apoptosis mediated by granulocyte-macrophage colony-stimulating factor and interleukin-5. Blood 1998, 92, 778–783. [Google Scholar] [CrossRef]
- Hebestreit, H.; Dibbert, B.; Balatti, I.; Braun, D.; Schapowal, A.; Blaser, K.; Simon, H.U. Disruption of Fas receptor signaling by nitric oxide in eosinophils. J. Exp. Med. 1998, 187, 415–425. [Google Scholar] [CrossRef]
- Melo, R.C.N.; Liu, L.; Xenakis, J.J.; Spencer, L.A. Eosinophil-derived cytokines in health and disease: Unraveling novel mechanisms of selective secretion. Allergy 2013, 68, 274–284. [Google Scholar] [CrossRef] [Green Version]
- Hebestreit, H.; Yousefi, S.; Balatti, I.; Weber, M.; Crameri, R.; Simon, D.; Hatung, K.; Schapolaw, A.; Blaser, K.; Simon, H.U. Expression and function of the Fas receptor on human blood and tissue eosinophils. Eur. J. Immunol. 1996, 26, 1775–1780. [Google Scholar] [CrossRef] [PubMed]
- Kodama, T.; Matsuyama, T.; Miyata, S.; Nishimura, H.; Nishioka, Y.; Kitada, O.; Sugita, M. Kinetics of apoptosis in the lung of mice with allergic airway inflammation. Clin. Exp. Allergy 1998, 28, 1435–1443. [Google Scholar] [CrossRef] [PubMed]
- Ilmarinen, P.; Kankaanranta, H. Eosinophil apoptosis as a therapeutic target in allergic asthma. Basic Clin. Pharmacol. Toxicol. 2014, 114, 109–117. [Google Scholar] [CrossRef]
- Felton, J.M.; Lucas, C.D.; Rossi, A.G.; Dransfield, I. Eosinophils in the lung-modulating apoptosis and efferocytosis in airway inflammation. Front. Immunol. 2014, 5, 302. [Google Scholar] [CrossRef] [PubMed]
- Vasku, J. Kolik Čechů Trpí Alergiemi? Infografika, 2018. Available online: https://ceskeinfografiky.cz/kolik-cechu-trpi-alergiemi-infografika/ (accessed on 22 November 2020).
Functions | Cytokines |
---|---|
Developmental functions | TGF-beta, IL-4 |
Cell–cell interactions | Interleukins (1, 3, 4, 5, 6, 8, 9, 12, 13), IFN-γ, TGF-β, TNF-α, NGF, SCF, GM-CSF, CCL5, CCL11 |
Metabolic homeostasis | IL-4, IL-13 |
Immune polarization | Interleukins (4,5,10, 12, 13, 18, 25, 33), IFN-γ, TGF-β, CXCL9, CXCL10, CCL17, CCL22 |
B cell maintenance | Interleukins (4, 5, 6, 10), TNF, APRIL |
Tissue repair/remodeling | Interleukins (1β, 6, 13), PDGF, SCF, TGF-α, TGF-β, VEGF, CXCL1, CXCL10, CXCL12, CCL2, CCL3, CCL11 |
Types of Allergies | Number of Czech People |
---|---|
Allergic rhinitis | 2.5 million |
Asthma | 1.0 million |
Atopic eczema | 0.8 million |
Food allergy | 0.4 million |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zustakova, M.; Kratochvilova, L.; Slama, P. Apoptosis of Eosinophil Granulocytes. Biology 2020, 9, 457. https://doi.org/10.3390/biology9120457
Zustakova M, Kratochvilova L, Slama P. Apoptosis of Eosinophil Granulocytes. Biology. 2020; 9(12):457. https://doi.org/10.3390/biology9120457
Chicago/Turabian StyleZustakova, Martina, Lucie Kratochvilova, and Petr Slama. 2020. "Apoptosis of Eosinophil Granulocytes" Biology 9, no. 12: 457. https://doi.org/10.3390/biology9120457
APA StyleZustakova, M., Kratochvilova, L., & Slama, P. (2020). Apoptosis of Eosinophil Granulocytes. Biology, 9(12), 457. https://doi.org/10.3390/biology9120457