A New IL6 Isoform in Chinese Soft-Shelled Turtle (Pelodiscus sinesis) Discovered: Its Regulation during Cold Stress and Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Holding and Bacterial Infection
2.2. Total RNA Isolation, cDNA Synthesis, Real-Time RT-PCR, and Semi-Quantitative RT-PCR
2.3. Cloning of Turtle IL6 cDNA
2.4. Bioinformatic Analysis of the Target Sequences
2.5. Primary Cells Stimulation
2.6. Statistical Analysis
3. Results
3.1. Sequence Analysis and Characterization of Turtle IL6
3.2. Gene Synteny, Genomic Structures, and Phylogenetic Relationship Analysis
3.3. Tissue Distribution of psIL6 and psIL6ns in Healthy Animals
3.4. Regulation of psIL6 and psIL6ns Expression in Primary Spleen Cells
3.5. psIL6 and psIL6ns Expression Following Oral Infection with A. hydrophila
3.6. Spleen psIL6 Expression Following Cold Stress and Bacterial Infection
3.7. Spleen psIL6ns Expression in Spleen Following Cold Stress and Bacterial Infection
3.8. Intestinal psIL6 Expression Following Cold Stress and Bacterial Stimulation
3.9. Intestinal psIL6ns Expression Following Cold Stress and Bacterial Stimulation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 2011, 1813, 878–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishimoto, T. Interleukin-6: From basic science to medicine—40 Years in Immunology. Annu. Rev. Immunol. 2005, 23, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, K.; Klaas, R.; Kaspers, B.; Staeheli, P. Chicken interleukin-6. cDNA structure and biological properties. Eur. J. Biochem. 2001, 268, 4200–4206. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Tian, Y.; Li, G.; Chen, X.; Yuan, H.; Wang, D.; Li, J.; Shen, J.; Tao, Z.; Fu, Y.; et al. Molecular cloning, expression and regulation analysis of the interleukin-6 (IL-6) gene in goose adipocytes. Br. Poult. Sci. 2012, 53, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.; Zou, J.; Savan, R.; Kono, T.; Sakai, M.; Woo, J.; Secombes, C. Characterisation and expression analysis of an interleukin 6 homologue in the Japanese pufferfish, Fugu rubripes. Dev. Comp. Immunol. 2005, 29, 775–789. [Google Scholar] [CrossRef]
- Nam, B.H.; Byon, J.Y.; Kim, Y.O.; Park, E.M.; Cho, Y.C.; Cheong, J. Molecular cloning and characterisation of the flounder (Paralichthys olivaceus) interleukin-6 gene. Fish Shellfish Immunol. 2007, 23, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Castellana, B.; Iliev, D.B.; Sepulcre, M.P.; MacKenzie, S.; Goetz, F.W.; Mulero, V.; Planas, J.V. Molecular characterization of interleukin-6 in the gilthead seabream (Sparus aurata). Mol. Immunol. 2008, 45, 3363–3370. [Google Scholar] [CrossRef]
- Iliev, D.B.; Castellana, B.; Mackenzie, S.; Planas, J.V.; Goetz, F.W. Cloning and expression analysis of an IL-6 homolog in rainbow trout (Oncorhynchus mykiss). Mol. Immunol. 2007, 44, 1803–1807. [Google Scholar] [CrossRef]
- Varela, M.; Dios, S.; Novoa, B.; Figueras, A. Characterisation, expression and ontogeny of interleukin-6 and its receptors in zebrafish (Danio rerio). Dev. Comp. Immunol. 2012, 37, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.H.; Lin, H.T.; Foung, Y.F.; Han-You Lin, J. The bioactivity of teleost IL-6: IL-6 protein in orange-spotted grouper (Epinephelus coioides) induces Th2 cell differentiation pathway and antibody production. Dev. Comp. Immunol. 2012, 38, 285–294. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, C.; Yu, Z.X.; Zou, P.F.; Meng, Q.X.; Yao, C.L. Molecular and immune response characterizations of IL-6 in large yellow croaker (Larimichthys crocea). Fish Shellfish Immunol. 2016, 50, 263–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.N.; Zhang, J.L.; Liu, W.B.; Wu, Q.J.; Gao, X.C.; Ren, H.T. Cloning, characterization and mRNA expression of interleukin-6 in blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol. 2016, 54, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Nishimichi, N.; Aosasa, M.; Kawashima, T.; Horiuchi, H.; Furusawa, S.; Matsuda, H. Biological activity of recombinant chicken interleukin-6 in chicken hybridoma cells. Vet. Immunol. Immunopathol. 2005, 106, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Song, R.; Xing, X.; Wang, L.; Niu, C. Division of Chinese soft-shelled turtle intestine with molecular markers is slightly different from the morphological and histological observation. Integr. Zool. 2018, 13, 112–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Pascual-Anaya, J.; Zadissa, A.; Li, W.; Niimura, Y.; Huang, Z.; Li, C.; White, S.; Xiong, Z.; Fang, D.; et al. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat. Genet. 2013, 45, 701–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Chen, B.; Yuan, L.; Niu, C. Acute cold stress improved the transcription of pro-inflammatory cytokines of Chinese soft-shelled turtle against Aeromonas hydrophila. Dev. Comp. Immunol. 2015, 49, 127–137. [Google Scholar] [CrossRef]
- Wolsk, E.; Mygind, H.; Grondahl, T.S.; Pedersen, B.K.; van Hall, G. IL-6 selectively stimulates fat metabolism in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E832–E840. [Google Scholar] [CrossRef] [Green Version]
- Brandt, C.; Pedersen, B.K. The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J. Biomed Biotechnol. 2010, 2010, 520258. [Google Scholar] [CrossRef]
- Zhang, Z.; Niu, C.; Storset, A.; Bogwald, J.; Dalmo, R.A. Comparison of Aeromonas salmonicida resistant and susceptible salmon families: A high immune response is beneficial for the survival against Aeromonas salmonicida challenge. Fish Shellfish Immunol. 2011, 31, 1–9. [Google Scholar] [CrossRef]
- Zhu, H.; Song, R.; Wang, X.; Hu, H.; Zhang, Z. Peritoneal bacterial infection repressed the expression of IL17D in Siberia sturgeon a chondrostean fish in the early immune response. Fish Shellfish Immunol. 2017, 64, 39–48. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018, 46, D493–D496. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H. Predicting secretory proteins with SignalP. Methods Mol. Biol. 2017, 1611, 59–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geourjon, C.; Deleage, G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 1995, 11, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Aken, B.L.; Achuthan, P.; Akanni, W.; Amode, M.R.; Bernsdorff, F.; Bhai, J.; Billis, K.; Carvalho-Silva, D.; Cummins, C.; Clapham, P.; et al. Ensembl 2017. Nucleic Acids Res. 2017, 45, D635–D642. [Google Scholar] [CrossRef]
- Secombes, C.J. What′s new in fish cytokine research? Fish Shellfish Immunol. 2016, 53, 1–3. [Google Scholar] [CrossRef]
- Langevin, C.; Aleksejeva, E.; Passoni, G.; Palha, N.; Levraud, J.P.; Boudinot, P. The antiviral innate immune response in fish: Evolution and conservation of the IFN system. J. Mol. Biol. 2013, 425, 4904–4920. [Google Scholar] [CrossRef]
- Tong, Y.; Zheng, K.; Zhao, S.; Xiao, G.; Luo, C. Sequence divergence in the 3′-untranslated region has an effect on the subfunctionalization of duplicate Genes. J. Exp. Zool. Part B Mol. Dev. Evol. 2012, 318, 531–544. [Google Scholar] [CrossRef]
- Yatsenko, O.P.; Silkov, A.N.; Khrapov, E.A.; Filipenko, M.L.; Kozlov, V.A.; Sennikov, S.V. Tissue-specific expression of splice variants of human IL-4 and IL-6 gene mRNA. Bull. Exp. Biol. Med. 2012, 152, 329–332. [Google Scholar] [CrossRef]
- Kestler, D.P.; Goldstein, K.M.; Agarwal, S.; Fuhr, J.E.; Andrews, R.; Hall, R.E. Hematopoietic differentiation activity of a recombinant human interleukin-6 (IL-6) isoform resulting from alternatively spliced deletion of the second exon. Am. J. Hematol. 1999, 61, 169–177. [Google Scholar] [CrossRef]
- Kestler, D.P.; Agarwal, S.; Cobb, J.; Goldstein, K.M.; Hall, R.E. Detection and analysis of an alternatively spliced isoform of interleukin-6 mRNA in peripheral blood mononuclear cells. Blood 1995, 86, 4559–4567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, L.; Bachelot, T.; Duc, A.; Biota, C.; Blay, J.Y. A spliced isoform of interleukin 6 mRNA produced by renal cell carcinoma encodes for an interleukin 6 inhibitor. Cancer Res. 2005, 65, 2–5. [Google Scholar] [PubMed]
- Bihl, M.P.; Heinimann, K.; Rudiger, J.J.; Eickelberg, O.; Perruchoud, A.P.; Tamm, M.; Roth, M. Identification of a novel IL-6 isoform binding to the endogenous IL-6 receptor. Am. J. Respir. Cell Mol. Biol. 2002, 27, 48–56. [Google Scholar] [CrossRef]
- Yatsenko, O.P.; Filipenko, M.L.; Khrapov, E.A.; Voronina, E.N.; Kozlov, V.A.; Sennikov, S.V. Alternative splicing of mRNA of mouse interleukin-4 and interleukin-6. Cytokine 2004, 28, 190–196. [Google Scholar] [CrossRef]
- Alsemgeest, J.; Old, J.M.; Young, L.J. Molecular characterisation and expression of interleukin-6 and interleukin-6Delta2 in the Tammar wallaby (Macropus eugenii). Vet. Immunol. Immunopathol. 2013, 155, 139–145. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, B.; Niu, C.; Yuan, L.; Jia, H.; Storey, K.B. Response of the Chinese soft-shelled turtle to acute heat stress: Insights from the systematic antioxidant defense. Front. Physiol. 2019, 10, 710. [Google Scholar] [CrossRef]
- Chen, B.J.; Zhang, W.Y.; Niu, C.J.; Li, W.J.; Jia, H.; Storey, K.B. Antioxidant response to acute cold exposure and during recovery in juvenile Chinese soft-shelled turtles (Pelodiscus sinensis). J. Exp. Biol. 2019, 222. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Rock, F.; Chong, P.; Cockle, S.; Keating, A.; Ziltener, H.; Klein, M. Structure-function analysis of the C-terminal segment of human interleukin-6. J. Biol. Chem. 1993, 268, 22377–22384. [Google Scholar]
- Simpson, R.J.; Hammacher, A.; Smith, D.K.; Matthews, J.M.; Ward, L.D. Interleukin-6: Structure-function relationships. Protein Sci. 1997, 6, 929–955. [Google Scholar] [CrossRef]
- Borthwick, C.R.; Young, L.J.; McAllan, B.M.; Old, J.M. Identification of the mRNA encoding interleukin-6 and its receptor, interleukin-6 receptor alpha, in five marsupial species. Dev. Comp. Immunol. 2016, 65, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Brakenhoff, J.P.; Hart, M.; Aarden, L.A. Analysis of human IL-6 mutants expressed in Escherichia coli. Biologic activities are not affected by deletion of amino acids 1-28. J. Immunol. 1989, 143, 1175–1182. [Google Scholar] [PubMed]
- Rohleder, N.; Aringer, M.; Boentert, M. Role of interleukin-6 in stress, sleep, and fatigue. Ann. N. Y. Acad. Sci. 2012, 1261, 88–96. [Google Scholar] [CrossRef]
- LeMay, L.G.; Vander, A.J.; Kluger, M.J. The effects of psychological stress on plasma interleukin-6 activity in rats. Physiol. Behav. 1990, 47, 957–961. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, B.K.; Fischer, C.P. Beneficial health effects of exercise--the role of IL-6 as a myokine. Trends Pharmacol. Sci. 2007, 28, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.J.; Morrow-Tesch, J.L.; Beller, D.I.; Levy, E.M.; Black, P.H. Immunosuppression in mice induced by cold water stress. Brain Behav. Immun. 1990, 4, 278–291. [Google Scholar]
- Hangalapura, B.N.; Kaiser, M.G.; Poel, J.J.; Parmentier, H.K.; Lamont, S.J. Cold stress equally enhances in vivo pro-inflammatory cytokine gene expression in chicken lines divergently selected for antibody responses. Dev. Comp. Immunol. 2006, 30, 503–511. [Google Scholar] [CrossRef]
- Yildirim, N.C.; Yurekli, M. The effect of adrenomedullin and cold stress on interleukin-6 levels in some rat tissues. Clin. Exp. Immunol. 2010, 161, 171–175. [Google Scholar] [CrossRef]
- Zhu, G.F.; Chancellor-Freeland, C.; Berman, A.S.; Kage, R.; Leeman, S.E.; Beller, D.I.; Black, P.H. Endogenous substance P mediates cold water stress-induced increase in interleukin-6 secretion from peritoneal macrophages. J. Neurosci. 1996, 16, 3745–3752. [Google Scholar] [CrossRef] [Green Version]
- Prakasam, R.; Fujimoto, M.; Takii, R.; Hayashida, N.; Takaki, E.; Tan, K.; Wu, F.; Inouye, S.; Nakai, A. Chicken IL-6 is a heat-shock gene. FEBS Lett. 2013, 587, 3541–3547. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.H.; Yang, F.F.; Ling, R.Z.; Liao, S.A.; Miao, Y.T.; Ye, C.X.; Wang, A.L. Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus). Aquat. Toxicol. 2015, 164, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.Y.; Niu, C.J.; Chen, B.J.; Storey, K.B. Digital gene expression profiling reveals transcriptional responses to acute cold stress in Chinese soft-shelled turtle Pelodiscus sinensis juveniles. Cryobiology 2018, 81, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.W.; Kim, K.H.; Ahn, D.K.; Kim, H.S.; Kim, J.Y.; Lee, D.C.; Park, S.Y. Time-course changes of hormones and cytokines by lipopolysaccharide and its relation with anorexia. J. Physiol. Sci. 2007, 57, 159–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Tian, M.; Song, R.; Xing, X.; Fan, Y.; Wang, L.; Niu, C.; Dalmo, R.A. A New IL6 Isoform in Chinese Soft-Shelled Turtle (Pelodiscus sinesis) Discovered: Its Regulation during Cold Stress and Infection. Biology 2020, 9, 111. https://doi.org/10.3390/biology9050111
Zhang Z, Tian M, Song R, Xing X, Fan Y, Wang L, Niu C, Dalmo RA. A New IL6 Isoform in Chinese Soft-Shelled Turtle (Pelodiscus sinesis) Discovered: Its Regulation during Cold Stress and Infection. Biology. 2020; 9(5):111. https://doi.org/10.3390/biology9050111
Chicago/Turabian StyleZhang, Zuobing, Miao Tian, Ruxin Song, Xiao Xing, Yong Fan, Lan Wang, Cuijuan Niu, and Roy A. Dalmo. 2020. "A New IL6 Isoform in Chinese Soft-Shelled Turtle (Pelodiscus sinesis) Discovered: Its Regulation during Cold Stress and Infection" Biology 9, no. 5: 111. https://doi.org/10.3390/biology9050111
APA StyleZhang, Z., Tian, M., Song, R., Xing, X., Fan, Y., Wang, L., Niu, C., & Dalmo, R. A. (2020). A New IL6 Isoform in Chinese Soft-Shelled Turtle (Pelodiscus sinesis) Discovered: Its Regulation during Cold Stress and Infection. Biology, 9(5), 111. https://doi.org/10.3390/biology9050111