Aconitase: To Be or not to Be Inside Plant Glyoxysomes, That Is the Question
Abstract
:1. Introduction
2. The Glyoxysome Story
3. Aconitase Gene Families in Plants
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Breidenbach, R.W.; Beevers, H. Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem. Biophys. Res. Commun. 1967, 27, 462–469. [Google Scholar] [CrossRef]
- Breidenbach, R.W.; Kahn, A.; Beevers, H. Characterization of glyoxysomes from castor bean endosperm. Plant Physiol. 1968, 43, 705–713. [Google Scholar] [CrossRef] [Green Version]
- De Duve, C.; Baudhuin, P. Peroxisomes (microbodies and related particles). Physiol. Rev. 1966, 46, 323–357. [Google Scholar] [CrossRef]
- Cooper, T.G.; Beevers, H. Mitochondria and Glyoxysomes from Castor Bean Endosperm. J. Biol. Chem. 1969, 244, 3507–3513. [Google Scholar] [CrossRef] [PubMed]
- Pracharoenwattana, I.; Smith, S.M. When is a peroxisome not a peroxisome? Trends Plant Sci. 2008, 13, 522–525. [Google Scholar] [CrossRef] [PubMed]
- Courtois-Verniquet, F.; Douce, R. Lack of aconitase in glyoxysomes and peroxisomes. Biochem. J. 1993, 294, 103–107. [Google Scholar] [CrossRef] [Green Version]
- De Bellis, L.; Hayashi, M.; Biagi, P.P.; Hara-Nishimura, I.; Alpi, A.; Nishimura, M. Immunological analysis of aconitase in pumpkin cotyledons: The absence of aconitase in glyoxysomes. Physiol. Plant. 1994, 90, 757–762. [Google Scholar] [CrossRef]
- De Bellis, L.; Hayashi, M.; Nishimura, M.; Alpi, A. Subcellular and developmental changes in distribution of aconitase isoforms in pumpkin cotyledons. Planta 1995, 195, 464–468. [Google Scholar] [CrossRef]
- Hayashi, M.; De Bellis, L.; Alpi, A.; Nishimura, M. Cytosolic Aconitase Participates in the Glyoxylate Cycle in Etiolated Pumpkin Cotyledons. Plant Cell Physiol. 1995, 36, 669–680. [Google Scholar] [CrossRef]
- Maa, Z.; Bykovac, N.V.; Igamberdieva, A.U. Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds. Crop J. 2017, 5, 459–477. [Google Scholar] [CrossRef]
- Dong, H.; Bai, L.; Zhang, Y.; Zhang, G.; Mao, Y.; Min, L.; Xiang, F.; Qian, D.; Zhu, X.; Song, C.P. Modulation of Guard Cell Turgor and Drought Tolerance by a Peroxisomal Acetate-Malate Shunt. Mol. Plant 2018, 11, 1278–1291. [Google Scholar] [CrossRef] [Green Version]
- Sandalio, L.M.; Gotor, C.; Romero, L.C.; Romero-Puertas, M.C. Multilevel Regulation of Peroxisomal Proteome by Post-Translational Modifications. Int. J. Mol. Sci. 2019, 20, 4881. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.H.; Yu, S.I.; Lee, B.H.; Lee, D.H. Modulation of Energy Metabolism Is Important for Low-Oxygen Stress Adaptation in Brassicaceae Species. Int. J. Mol. Sci. 2020, 21, 1787. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, S.L.; Ghogare, R.; Dhingra, A. Glyoxylic acid overcomes 1-MCP-induced blockage of fruit ripening in Pyrus communis L. var. ‘D’Anjou’. Sci. Rep. 2020, 10, 7084. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Liu, J.; Hu, J. Peroxisomes in plant reproduction and seed-related development. J. Integr. Plant Biol. 2019, 61, 784–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, R.; Liu, J.; Wang, S.; Hu, J. Peroxisomes: Versatile organelles with diverse roles in plants. New Phytol. 2020, 225, 1410–1427. [Google Scholar] [CrossRef] [Green Version]
- Schnarrenberger, C.; Oeser, A.; Tolbert, N.E. Development of Microbodies in Sunflower Cotyledons and Castor Bean Endosperm during Germination. Plant Physiol. 1971, 48, 566–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolbert, N.E. Microbodies-Peroxisomes and Glyoxysomes. Ann. Rev. Plant Physiol. 1971, 22, 45–74. [Google Scholar] [CrossRef]
- Beevers, H. Microbodies in higher plants. Ann. Rev. Plant Physiol. 1979, 30, 159–193. [Google Scholar] [CrossRef]
- Tolbert, N.E. Metabolic Pathways in Peroxisomes and Glyoxysomes. Ann. Rev. Biochem. 1981, 50, 133–157. [Google Scholar] [CrossRef]
- Beevers, H. Glyoxysomes in higher plants. Ann. N. Y. Acad. Sci. 1982, 386, 243–251. [Google Scholar] [CrossRef]
- Huang, A.H.C.; Trelease, R.N.; Moore, T.S. Plant Peroxisomes, American Society of Plant Physiologists; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Trelease, R.N. Biogenesis of Glyoxysomes. Ann. Rev. Plant Physiol. 1984, 35, 321–347. [Google Scholar] [CrossRef]
- Gut, H.; Matile, P. Apparent induction of key enzymes of the glyoxylic acid cycle in senescent barley leaves. Planta 1988, 176, 548–550. [Google Scholar] [CrossRef] [PubMed]
- De Bellis, L.; Picciarelli, P.; Pistelli, L.; Alpi, A. Localization of glyoxylate-cycle marker enzymes in peroxisomes of senescent leaves and green cotyledons. Planta 1990, 180, 435–439. [Google Scholar] [CrossRef]
- De Bellis, L.; Tsugeki, R.; Nishimura, M. Glyoxylate cycle enzymes in peroxisomes isolated from petals of pumpkin (Cucurbita sp.) during senescence. Plant Cell Physiol. 1991, 32, 1227–1235. [Google Scholar]
- Pistelli, L.; De Bellis, L.; Alpi, A. Peroxisomal enzyme activities in attached senescing leaves. Planta 1991, 184, 151–153. [Google Scholar] [CrossRef]
- Vicentini, F.; Matile, P. Gerontosomes, a Multifunctional Type of Peroxisome in Senescent Leaves. J. Plant Physiol. 1993, 142, 50–56. [Google Scholar] [CrossRef]
- Nishimura, M.; Takeuchi, Y.; De Bellis, L.; Hara-Nishimura, I. Leaf peroxisomes are directly transformed to glyoxysomes during senescence of pumpkin cotyledons. Protoplasma 1993, 175, 131–137. [Google Scholar] [CrossRef]
- Brouquisse, R.; Gaillard, J.; Douce, R. Electron Paramagnetic Resonance Characterization of Membrane Bound Iron-Sulfur Clusters and Aconitase in Plant Mitochondria. Plant Physiol. 1986, 81, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Brouquisse, R.; Nishimura, M.; Gaillard, J.; Douce, R. Characterization of a Cytosolic Aconitase in Higher Plant Cells. Plant Physiol. 1987, 84, 1402–1407. [Google Scholar] [CrossRef] [Green Version]
- Verniquet, F.; Gaillard, J.; Neoburger, M.; Douce, R. Rapid inactivation of plant aconitase by hydrogen peroxide. Biochem. J. 1991, 276, 643–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bellis, L.; Tsugeki, R.; Alpi, A.; Nishimura, M. Purification and characterization of aconitase isoforms from etiolated pumpkin cotyledons. Physiol. Plant. 1993, 88, 485–492. [Google Scholar] [CrossRef]
- Pistelli, L.; De Bellis, L.; Alpi, A. Evidences of glyoxylate cycle in peroxisomes of senescent cotyledons. Plant Sci. 1995, 109, 13–21. [Google Scholar] [CrossRef]
- Arnaud, N.; Ravet, K.; Borlotti, A.; Touraine, B.; Boucherez, J.; Fizames, C.; Briat, J.F.; Cellier, F.; Gaymard, F. The iron-responsive element (IRE)/iron-regulatory protein 1 (IRP1)–cytosolic aconitase iron-regulatory switch does not operate in plants. Biochem. J. 2007, 405, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, H.; De Bellis, L.; Ciurli, A.; Kondo, M.; Hayashi, M.; Nishimura, M. A Novel Acyl-CoA Oxidase That Can Oxidize Short-chain Acyl-CoA in Plant Peroxisomes. J. Biol. Chem. 1999, 274, 12715–12721. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, H.; De Bellis, L.; Hayashi, Y.; Nito, K.; Kato, A.; Hayashi, M.; Hara-Nishimura, I.; Nishimura, M. Molecular Characterization of an Arabidopsis Acyl-Coenzyme A Synthetase Localized on Glyoxysomal Membranes. Plant Physiol. 2002, 130, 2019–2026. [Google Scholar] [CrossRef] [Green Version]
- Rylott, E.L.; Rogers, C.A.; Gilday, A.D.; Edgell, T.; Larson, T.R.; Graham, I.A. Arabidopsis Mutants in Short- and Medium-chain Acyl-CoA Oxidase Activities Accumulate Acyl-CoAs and Reveal That Fatty Acid β-Oxidation Is Essential for Embryo Development. J. Biol. Chem. 2003, 278, 21370–21377. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.; Nishimura, M. Arabidopsis thaliana—A model organism to study plant peroxisomes. Biochim. Biophys. Acta 2006, 1763, 1382–1391. [Google Scholar] [CrossRef] [Green Version]
- Graham, I.A. Seed Storage Oil Mobilization. Annu. Rev. Plant Biol. 2008, 59, 115–142. [Google Scholar] [CrossRef]
- Navarre, D.A.; Wendehenne, D.; Durner, J.; Noad, R.; Klessig, D.F. Nitric Oxide Modulates the Activity of Tobacco Aconitase. Plant Physiol. 2000, 122, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Carrari, F.; Nunes-Nesi, A.; Gibon, Y.; Lytovchenko, A.; Loureiro, M.E.; Fernie, A.R. Reduced Expression of Aconitase Results in an Enhanced Rate of Photosynthesis and Marked Shifts in Carbon Partitioning in Illuminated Leaves of Wild Species Tomato. Plant Physiol. 2003, 133, 1322–1335. [Google Scholar] [CrossRef] [Green Version]
- Moeder, W.; del Pozo, O.; Navarre, D.A.; Martin, G.B.; Klessig, D.F. Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana. Plant Mol. Biol. 2007, 63, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Mettler, I.J.; Beevers, H. Oxidation of NADH in glyoxysomes by a malate-aspartate shuttle. Plant Physiol. 1980, 66, 555–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaldson, R.P. Nicotinamide cofactors (NAD and NADP) in glyoxysomes, mitochondria and plastids isolated from castor bean endosperm. Arch. Biochem. Biophys. 1982, 215, 274–279. [Google Scholar] [CrossRef]
- van Roermund, C.W.; Elgersma, Y.; Singh, N.; Wanders, R.J.; Tabak, H.F. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J. 1995, 14, 3480–3486. [Google Scholar] [CrossRef]
- McAlister-Henn, L.; Steffan, J.S.; Minard, K.I.; Anderson, S.L. Expression and function of a mislocalized form of peroxisomal malate dehydrogenase (MDH3) in yeast. J. Biol. Chem. 1995, 270, 21220–21225. [Google Scholar] [CrossRef] [Green Version]
- Minard, K.I.; McAlister-Henn, L. Isolation, nucleotide sequence analysis, and disruption of the MDH2 gene from Saccharomyces cerevisiae: Evidence for three isozymes of yeast malate dehydrogenase. Mol. Cell. Biol. 1991, 11, 370–380. [Google Scholar] [CrossRef]
- Pracharoenwattana, I.; Cornah, J.E.; Smith, S.M. Arabidopsis peroxisomal malate dehydrogenase functions in β-oxidation but not in the glyoxylate cycle. Plant J. 2007, 50, 381–390. [Google Scholar] [CrossRef]
- Reumann, S. Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiol. 2004, 135, 783–800. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.M.; Yang, Q.; Liu, Y.J.; Yang, H.L. Molecular Evolution and Expression Divergence of the Aconitase (ACO) Gene Family in Land Plants. Front. Plant Sci. 2016, 7, 1879. [Google Scholar] [CrossRef] [Green Version]
- Peyrett, P.; Perez, P.; Alrich, M. Structure, Genomic Organization, and Expression of the Arabidopsis thaliana Aconitase Gene—Plant aconitase show significant homology with mammalian iron-responsive-element-binding protein. J. Biol. Chem. 1995, 270, 8131–8137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millar, A.H.; Sweetlove, L.J.; Giegé, P.; Leaver, C.J. Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol. 2001, 127, 1711–1727. [Google Scholar] [CrossRef]
- Terol, J.; Soler, G.; Talon, M.; Cercos, M. The aconitate hydratase family from Citrus. BMC Plant Biol. 2010, 10, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruft, V.; Eubel, H.; Jansch, L.; Werhahn, W.; Braun, H.P. Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol. 2001, 127, 1694–1710. [Google Scholar] [CrossRef] [PubMed]
- Heazlewood, J.L.; Tonti-Filippini, J.S.; Gout, A.M.; Day, D.A.; Whelan, J.; Millar, A.H. Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 2004, 16, 241–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cots, J.; Widmer, F. Germination, senescence and pathogenic attack in soybean (Glycine max L.): Identification of the cytosolic aconitase participating in the glyoxylate cycle. Plant Sci. 1999, 149, 95–104. [Google Scholar] [CrossRef]
- Eprintsev, A.T.; Fedorin, D.N.; Cherkasskikh, M.V.; Igamberdiev, A.U. Regulation of expression of the mitochondrial and cytosolic forms of aconitase in maize leaves via phytochrome. Plant Physiol. Biochem. 2020, 146, 157–162. [Google Scholar] [CrossRef]
- Bernard, D.G.; Cheng, Y.; Zhao, Y.; Balk, J. An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis. Plant Physiol. 2009, 151, 590–602. [Google Scholar] [CrossRef] [Green Version]
- Hooks, M.A.; Allwood, J.W.; Harrison, J.K.; Kopka, J.; Erban, A.; Goodacre, R.; Balk, J. Selective induction and subcellular distribution of ACONITASE 3 reveal the importance of cytosolic citrate metabolism during lipid mobilization in Arabidopsis. Biochem. J. 2014, 463, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Eprintsev, A.T.; Fedorin, D.N.; Nikitina, M.V.; Igamberdiev, A.U. Expression and properties of the mitochondrial and cytosolic forms of aconitase in maize scutellum. J. Plant Physiol. 2015, 181, 14–19. [Google Scholar] [CrossRef]
- Li, Y.; Beisson, F.; Pollard, M.; Ohlrogge, J. Oil content of Arabidopsis seeds: The influence of seed anatomy, light and plant-to-plant variation. Phytochemistry 2006, 67, 904–915. [Google Scholar] [CrossRef] [PubMed]
- Badouin, H.; Gouzy, J.; Grassa, C.J.; Murat, F.; Staton, S.E.; Cottret, L.; Lelandais-Brire, C.; Owens, G.L.; Carrre, S.; Mayjonade, B.; et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 2017, 546, 148–152. [Google Scholar] [CrossRef] [PubMed]
- ePlant Sunflower. Available online: http://bar.utoronto.ca/eplant_sunflower/ (accessed on 15 May 2020).
- Brito, D.S.; Agrimi, G.; Charton, L.; Brilhaus, D.; Bitetto, M.G.; Lana-Costa, J.; Messina, E.; Nascimento, C.P.; Feitosa-Araújo, E.; Pires, M.V.; et al. Biochemical and functional characterization of a mitochondrial citrate carrier in Arabidopsis thaliana. Biochem. J. 2020, 477, 1759–1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Database/Program | ACO1 * (At4g35830) | ACO2 * (At4g26970) | ACO3 * (At2g05710) |
---|---|---|---|
The Plant Proteome Database (https://ppdb.tc.cornell.edu) | mitochondria; cytosol | mitochondria | mitochondria; cytosol |
SUBcellular localisation database for Arabidopsis proteins—SUBA (https://suba.plantenergy.uwa.edu.au) | mitochondria; cytosol | mitochondria | mitochondria |
Protein Localization Database (https://www.rostlab.org/services/locDB/index.php) | mitochondria; cytosol | mitochondria | mitochondria |
Organelle DB (http://labs.mcdb.lsa.umich.edu/organelledb/index.php) | mitochondria | mitochondria | mitochondria |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Bellis, L.; Luvisi, A.; Alpi, A. Aconitase: To Be or not to Be Inside Plant Glyoxysomes, That Is the Question. Biology 2020, 9, 162. https://doi.org/10.3390/biology9070162
De Bellis L, Luvisi A, Alpi A. Aconitase: To Be or not to Be Inside Plant Glyoxysomes, That Is the Question. Biology. 2020; 9(7):162. https://doi.org/10.3390/biology9070162
Chicago/Turabian StyleDe Bellis, Luigi, Andrea Luvisi, and Amedeo Alpi. 2020. "Aconitase: To Be or not to Be Inside Plant Glyoxysomes, That Is the Question" Biology 9, no. 7: 162. https://doi.org/10.3390/biology9070162
APA StyleDe Bellis, L., Luvisi, A., & Alpi, A. (2020). Aconitase: To Be or not to Be Inside Plant Glyoxysomes, That Is the Question. Biology, 9(7), 162. https://doi.org/10.3390/biology9070162