Whole Organism Model to Study Molecular Mechanisms of Differentiation and Dedifferentiation †
Abstract
:1. Introduction
2. Perspective: Similarities and Dissimilarities between CSCs and Acanthamoeba
2.1. Genomics and Proteomics
2.1.1. Differentiation and Dedifferentiation
2.1.2. Signalling Pathways
2.1.3. Cell Cycle
2.1.4. Apoptosis
3. Metabolomics
4. Environmental Factors
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Batlle, E.; Clevers, H. Cancer stem cells revisited. Nat. Med. 2017, 23, 1124. [Google Scholar] [CrossRef]
- Ayob, A.Z.; Ramasamy, T.S. Cancer stem cells as key drivers of tumour progression. J. Biomed. Sci. 2018, 25, 20. [Google Scholar] [CrossRef]
- Bonnet, D.; Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 1997, 3, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Lapidot, T.; Sirard, C.; Vormoor, J.; Murdoch, B.; Hoang, T.; Caceres-Cortes, J.; Dick, J.E. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994, 367, 645–648. [Google Scholar] [CrossRef] [PubMed]
- De Francesco, E.M.; Sotgia, F.; Lisanti, M.P. Cancer stem cells (CSCs): Metabolic strategies for their identification and eradication. Biochem. J. 2018, 475, 1611–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaap, P.; Schilde, C. Encystation: The most prevalent and underinvestigated differentiation pathway of eukaryotes. Microbiol. J. 2018, 164, 727–739. [Google Scholar] [CrossRef]
- Aguirre-Ghiso, J.A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Can. 2007, 7, 834–846. [Google Scholar] [CrossRef] [Green Version]
- Goss, P.E.; Chambers, A.F. Does tumour dormancy offer a therapeutic target? Nat. Rev. Can. 2010, 10, 871–877. [Google Scholar] [CrossRef]
- Karrison, T.G.; Ferguson, D.J.; Meier, P. Dormancy of mammary carcinoma after mastectomy. J. Nat. Can. Inst. 1999, 91, 80–85. [Google Scholar] [CrossRef]
- Saphner, T.; Tormey, D.C.; Gray, R. Annual hazard rates of recurrence for breast cancer after primary therapy. J. Clin. Oncol. 1996, 14, 2738–2746. [Google Scholar] [CrossRef]
- Democheli, R.; Tereziani, M.; Valagussa, P.; Moliterni, A.; Zambetti, M.; Bonadonna, G. Local recurrences following mastectomy: Support for the concept of tumor dormancy. J. Nat. Can. Inst. 1994, 86, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Tripathy, D.; Frenkel, E.P.; Shete, S.; Naftalis, E.Z.; Huth, J.F.; Uhr, J.W. Circulating tumor cells in patients with breast cancer dormancy. Clin. Can. Res. 2004, 10, 8152–8162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sell, S. Cellular origin of cancer: Dedifferentiation or stem cell maturation arrest? Environ. Health Perspect. 1993, 101 (Suppl. 5), 15–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedmann-Morvinski, D.; Verma, I.M. Dedifferentiation and reprogramming: Origins of cancer stem cells. EMBO Rep. 2014, 15, 244–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hüsemann, Y.; Geigl, J.B.; Schubert, F.; Musiani, P.; Meyer, M.; Burghart, E.; Forni, G.; Eils, R.; Fehm, T.; Riethmüller, G.; et al. Systemic Spread Is an Early Step in Breast Cancer. Cancer Cell 2008, 13, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Kittler, O.; Ragg, T.; Daskalakis, A.; Granzow, M.; Ahr, A.; Blankenstein, T.J.F.; Kaufmann, M.; Diebold, J.; Arnholdt, H.; Müller, P.; et al. From latent disseminated cells to overt metastasis: Genetic analysis of systemic breast cancer progression. Proc. Natl. Acad. Sci. USA 2003, 100, 7737–7742. [Google Scholar] [CrossRef] [Green Version]
- Pantel, K.; Brakenhoff, R.H. Dissecting the metastatic cascade. Nat. Rev. Cancer 2004, 4, 448–456. [Google Scholar] [CrossRef]
- Pantel, K.; Brakenhoff, R.H.; Brandt, B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 2008, 8, 329–340. [Google Scholar] [CrossRef]
- Kemper, K.; Sprick, M.R.; de Bree, M.; Scopelliti, A.; Vermeulen, L.; Hoek, M.; Zeilstra, J.; Pals, S.T.; Mehmet, H.; Stassi, G.; et al. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res. 2010, 70, 719–729. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.A. Acanthamoeba: Biology and increasing importance in human health. FEMS Microbiol. Rev. 2006, 30, 564–595. [Google Scholar] [CrossRef] [Green Version]
- Riyahi, T.Y.; Frese, F.; Steinert, M.; Omosigho, N.N.; Glöckner, G.; Eichinger, L.; Orabi, B.; Williams, R.S.; Noegel, A.A. RpkA, a highly conserved GPCR with a lipid kinase domain, has a role in phagocytosis and anti-bacterial defense. PLoS ONE 2011, 6, e27311. [Google Scholar] [CrossRef] [PubMed]
- Baig, A.M.; Ahmad, H.R. Evidence of a M1-muscarinic GPCR homolog in unicellular eukaryotes: Featuring Acanthamoeba spp bioinformatics 3D-modelling and experimentations. J. Recept. Signal Transduct. 2017, 37, 267–275. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, C.A.; Mostoslavsky, G. The evolving field of induced pluripotency: Recent progress and future challenges. J. Cell. Physiol. 2013, 228, 267–275. [Google Scholar] [CrossRef]
- Malik, N.; Rao, M.S. A review of the methods for human iPSC derivation. Methods Mol. Biol. 2013, 997, 22–23. [Google Scholar]
- Visvader, J.E.; Lindeman, G.J. Cancer stem cells: Current status and evolving complexities. Cell Stem cell. 2012, 10, 717–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soda, Y.; Marumoto, T.; Friedmann-Morvinski, D.; Soda, M.; Liu, F.; Michiue, H.; Pastorino, S.; Yang, M.; Hoffman, R.M.; Kesari, S.; et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc. Natl. Acad. Sci. USA 2011, 108, 4274–4280. [Google Scholar] [CrossRef] [Green Version]
- Ricci-Vitiani, L.; Pallini, R.; Biffoni, M.; Todaro, M.; Invernici, G.; Cenci, T.; Maira, G.; Parati, E.A.; Stassi, G.; Larocca, L.M.; et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 2010, 468, 824–828. [Google Scholar] [CrossRef]
- Schwitalla, S.; Fingerle, A.A.; Cammareri, P.; Nebelsiek, T.; Goktuna, S.I.; Ziegler, P.K.; Canli, O.; Heijmans, J.; Huels, D.J.; Moreaux, G.; et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem—cell-like properties. Cell 2013, 152, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Potter, J.L.; Weisma, R.A. Correlation of cellulose synthesis in vivo and in vitro during the encystment of Acanthamoeba. Dev. Biol. 1972, 28, 472–479. [Google Scholar] [CrossRef]
- Hirukawa, Y.; Nakato, H.; Izumi, S.; Tsuruhara, T.; Tomino, S. Structure and expression of a cyst specific protein of Acanthamoeba castellanii. Biochim. Biophys. Acta 1998, 1398, 47–56. [Google Scholar] [CrossRef]
- Sykes, D.E.; Band, R.N. Polyphenol oxidase produced during encystation of Acanthamoeba castellanii. J. Protozool. 1985, 32, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.; Jayaraman, P.S. Transcriptional repression in eukaryotes: Repressors and repression mechanisms. Cell. Mol. Life Sci. 2003, 60, 721–741. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Bateman, E. Transcription of the Acanthamoeba TATA-binding Protein Gene a single transcription factor acts both as an activator and a repressor. J. Biol. Chem. 1997, 272, 3852–3859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, J.L.; Zwick, M.G.; Paule, M.R. Coordinate regulation of ribosomal component synthesis in Acanthamoeba castellanii: 5S RNA transcription is down regulated during encystment by alteration of TFIIIA activity. Mol. Cell. Biol. 1995, 15, 3327–3335. [Google Scholar] [CrossRef] [Green Version]
- Stevens, A.R.; Pachler, P.F. RNA synthesis and turnover during density-inhibited growth and encystment of Acanthamoeba castellanii. J. Cell Biol. 1973, 57, 525–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Detke, S.; Paule, M.R. DNA-dependent RNA polymerases from Acanthamoeba castellanii: Properties and levels of activity during encystment. Biochim. Biophys. Acta 1975, 383, 67–77. [Google Scholar] [CrossRef]
- Orfeo, T.; Bateman, E. Transcription by RNA polymerase II during Acanthamoeba differentiation. Biochim. Biophys. Acta 1998, 1443, 297–304. [Google Scholar] [CrossRef]
- Dudley, R.; Jarroll, E.L.; Khan, N.A. Carbohydrate analysis of Acanthamoeba castellanii. Exp. Parasitol. 2009, 122, 338–343. [Google Scholar] [CrossRef]
- Hillebrand, L.E.; Reinheckel, T. Impact of proteolysis on cancer stem cell functions. Biochimie 2019, 166, 214–222. [Google Scholar] [CrossRef]
- Gopinath, S.; Malla, R.; Alapati, K.; Gorantla, B.; Gujrati, M.; Dinh, D.H.; Rao, J.S. Cathepsin B and uPAR regulate self-renewal of glioma-initiating cells through GLI-regulated Sox2 and Bmi1 expression. Carcinogenesis 2013, 34, 550–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, E.K.; Chung, D.I.; Hong, Y.C.; Kong, H.H. Differentially expressed genes of Acanthamoeba castellanii during encystation. Korean J. Parasitol. 2007, 45, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, E.K.; Chung, D.I.; Hong, Y.C.; Kong, H.H. Characterization of a serine proteinase mediating encystation of Acanthamoeba. Eukaryot. Cell 2008, 7, 1513–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, E.K.; Chung, D.I.; Hong, Y.C.; Ahn, T.I.; Kong, H.H. Acanthamoeba castellanii: Gene profile of encystation by ESTs analysis and KOG assignment. Exp. Parasitol. 2008, 119, 111–116. [Google Scholar] [CrossRef]
- Dudley, R.; Alsam, S.; Khan, N.A. The role of proteases in the differentiation of Acanthamoeba castellanii. FEMS Microbiol. Lett. 2008, 286, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Achar, S.B.; Weisman, R.A. Adenylate cyclase activity during growth and encystment of Acanthamoeba castellanii. Biochim. Biophys. Acta 1980, 629, 225–234. [Google Scholar] [CrossRef]
- Hax, W.M.; van Venrooij, G.E.; Vossenberg, J.B. Cell communication: A cyclic-AMP mediated phenomenon. J. Membr. Biol. 1974, 19, 253–266. [Google Scholar] [CrossRef]
- Moon, E.K.; Chung, D.I.; Hong, Y.; Kong, H.H. Atg3-mediated lipidation of Atg8 is involved in encystation of Acanthamoeba. Korean J. Parasitol. 2011, 49, 103. [Google Scholar] [CrossRef]
- Mortazavi, P.N.; Keisary, E.; Loh, L.N.; Jung, S.Y.; Khan, N.A. Possible roles of phospholipase A2 in the biological activities of Acanthamoeba castellanii (T4 genotype). Protist 2011, 162, 168–176. [Google Scholar] [CrossRef]
- Bennett, D.T.; Deng, X.S.; Jessica, A.Y.; Bell, M.T.; Mauchley, D.C.; Meng, X.; Reece, T.B.; Fullerton, D.A.; Weyan, M.J. Cancer stem cell phenotype is supported by secretory phospholipase A2 in human lung cancer cells. Ann. Thorac. Surg. 2014, 98, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Malumbres, M.; Barbacid, M. RAS oncogenes: The first 30 years. Nat. Rev. Can. 2003, 3, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, A.; Okuda, H.; Xing, F.; Pandey, P.R.; Watabe, M.; Hirota, S.; Pai, S.K.; Liu, W.; Fukuda, K.; Chambers, C.; et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J. Exp. Med. 2011, 208, 2641–2655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S.M.; Riggins, G.J. High Frequency of Mutations of the PIK3CA Gene in Human Cancers. Science 2004, 304, 554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, M.; Lohan, A.J.; Liu, B.; Lagkouvardos, I.; Roy, S.; Zafar, N.; Bertelli, C.; Schilde, C.; Kianianmomeni, A.; Bürglin, T.R.; et al. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Gen. Biol. 2013, 14, R11. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, R.; Jarroll, E.L.; Khan, N.A. Balamuthia mandrillaris: Role of galactose in encystment and identification of potential inhibitory targets. Exp. Parasitol. 2010, 126, 22–27. [Google Scholar] [CrossRef]
- Seo, E.J.; Kim, D.K.; Jang, I.H.; Choi, E.J.; Shin, S.H.; Lee, S.I.; Kwon, S.M.; Kim, K.H.; Suh, D.S.; Kim, J.H. Hypoxia-NOTCH1-SOX2 signaling is important for maintaining cancer stem cells in ovarian cancer. Oncotarget 2016, 7, 55624. [Google Scholar] [CrossRef] [Green Version]
- Agliano, A.; Calvo, A.; Box, C. The challenge of targeting cancer stem cells to halt metastasis. Semin. Cancer Biol. 2017, 44, 25–42. [Google Scholar] [CrossRef]
- Morrissey, C.; Vessella, R.L.; Lange, P.H.; Lam, H.M. The biology and clinical implications of prostate cancer dormancy and metastasis. J. Mol. Med. 2016, 94, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Maruta, H.; Goldstein, L. The fate and origin of the nuclear envelope during and after mitosis in Amoeba proteus. I. Synthesis and behavior of phospholipids of the nuclear envelope during the cell life cycle. J. Cell Biol. 1975, 65, 631–645. [Google Scholar] [CrossRef]
- Neff, R.J.; Neff, R.H. The biochemistry of amoebic encystment. Symp. Soc. Exp. Biol. 1969, 23, 51. [Google Scholar]
- Band, R.N.; Mohrlok, S. The cell cycle and induced amitosis in Acanthamoeba. J. Protozool. 1973, 20, 654–657. [Google Scholar] [CrossRef]
- Jantzen, H.; Schulze, I.; Stohr, M. Relationship between the timing of DNA replication and the developmental competence in Acanthamoeba castellanii. J. Cell Sci. 1988, 91, 389–399. [Google Scholar] [PubMed]
- Stöhr, M.; Bommert, K.; Schulze, I.; Jantzen, H. The cell cycle and its relationship to development in Acanthamoeba castellanii. J. Cell Sci. 1987, 88, 579–590. [Google Scholar]
- Mengue, L.; Régnacq, M.; Aucher, W.; Portier, E.; Héchard, Y.; Samba-Louaka, A. Legionella pneumophila prevents proliferation of its natural host Acanthamoeba castellanii. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, R.S.Y. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, J.C. Bcl-2 family proteins: Regulators of apoptosis and chemoresistance in hematologic malignancies. Semin. Hematol. 1997, 34, 9–19. [Google Scholar]
- Selivanova, G. p53: Fighting cancer. Curr. Cancer Drug Targets 2004, 4, 385–402. [Google Scholar] [CrossRef]
- Baig, A.M.; Lalani, S.; Khan, N.A. Apoptosis in Acanthamoeba castellanii belonging to the T4 genotype. J. Basic Microbiol. 2017, 57, 574–579. [Google Scholar] [CrossRef]
- Martín-Navarro, C.M.; López-Arencibia, A.; Sifaoui, I.; Reyes-Battle, M.; Valladares, B.; Martínez-Carretero, E.; Piñero, J.E.; Maciver, S.K.; Lorenzo-Morales, J. Statins and voriconazole induce Programmed Cell Death in Acanthamoeba. Antimicrob. Agents Chemother. 2015, 59, 2817–2824. [Google Scholar] [CrossRef] [Green Version]
- Sifaoui, I.; López-Arencibia, A.; Martín-Navarro, C.M.; Reyes-Batlle, M.; Wagner, C.; Chiboub, O.; Mejri, M.; Valladares, B.; Abderrabba, M.; Pinero, J.E.; et al. Programmed cell death in Acanthamoeba castellanii Neff induced by several molecules present in olive leaf extracts. PLoS ONE 2017, 12, e0183795. [Google Scholar] [CrossRef]
- Yuan, J.; Yankner, B.A. Apoptosis in the nervous system. Nature 2000, 407, 802. [Google Scholar] [CrossRef] [PubMed]
- Meslin, B.; Barnadas, C.; Boni, V.; Latour, C.; De Monbrison, F.; Kaiser, K.; Picot, S. Features of apoptosis in Plasmodium falciparum erythrocytic stage through a putative role of PfMCA1 metacaspase-like protein. J. Inf. Dis. 2007, 195, 1852–1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosec, G.; Alvarez, V.E.; Agüero, F.; Sánchez, D.; Dolinar, M.; Turk, B.; Turk, V.; Cazzulo, J.J. Metacaspases of Trypanosoma cruzi: Possible candidates for programmed cell death mediators. Mol. Biochem. Parasitol. 2006, 145, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Hsiao, Y.H.; Chen, H.L.; Chu, C.; Tang, P.; Chiu, C.H. Apoptosis-like cell death induced by Salmonella in Acanthamoeba rhysodes. Genomics 2009, 94, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Nakisah, M.A.; Muryany, M.I.; Fatimah, H.; Fadilah, R.N.; Zalilawati, M.R.; Khamsah, S.; Habsah, M. Anti-amoebic properties of a Malaysian marine sponge Aaptos sp. on Acanthamoeba castellanii. World J. Microbiol. Biotechnol. 2012, 28, 237–1244. [Google Scholar] [CrossRef]
- Wu, D.; Qiao, K.; Feng, M.; Fu, Y.; Cai, J.; Deng, Y.; Tachibana, H.; Cheng, X. Apoptosis of Acanthamoeba castellanii trophozoites induced by oleic acid. J. Eukaryot. Microbiol. 2018, 65, 191–199. [Google Scholar] [CrossRef]
- Semba, T.; Sammons, R.; Wang, X.; Xie, X.; Dalby, K.N.; Ueno, N.T. JNK Signaling in Stem Cell Self-Renewal and Differentiation. Int. J. Mol. Sci. 2020, 21, 2613. [Google Scholar] [CrossRef] [Green Version]
- Weisman, R.A. Differentiation in Acanthamoeba castellanii. Ann. Rev. Microbiol. 1976, 30, 189–219. [Google Scholar] [CrossRef]
- Mehdi, H.; Garg, N.K. Changes in the lipid composition and activities of isocitrate dehydrogenase and isocitrate lyase during encystation of Acanthamoeba culbertsoni strain A-1. Trans. R Soc. Trop. Med. Hyg. 1987, 81, 633–636. [Google Scholar] [CrossRef]
- Hugo, E.R.; Byers, T.J. S-adenosyl-L-methionine decarboxylase of Acanthamoeba castellanii (Neff): Purification and properties. Biochem. J. 1993, 295, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Bouyer, S.; Rodier, M.H.; Guillot, A.; Héchard, Y. Acanthamoeba castellanii: Proteins involved in actin dynamics, glycolysis, and proteolysis are regulated during encystation. Exp. Parasitol. 2009, 123, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Rosen, J.M.; Jordan, C.T. The increasing complexity of the cancer stem cell paradigm. Science 2009, 324, 1670–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heddleston, J.M.; Li, Z.; McLendon, R.E.; Hjelmeland, A.B.; Rich, J.N. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 2009, 8, 3274–3284. [Google Scholar] [CrossRef] [Green Version]
- Gilkes, D.M.; Semenza, G.L.; Wirtz, D. Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat. Rev. Cancer 2014, 14, 430–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruttel, V.S.; Wischhusen, J. Cancer stem cell immunology: Key to understanding tumorigenesis and tumor immune escape? Front. Immunol. 2014, 5, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, T.J.; Cursons, R.T.; Keys, E.A. Amoebae from antarctic soil and water. Appl. Environ. Microbiol. 1982, 44, 491–493. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, T.K.; Visvesvara, G.S.; Harke, B.A. Pathogenic amoebas from brackish and ocean sediments, with a description of Acanthamoeba hatchetti, n. sp. Science 1977, 196, 1324–1325. [Google Scholar] [CrossRef]
- Davis, P.G.; Caron, D.A.; McN, J. Oceanic amoebae from the North Atlantic: Culture, distribution, and taxonomy. Trans. Am. Microscop. Soc. 1978, 97, 73–88. [Google Scholar] [CrossRef]
- Leger, M.M.; Gawryluk, R.M.; Gray, M.W.; Roger, A.J. Evidence for a hydrogenosomal-type anaerobic ATP generation pathway in Acanthamoeba castellanii. PLoS ONE 2013, 8, e69532. [Google Scholar] [CrossRef] [Green Version]
- Bowers, B.; Korn, E.D. The fine structure of Acanthamoeba castellanii (Neff Strain): II. Encystment. J. Cell Biol. 1969, 41, 786–805. [Google Scholar] [CrossRef]
- Hu, Y.; Fu, L.W. Targeting cancer stem cells: A new therapy to cure cancer patients. Am. J. Cancer Res. 2012, 2, 340–356. [Google Scholar] [PubMed]
- Osman, A.; Afify, S.M.; Hassan, G.; Fu, X.; Seno, A.; Seno, M. Revisiting Cancer Stem Cells as the Origin of Cancer-Associated Cells in the Tumor Microenvironment: A Hypothetical View from the Potential of iPSCs. Cancers 2020, 12, 879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.J.; Siegler, E.L.; Siriwon, N.; Wang, P. Therapeutic strategies for targeting cancer stem cells. J. Cancer Met. Treat 2016, 8, 234. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo-Morales, J.; Khan, N.A.; Walochnik, J. An update on Acanthamoeba keratitis: Diagnosis, pathogenesis and treatment. Parasite 2015, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, R.; Khan, N.A. Biology and pathogenesis of Acanthamoeba. Parasites Vectors 2012, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekine, R.; Kawata, T.; Muramoto, T. CRISPR/Cas9 mediated targeting of multiple genes in Dictyostelium. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Lorenzo-Morales, J.; Martín-Navarro, C.M.; López-Arencibia, A.; Santana-Morales, M.A.; Afonso-Lehmann, R.N.; Maciver, S.K.; Valladares, B.; Martínez-Carretero, E. Therapeutic potential of a combination of two gene-specific small interfering RNAs against clinical strains of Acanthamoeba. Antimicrob. Agents Chemother. 2010, 54, 5151–5155. [Google Scholar] [CrossRef] [Green Version]
- Baig, A.M.; Khan, N.A.; Abbas, F. Eukaryotic cell encystation and cancer cell dormancy: Is a greater devil veiled in the details of a lesser evil? Can. Biol. Med. 2015, 12, 64–67. [Google Scholar]
Inhibitors | Target | Cancer Type | Phase |
---|---|---|---|
Vitamin D3 [91] | β-catenin | Basal Cell Carcinoma | III |
PRI-724 [91] | CBP/β-catenin | advanced solid tumors | I |
CWP232291 [91] | β-catenin | Acute myeloid leukemia (AML) | I |
MK0752 [91] | γ-secretase | Advanced Breast Cancer | I |
RO4929097 [91] | γ-secretase | Lung Cancer | II |
PF-03084014 [91] | γ-secretase | Leukemia | I |
OMP-21M18 [91] | anti-DLL4 | Pancreatic Cancer | I |
BMS-833923 [91] | Smoothened (SMO) | Basal cell | I |
IPI-926 [91] | SMO | Primary Myelofibrosis Fibrosis and Bone Marrow | II |
IPI-926 [91] | Hedgehog | Recurrent Head and Neck Cancer | I |
Properties | Cancer Stem Cells (CSCs) | Acanthamoeba |
---|---|---|
Genomics and Proteomics | ||
Apoptosis | + (Caspases, Bcl-2 family, and p53) [66,67] | + Metacaspase, caspases 1 and 3, MCA Atg3, Atg8, and LC3A/B protein [72,73,76] |
Cell Cycle | + Cyclins, CDKs [58] | + CDC2b [64] |
Signalling Mechanisms | ||
Ras Pathway | + [51] | + [39] |
MAP Kinase Pathway | + [52] | + [55] |
PI3K Pathway | + [52] | + [55] |
Wnt/β catenin Pathway | + [14] | CSP21 [31] |
Hedgehog Pathway | + [57] | Unknown |
Notch Pathway | + [56] | Unknown |
Metabolomics | ||
Glycolysis | + ATP-dependent phosphofructokinase and all glycolytic enzymes [5] | + Pi-dependent phosphofructokinase, isocitrate lyase, isocitrate dehydrogenase, glycolate, maleate, enolase, and fructose bisphosphate aldolase [79,80,81] |
Phospholipases | + [50] | + [49] |
Proteases | + [40] | + [45] |
Environmental factors | ||
Glycolysis under hypoxic conditions/survival in stress | + [83] | + [89] |
Dormancy/differentiation | + Non-CSCs to CSCs [82] | + (encystation) [20] |
Growth under optimum conditions/dedifferentiation | + Differentiation and malignancy [83] | + Excystation and opportunistic infection [90] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, A.; Siddiqui, R.; Khan, N.A. Whole Organism Model to Study Molecular Mechanisms of Differentiation and Dedifferentiation. Biology 2020, 9, 79. https://doi.org/10.3390/biology9040079
Anwar A, Siddiqui R, Khan NA. Whole Organism Model to Study Molecular Mechanisms of Differentiation and Dedifferentiation. Biology. 2020; 9(4):79. https://doi.org/10.3390/biology9040079
Chicago/Turabian StyleAnwar, Areeba, Ruqaiyyah Siddiqui, and Naveed Ahmed Khan. 2020. "Whole Organism Model to Study Molecular Mechanisms of Differentiation and Dedifferentiation" Biology 9, no. 4: 79. https://doi.org/10.3390/biology9040079
APA StyleAnwar, A., Siddiqui, R., & Khan, N. A. (2020). Whole Organism Model to Study Molecular Mechanisms of Differentiation and Dedifferentiation. Biology, 9(4), 79. https://doi.org/10.3390/biology9040079