Temperature Decreases Spread Parameters of the New Covid-19 Case Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Epidemic Data Extraction
2.2. Modelling the Epidemic Spread with Temperature-Dependent Parameters
2.3. Statistical Time Series Modelling
2.4. Statistical Analyses for French Administrative Regions and Selected Countries
3. Results
3.1. Temperature Decreases Initial Negative Autocorrelation Slope of Epidemic Spread in Five Countries
3.2. Temperature Decreases Regional Initial Rates of Epidemic Spread in France
3.3. Temperature Decreases Country-Wise Initial Rates of Epidemic Spread
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gong, S.R.; Bao, L.L. The battle against SARS and MERS coronaviruses: Reservoirs and Animal Models. Animal Model Exp. Med. 2018, 1, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Magal, P.; Seydi, O.; Webb, G. Understanding Unreported Cases in the COVID-19 Epidemic Outbreak in Wuhan, China, and Importance of Major Public Health Interventions. Biology 2020, 9, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.F.; Quadeer, A.A.; McKay, M.R. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses 2020, 12, 254. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Fong, D.Y.T.; Zhu, B.; Karlberg, J. Environmental Factors on the SARS Epidemic: Air Temperature, Passage of Time and Multiplicative Effect of Hospital Infection. Epidemiol. Infect. 2006, 134, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.H.; Peiris, J.S.; Lam, S.Y.; Poon, L.L.; Yuen, K.Y.; Seto, W.H. The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Adv. Virol. 2011, 2011, 734690. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.M.; Zhao, X.S.; Wen, R.F.; Huang, J.J.; Pi, G.H.; Zhang, S.X.; Han, J.; Bi, S.L.; Ruan, L.; Dong, X.P.; et al. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed. Environ. Sci. 2003, 16, 246–255. [Google Scholar]
- Yunoki, M.; Urayama, T.; Yamamoto, I.; Abe, S.; Ikuta, K. Heat sensitivity of a SARS-associated coronavirus introduced into plasma products. Vox Sang. 2004, 87, 302–303. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.-H.; Ou, C.-Q.; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Shinde, G.R.; Kalamkar, A.B.; Mahalle, P.N.; Dey, N.; Chaki, J.; Hassanien, A.B. Forecasting Models for Coronavirus (COVID-19): A Survey of the State-of-the-Art. SN Comput. Sci. TechRxiv Prepr. 2020. Available online: https://www.techrxiv.org/articles/Forecasting_Models_for_Coronavirus_COVID19_A_Survey_of_the_State-of-the-Art/12101547/1 (accessed on 30 April 2020). [CrossRef] [Green Version]
- Sajadi, M.M.; Habibzadeh, P.; Vintzileos, A.; Shokouhi, S.; Miralles-Wilhelm, F.; Amoroso, A. Temperature, humidity, and latitude analysis to predict potential spread and seasonality for COVID-19. SSRN Electron. J. 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3550308 (accessed on 30 April 2020). [CrossRef]
- Towers, S.; Chowell, G.; Hameed, R.; Jastrebski, M.; Khan, M.; Meeks, J.; Mubayi, A.; Harris, G. Climate change & influenza: Likelihood of early and severe influenza seasons following warmer than average winters. PLoS Curr. 2013, 5. [Google Scholar] [CrossRef]
- Liu, Q.; Tan, Z.M.; Sun, J.; Hou, Y.; Fu, C.; Wu, Z. Changing rapid weather variability increases influenza epidemic risk in a warming climate. Environ. Res. Lett. 2020, 15, 044004. [Google Scholar] [CrossRef]
- Rhodes, C.J.; Demetrius, L. Evolutionary entropy determines invasion success in emergent epidemics. PLoS ONE 2010, 5, e12951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaudart, J.; Ghassani, M.; Mintsa, J.; Rachdi, M.; Waku, J.; Demongeot, J. Demography and Diffusion in epidemics: Malaria and Black Death spread. Acta Biotheor. 2010, 58, 277–305. [Google Scholar] [CrossRef] [PubMed]
- Scarpino, S.V.; Petri, G. On the predictability of infectious disease outbreaks. Nat. Commun. 2019, 10, 898. [Google Scholar] [CrossRef] [Green Version]
- Gaudart, J.; Touré, O.; Dessay, N.; Dicko, A.L.; Ranque, S.; Forest, L.; Demongeot, J.; Doumbo, O.K. Modelling malaria incidence with environmental dependency in a locality of Sudanese savannah area, Mali. Malaria J. 2009, 8, 61. [Google Scholar] [CrossRef]
- Demongeot, J.; Gaudart, J.; Lontos, A.; Promayon, E.; Mintsa, J.; Rachdi, M. Least diffusion zones in morphogenesis and epidemiology. Int. J. Bifurc. Chaos 2012, 22, 1250028. [Google Scholar] [CrossRef] [Green Version]
- Demongeot, J.; Gaudart, J.; Mintsa, J.; Rachdi, M. Demography in epidemics modelling. Commun. Pure Appl. Anal. 2012, 11, 61–82. [Google Scholar] [CrossRef]
- Guttmann, A.; Ouchchane, L.; Li, X.; Perthus, I.; Gaudart, J.; Demongeot, J.; Boire, J.Y. Performance map of a cluster detection test using the extended power. Int. J. Health Geogr. 2013, 12, 47. [Google Scholar] [CrossRef] [Green Version]
- Demongeot, J.; Hansen, O.; Hessami, H.; Jannot, A.S.; Mintsa, J.; Rachdi, M.; Taramasco, C. Random modelling of contagious diseases. Acta Biotheor. 2013, 61, 141–172. [Google Scholar] [CrossRef]
- Demongeot, J.; Ghassani, M.; Rachdi, M.; Ouassou, I.; Taramasco, C. Archimedean Copula and Contagion Modeling in Epidemiology. Netw. Heterog. Media 2013, 8, 149–170. [Google Scholar] [CrossRef]
- Guttmann, A.; Li, X.; Gaudart, J.; Gerard, Y.; Demongeot, J.; Boire, J.Y.; Ouchchane, L. Spatial heterogeneity of type I error for local cluster detection tests. Int. J. Health Geogr. 2014, 13, 15. [Google Scholar] [CrossRef] [Green Version]
- Demongeot, J.; Demetrius, L. Complexity and Stability in Biological Systems. Int. J. Bifurc. Chaos 2015, 25, 40013. [Google Scholar] [CrossRef]
- Guttmann, A.; Li, X.; Feschet, F.; Gaudart, J.; Demongeot, J.; Boire, J.Y.; Ouchchane, L. Cluster detection tests in spatial epidemiology: A global indicator for performance assessment. PLoS ONE 2015, 10, e0130594. [Google Scholar] [CrossRef] [PubMed]
- Demongeot, J.; Jelassi, M.; Hazgui, H.; Ben Miled, S.; Bellamine Ben Saoud, N.; Taramasco, C. Biological Networks Entropies: Examples in Neural Memory Networks, Genetic Regulation Networks and Social Epidemic Networks. Entropy 2018, 20, 36. [Google Scholar] [CrossRef] [Green Version]
- Wiener, N. Extrapolation, Interpolation, and Smoothing of Stationary Time Series; The MIT Press: Cambridge, MA, USA, 1949. [Google Scholar]
- Wolfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones Kelly, T.C.; Vollmar, P.; Rothe, C. Virological assessment of hospitalized cases of coronavirus disease 2019. MedRciv 2020. [Google Scholar] [CrossRef] [Green Version]
- Oliveiros, B.; Caramelo, L.; Ferreira, N.C.; Caramelo, F. Role of temperature and humidity in the modulation of the doubling time of COVID-19 cases. MedRχiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Araujo, M.B.; Naimi, B. Spread of SARS-CoV-2 Coronavirus likely to be constrained by climate. MedRχiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Bukhari, Q.; Jameel, Y. Will Coronavirus Pandemic Diminish by Summer? MedRχiv 2020. [Google Scholar] [CrossRef]
- Bannister-Tyrrell, M.; Meyer, A.; Faverjon, C.; Cameron, A. Preliminary evidence that higher temperatures are associated with lower incidence of COVID-19, for cases reported globally up to 29th February 2020. MedRχiv 2020. [Google Scholar] [CrossRef]
- Faust, V.; Harlfinger, O.; Neuwirth, R. Weather and Disease. 3. Weather-dependent Diseases- Conclusion. Fortschr. Med. 1977, 95, 331–335. [Google Scholar] [PubMed]
Country | ARIMA (3,1,0) Residual STD | ARIMA (4,1,0) Residual STD | ARIMA (5,1,0) Residual STD | ARIMA (6,1,0) Residual STD | ARIMA (3,1,1) Residual STD |
---|---|---|---|---|---|
France | 51.85 | 46.80 | 45.83 | 41.25 | 48.06 |
Italy | 252.72 | 198.51 | 184.90 | 230.10 | |
Germany | 99.98 | 99.97 | 99.96 | 95.54 | 99.97 |
Chile | 1.99 | 2.00 | 1.78 | ||
China | 361.52 | 344.30 | 343.50 | 342.61 | 349.15 |
French Regions | 2020 | New Cases vs. Previous Day | |||||||
---|---|---|---|---|---|---|---|---|---|
Temp | 4III | 5III | 6III | 7III | 10III | 15III | 23III | 25III | |
Auvergne-Rhône-Alpes | 11.00 | 49 | 15 | 11 | 27 | 49.0 | 54.8 | 150.9 | 181.5 |
Bourgogne-Franche-Comté | 10.00 | 16 | 23 | 39 | 51 | −2.0 | 67.6 | 110.8 | 111.0 |
Bretagne | 11.53 | 23 | 6 | 3 | 8 | 14.3 | 27.0 | 34.0 | 56.5 |
Centre-Val de Loire | 10.73 | 0 | 2 | 9 | 5 | 1.0 | 14.0 | 34.0 | 100.0 |
Corse | 14.13 | 0 | 3 | 0 | 2 | 12.3 | 14.6 | 9.9 | 15.5 |
Grand Est | 9.00 | 38 | 39 | 59 | 114 | 79.7 | 201.4 | 345.0 | 611.5 |
Hauts de France | 10.40 | 65 | 9 | 23 | 76 | 25.3 | 58.0 | 91.3 | 242.0 |
Ile de France | 10.80 | 55 | 21 | 13 | 15 | 121.3 | 275.6 | 545.6 | 724.5 |
Normandie | 10.53 | 2 | 4 | 5 | 0 | 9.7 | 21.6 | 45.4 | 88.5 |
Nouvelle-Aquitaine | 13.40 | 5 | 3 | 3 | 6 | 13.3 | 19.0 | 65.5 | 118.0 |
Occitanie | 12.60 | 9 | 2 | 7 | 18 | 11.3 | 36.0 | 64.6 | 157.5 |
Pays de la Loire | 11.40 | 7 | 1 | 8 | 2 | 4.3 | 15.4 | 23.1 | 37.5 |
Provence-Alpes-Côte d’Azur | 11.80 | 13 | 5 | 8 | 12 | 24.0 | 56.2 | 139.9 | 208.5 |
Pearson Rx100 | −48.95 | −68.34 | −74.73 | −65.17 | −34.3 | −48.1 | −43.5 | −43.8 |
Country/Day | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | Const | Slope |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Australia | 112 | 122 | 140 | 197 | 88.138 | 0.1832 | ||||||||||||||||
Austria | 104 | 112 | 131 | 182 | 302 | 361 | 504 | 66.244 | 0.2825 | |||||||||||||
Bahrain | 109 | 110 | 189 | 195 | 210 | 88.724 | 0.1884 | |||||||||||||||
Belgium | 109 | 169 | 200 | 239 | 267 | 314 | 314 | 599 | 102.14 | 0.1963 | ||||||||||||
Canada | 138 | 176 | 108.2 | 0.2432 | ||||||||||||||||||
Czech Rep | 116 | 150 | 89.707 | 0.257 | ||||||||||||||||||
France | 100 | 100 | 191 | 212 | 282 | 420 | 613 | 706 | 1116 | 1402 | 1774 | 2269 | 2860 | 3640 | 71.019 | 0.2898 | ||||||
Germany | 129 | 157 | 196 | 262 | 534 | 639 | 795 | 1112 | 1139 | 1296 | 1567 | 2369 | 3062 | 106.46 | 0.2624 | |||||||
Iran | 141 | 245 | 388 | 593 | 978 | 1501 | 2336 | 2922 | 3513 | 4747 | 5823 | 6566 | 7161 | 8042 | 9000 | 10,075 | 11,364 | 223.37 | 0.2641 | |||
Italy | 124 | 229 | 322 | 400 | 650 | 888 | 1128 | 1689 | 2036 | 2502 | 3089 | 3858 | 4636 | 5883 | 7375 | 9172 | 10,149 | 12,462 | 15,113 | 17,660 | 169.95 | 0.2475 |
Japan | 105 | 132 | 144 | 157 | 164 | 186 | 210 | 230 | 239 | 254 | 268 | 284 | 317 | 349 | 408 | 455 | 488 | 514 | 568 | 620 | 107.47 | 0.0872 |
Malaysia | 117 | 129 | 129 | 129 | 197 | 100.72 | 0.1042 | |||||||||||||||
Netherlands | 128 | 188 | 265 | 321 | 382 | 503 | 614 | 804 | 112.28 | 0.2485 | ||||||||||||
Norway | 113 | 147 | 169 | 192 | 277 | 489 | 489 | 750 | 79.017 | 0.2716 | ||||||||||||
S Korea | 104 | 204 | 346 | 602 | 763 | 977 | 1261 | 1766 | 2337 | 3150 | 3736 | 4212 | 4812 | 5328 | 5766 | 6284 | 6767 | 7134 | 7382 | 7513 | 323.41 | 0.1664 |
Singapore | 102 | 106 | 108 | 110 | 110 | 117 | 130 | 138 | 150 | 160 | 166 | 178 | 187 | 200 | 90.377 | 0.0551 | ||||||
Spain | 114 | 151 | 198 | 257 | 374 | 430 | 589 | 1024 | 1639 | 2140 | 2965 | 4231 | 71.126 | 0.335 | ||||||||
Sweden | 137 | 161 | 203 | 248 | 326 | 461 | 620 | 775 | 96.68 | 0.2572 | ||||||||||||
Switzerland | 209 | 264 | 332 | 332 | 491 | 645 | 858 | 1125 | 155.58 | 0.2388 | ||||||||||||
UK | 118 | 167 | 210 | 277 | 323 | 373 | 460 | 594 | 802 | 103.55 | 0.2223 | |||||||||||
USA | 108 | 129 | 148 | 213 | 213 | 213 | 472 | 696 | 987 | 1264 | 1678 | 64.111 | 0.2882 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demongeot, J.; Flet-Berliac, Y.; Seligmann, H. Temperature Decreases Spread Parameters of the New Covid-19 Case Dynamics. Biology 2020, 9, 94. https://doi.org/10.3390/biology9050094
Demongeot J, Flet-Berliac Y, Seligmann H. Temperature Decreases Spread Parameters of the New Covid-19 Case Dynamics. Biology. 2020; 9(5):94. https://doi.org/10.3390/biology9050094
Chicago/Turabian StyleDemongeot, Jacques, Yannis Flet-Berliac, and Hervé Seligmann. 2020. "Temperature Decreases Spread Parameters of the New Covid-19 Case Dynamics" Biology 9, no. 5: 94. https://doi.org/10.3390/biology9050094
APA StyleDemongeot, J., Flet-Berliac, Y., & Seligmann, H. (2020). Temperature Decreases Spread Parameters of the New Covid-19 Case Dynamics. Biology, 9(5), 94. https://doi.org/10.3390/biology9050094