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Abstract: A SIRU-type epidemic model is employed for the prediction of the COVID-19 epidemy
evolution in Brazil, and analyze the influence of public health measures on simulating the control
of this infectious disease. The proposed model allows for a time variable functional form of
both the transmission rate and the fraction of asymptomatic infectious individuals that become
reported symptomatic individuals, to reflect public health interventions, towards the epidemy control.
An exponential analytical behavior for the accumulated reported cases evolution is assumed at the
onset of the epidemy, for explicitly estimating initial conditions, while a Bayesian inference approach
is adopted for the estimation of parameters by employing the direct problem model with the data
from the first phase of the epidemy evolution, represented by the time series for the reported cases of
infected individuals. The evolution of the COVID-19 epidemy in China is considered for validation
purposes, by taking the first part of the dataset of accumulated reported infectious individuals to
estimate the related parameters, and retaining the rest of the evolution data for direct comparison
with the predicted results. Then, the available data on reported cases in Brazil from 15 February
until 29 March, is used for estimating parameters and then predicting the first phase of the epidemy
evolution from these initial conditions. The data for the reported cases in Brazil from 30 March until
23 April are reserved for validation of the model. Then, public health interventions are simulated,
aimed at evaluating the effects on the disease spreading, by acting on both the transmission rate
and the fraction of the total number of the symptomatic infectious individuals, considering time
variable exponential behaviors for these two parameters. This first constructed model provides fairly
accurate predictions up to day 65 below 5% relative deviation, when the data starts detaching from
the theoretical curve. From the simulated public health intervention measures through five different
scenarios, it was observed that a combination of careful control of the social distancing relaxation
and improved sanitary habits, together with more intensive testing for isolation of symptomatic
cases, is essential to achieve the overall control of the disease and avoid a second more strict social
distancing intervention. Finally, the full dataset available by the completion of the present work is
employed in redefining the model to yield updated epidemy evolution estimates.
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1. Introduction

A new human coronavirus started spreading in Wuhan, China, by the end of 2019, and turned into
a pandemic disease called COVID-19 as declared by the World Health Organization on 11 March 2020.
Since then, the affected countries and cities around the world have been reacting in different ways,
towards locally controlling the disease evolution. These measures include general isolation through
quarantine and massive testing for focused isolation, with varying degrees of success so far, as can be
analyzed from the limited data available. Naturally, China offers the earliest and longest time series on
reported infectious cases and the resulting effects of combining different public health interventions.
As of 26 March 2020, there were no reports in China of further internal contaminations, and all the new
cases were associated with infected individuals that (re)entered in the country. Despite the apparent
success of the interventions in China, each region or country might require a specific combination of
measures, due to demographic spatial distribution and age structure, health system capabilities, and
social-economical characteristics. In this sense, it urges to have a mathematical model that would
allow for the simulation of such possible interventions on the epidemy evolution within the short and
long terms. This article presents a collaborative research effort towards the construction of an epidemy
evolution prediction tool, which combines direct and inverse problem analysis and is both reliable and
easy to implement and execute. This work was initially motivated towards offering some insight into
the control of COVID-19 within Brazil since its early stage of evolution.

The classical susceptible-infectious-recovered (SIR) model describes the transmission of diseases
between susceptible and infectious individuals and provides the basic framework for almost all
phenomenological epidemic models. At the onset of the coronavirus epidemy in China, there were
some initial studies for the prediction of its evolution and the analysis of the impact of public health
measures [1], which however did not consider in the modeling the presence of unreported infectious
individuals cases, which are in practice inherent to this process. The present work is thus based
on the SIRU-type model proposed in Reference [2], which deals with the epidemic outbreak in
Wuhan by introducing the unreported cases in the modeling, and evaluating the consequences of
public health interventions. This was a direct application of previous developments [3,4] on the
fundamental problem of parameter estimation in mathematical epidemic models, accounting for
unreported symptomatic infectious individuals. This same modeling approach was later on employed
in the analysis of the epidemic outbreak in different countries, including China, South Korea, Germany,
Italy, United Kingdom, Spain, and France [5–8]. Besides identifying unreported cases, this simple and
robust model also introduces a latency period and a time variable transmission rate, which can simulate
a public health orientation change, such as in a general isolation measure. In addition, an exponential
analytical behavior is assumed for the accumulated reported cases evolution along with an initial
phase just following the onset of the epidemy, which, upon fitting of the available data, allows for the
explicit analytical estimation of the transmission rate and the associated initial conditions required by
the model.

Here, the SIRU-type model in References [2–11] is implemented for the direct problem formulation
of the COVID-19 epidemy evolution, adding a time variable parametrization for the fraction of
asymptomatic infectious that become reported symptomatic individuals, a very important parameter
in the public health measure associated with massive testing and consequent focused isolation.
The same analytical identification procedure is maintained for the required initial conditions, as
obtained from the early stage exponential behavior assumption [2–8]. However, a Bayesian inference
approach is here adopted for parametric estimations, complementing these analytical estimates
obtained through the hypothesis of exponential growth in the early stage of the epidemy, before any
public health intervention. Other recent contributions have successfully combined phenomenological
deterministic compartmental models with Bayesian inference approaches for state estimation and
parameter estimation [12–16]. For the present purposes, the Markov Chain Monte Carlo method
with the Metropolis-Hastings sampling algorithm has been employed [17–21]. At first, the goal of
the inverse problem analysis was estimating the parameters associated with the transmission rate
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and the fraction of asymptomatic infectious that become reported symptomatic individuals, which
can be quite different in the various regions and countries and may also vary according to the public
health measures. Then, in light of the success in this parametrization and on the estimation of the
required coefficients, an extended estimation was also implemented which incorporates the average
time the asymptomatic infectious are asymptomatic and the average time the infectious stay in the
symptomatic condition, due to the noticeable uncertainty on these parameters in the medical literature.
The proposed approach was then applied to the data from China, initially by taking just the first
portion of these data points in the estimation, while using the second portion to validate the model
using the estimated parameters with just the first phase of the epidemy evolution, and later on by
employing the whole time series in the MCMC estimation procedure, thus identifying parameters
for the whole evolution period. This second estimation was particularly aimed at refining the data
for the average times that asymptomatic infectious individuals and symptomatic individuals remain
infectious. Upon validation of the approach through the data for China, we have proceeded to the
analysis of the epidemy dynamics in Brazil, employing 35 days (15 February until 29 March) of
collected information on reported symptomatic infectious individuals. First, this initial phase data was
employed in the estimation of parameters, followed by the prediction of the epidemy evolution in
Brazil. For this purpose, the following days (up to day 60) were reserved to be used in the validation of
the proposed model for the COVID-19 evolution in Brazil during this initial phase. Then, we have
explored the time variation of both the transmission rate and the fraction of asymptomatic infections
that become reported symptomatic individuals, to reflect public health interventions, in simulating
possible government measures, as described in different scenarios. Finally, the full dataset of reported
cases available by completion of this work, was employed in the redefinition of the model to provide
predictions of the epidemy evolution based on more recent observations at that particular moment.

2. The Forward SIRU-Type Model

The implemented SIRU-type model [2–8] is given by the following initial value problem:

dS(t)
dt

= −τ(t)S(t)[I(t) + U(t)] (1a)

dI(t)
dt

= τ(t)S(t)[I(t) + U(t)] − νI(t) (1b)

dR(t)
dt

= ν1(t)I(t) − ηR(t) (1c)

dU(t)
dt

= ν2(t)I(t) − ηU(t) (1d)

where,
ν1(t) = ν f (t) (2a)

ν2(t) = ν(1− f (t)) (2b)

with initial conditions
S(t0) = S0 (3a)

I(t0) = I0 (3b)

R(t0) = 0 (3c)

U(t0) = U0 (3d)

Here, t0 is the beginning date of the epidemy in days, S(t) is the number of individuals susceptible
to infection at time t, I(t) is the number of asymptomatic infectious individuals at time t, R(t) is the
number of reported symptomatic infectious individuals (i.e., symptomatic infections with mild to
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severe symptoms) at time t, and U(t) is the number of unreported symptomatic infectious individuals
(i.e., symptomatic infections with light to mild symptoms) at time t. Asymptomatic infectious
individuals I(t) are infectious for an average period of 1/ν days. Reported symptomatic individuals
R(t) are infectious for an average period of 1/η days, as are unreported symptomatic individuals
U(t). We assume that reported symptomatic infectious individuals R(t) are reported and isolated
immediately and cause no further infections. The asymptomatic individuals I(t) can also be viewed as
having a low-level symptomatic state. All infections are acquired from either I(t) or U(t) individuals.
The fraction f (t) of asymptomatic infections become reported symptomatic infections, and the fraction
1 − f (t) becomes unreported symptomatic infections. The rate that asymptomatic infectious become
reported symptomatic is ν1(t) = f (t)ν, while the rate that asymptomatic infections become unreported
symptomatic is ν2(t) = (1 − f (t)) ν, where ν1(t) + ν2(t) = ν. The transmission rate, τ(t), is also allowed to
be a time variable function along the evolution process. Figure 1 below illustrates the infection process
as a flow chart.
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The time variable coefficients, τ(t) and f (t), are chosen to be expressed as:

τ(t) = τ0 , 0 ≤ t ≤ N (4a)

τ(t) = τ0 exp(−µ(t−N)), t > N (4b)

f (t) = f0 , 0 ≤ t ≤ N f (4c)

f (t) = ( fmax− f0)
[
1− exp

(
−µ f

(
t−N f

))]
+ f0, t > N f (4d)

These parametrized functions are particularly useful in interpreting the effects of public health
interventions. For instance, the transmission rate, τ(t), is particularly affected by a reduced circulation
achieved through a general isolation or quarantine measure or by the relaxation of this social distancing,
while the fraction f (t) of asymptomatic infections that become reported, thus isolated, cases can be
drastically increased by a massive testing measure with focused isolation. In the above relations,
µ is the attenuation factor for the transmission rate, N is the starting time in days for application
of the public health intervention to change transmission rate, while µ f is the argument of the f (t)
variation between the limits ( f0, fmax). The first time variable function has been previously considered
in References [5–8], while the second one has been introduced in the present work, to allow for the
examination of combined measures. Existence and uniqueness of positive solutions for nonlinear
SIRU-type models, which include system (1) as a special case, have been more closely discussed
in References [22,23]. Moreover, it should be recalled that the present class of ordinary differential
deterministic model is more appropriate to regions with fairly homogeneous spatial behavior and
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characteristics, since the spatial spread of epidemic disease in a geographical setting [23] is not explicitly
accounted for in the present work.

The cumulative number of reported cases at time t, CR(t), which is the quantity offered by the
actual available data, and the a priori unknown cumulative number of unreported cases, CU(t),
are given by:

CR(t) =
∫ t

t0

ν1(s)I(s)ds (5a)

CU(t) =
∫ t

t0

ν2(s)I(s)ds (5b)

The daily number of reported cases from the model, DR(t), can be obtained by computing the
solution of the following equation:

dDR(t)
dt

= ν f (t)I(t) −DR(t) (6a)

with initial conditions
DR(t0) = DR0 (6b)

Both Equation (1a–d) and Equation (6a,b) are here numerically solved through the mixed
symbolic-numerical Mathematica v.12 platform [24], using the built-in function NDSolve, with prescribed
relative and absolute errors control to within 10 digits. This routine provides interpolating function
objects as output, thus offering a continuous representation of the dependent variables at the completion
of the computations. These interpolating functions are then analytically integrated through the Integrate
function [24] to yield accurate results for the accumulated reported and unreported cases, Equation (5a,b).

3. The Backward SIRU-Type Model

Inverse problem analysis is nowadays a common practice in various science and engineering
contexts, in which the groups involved with experiments and numerical simulation collaborate to obtain
the maximum information from the available data, towards the best possible use of the modeling for the
problem under study. Here, as mentioned in the introduction, we first review an analytical parametric
estimation described in more details in References [4–8], that from the initial phase of the epidemy
evolution allows to explicitly obtain the unknown initial conditions of the model, while offering
a reliable estimate for the transmission rate at the onset of the epidemy. Nevertheless, even after
these estimates, a few other parameters in the model remain unknown, either due to the specific
characteristics of the physical conditions or response to the epidemy in each specific region, or due
to lack of epidemiological information on the disease itself. Therefore, an inverse problem analysis
was undertaken aimed at estimating the main parameters involved in the model, as summarized in
Table 1 below. In case 1, which is associated with the dataset on the accumulated reported cases for
China, the focus is on the parametrized time variation of the transmission rate (τ0 and µ), while the
fraction of asymptomatic infectious individuals that become reported ( f0), in this case, it was assumed
constant. Then, in case 2, the inverse problem analysis was extended to refine the information on
the average times (1/ν and 1/η) through a simultaneous estimation of the five parameters. Next,
in case 3, employing the dataset for Brazil just up to 29 March, the parametrized time variation of
the transmission rate (τ0 and µ) and the fraction of asymptomatic infectious individuals that become
reported f (t), assumed time-variable, are estimated by parametrization of an abrupt variation that
requires just the estimation of fmax and N f . Finally, in case 4, the model was redefined for the second
stage of the epidemy evolution in Brazil, through estimation of five parameters associated with new
time-variable functions for the transmission rate and partition coefficient along this second phase.
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Table 1. Summary of the estimated parameters on each inverse problem analysis.

Case Parameter under Estimation Data Range Used in Inverse Problem

China

case 1: CH3p f0, µ, τ0 19 January up to 17 February
case 2: CH5p-full f0, µ, τ0, 1/ν, 1/η 19 January up to 16 April

Brazil

case 3: BR5p f0, µ, τ0, fmax, N f 25 February up to 29 March
case 4: BR5p µ2, N2, fmax2, µ f 2, N f 2 30 March up to 26 June

The statistical inversion approach here implemented falls within the Bayesian statistical
framework [8–12], in which (probability distribution) models for the measurements and the unknowns
are constructed separately and explicitly, as shall be briefly reviewed in what follows.

As explained in previous works employing this model [4–8], it is assumed that in the early phase of
the epidemy, the cumulative number of reported cases grows approximately exponentially, according
to the following functional form:

CR(t) = χ1 exp(χ2 t) − χ3 , t ≥ t0 (7a)

After fitting this function to the early stage of the epidemy evolution, one may extract the
information on the unknown initial conditions, in the form [4–7]:

t0 =
1
χ2

[ln(χ3 ) − ln(χ1)] (7b)

I0 =
χ3χ2

f0ν
(7c)

U0 =
(1− f0)ν
η+ χ2

I0 (7d)

In addition, an excellent estimate for the initial transmission rate can be obtained from the same
fitted function, in the form:

τ0 =
χ2 + ν

S0

η+ χ2

(1− f0)ν+ η+ χ2
(7e)

Moreover, the basic reproductive number for this initial phase model is estimated as:

R0 =
τ0S0

ν
[1 +

(1− f0)ν
η

] (7f)

The statistical approach for the solution of inverse problems here adopted employs the
Metropolis-Hastings algorithm for the implementation of the Markov chain Monte Carlo (MCMC)
method [8,9]. The MCMC method is used in conjunction with the numerical solution of the ordinary
differential system, Equations (1)–(3), for estimating the remaining model parameters. Consider the
vector of parameters appearing in the physical model formulation as:

PT
≡ [P1, P2, . . . , PNP] (8)

is available (Y) containing the measurements Ym at time tm, m = 1, . . . , M.
Bayes’ theorem can then be stated as [8,9]:

πposterior(P) = π(P|Y) =
πprior(P)π(Y|P)

π(Y)
(9)
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where πposterior(P) is the posterior probability density, that is, the conditional probability of the
parameters P given the measurements Y, πprior(P) is the prior density, that is, the coded information
about the parameters prior to the measurements, π(Y|P) is the likelihood function, which expresses
the likelihood of different measurement outcomes Y with P given, and π(Y) is the marginal probability
density of the measurements, which plays the role of a normalizing constant. If different prior
probability densities are assumed for the parameters, the posterior probability distribution may not
allow an analytical treatment. In this case, Markov chain Monte Carlo (MCMC) methods are used
to draw samples of all possible parameters, and thus inference on the posterior probability becomes
inference on the samples [8,9]. Throughout this work, the mathematical formulation is supposed to
perfectly represent the physical problem, and the measurement errors are assumed to be Gaussian
random variables, with zero means, known covariance matrix W and independent of the parameters P.
The measurement errors, ε, are assumed to be additive, that is:

Y = CR + ε (10)

where, CR is the vector of solutions of the mathematical formulation (calculated through Equation (5a)),
obtained with the vector of parameters P. Due to the additive model for the measurement errors the
likelihood function, that gives the relative probability density of different measurement outcomes Y
with a fixed P can be written as proportional to:

π(Y|P) ∝ e−
1
2 (Y−CR)TW−1(Y−CR). (11)

A posterior probability, in Bayesian statistics, can be understood as the “revised” probability
of the prior information, after taking into consideration the measurements. However, in this work,
it is unfeasible to obtain an analytical posterior distribution through the Bayes theorem, due to the
non-linearity of the model and the large space of parameters involved. Thus, the MCMC method
is able to provide a picture of the posterior distribution, without solving the mathematical integrals
in Bayes’ rule. The idea is to approximate the posterior distribution by a large collection of samples
of values.

The idea behind the Metropolis-Hasting sampling algorithm is illustrated below, and these steps
should be repeated until it is judged that a sufficiently representative sample has been generated:

(1) Start the chain with an initial value, that usually comes from any prior information that one
may have;

(2) Randomly generate a proposed jump aiming that the chain will move around and efficiently
explores the region of the parameter space. The proposal distribution can take on many different
forms, in this work a Gaussian random walk was employed, implying that the proposed jumps
will usually be near the current one;

(3) Compute the probability of moving from the current value to the proposed one. Candidates
moving to regions of higher probability will be definitely accepted. Candidates in regions of lower
probability can be accepted only probabilistically. If the proposed jump is rejected, the current
value is tally again. For more details on theoretical aspects of the Metropolis-Hastings algorithm
and MCMC methods and its application, the reader should refer to References [8–12].

4. Results

4.1. Model Validation: China

Before proceeding to the analysis of the COVID-19 epidemy evolution within Brazil, the proposed
direct-inverse problem analysis approach is validated. In this sense, due to the availability of the
earliest dataset on this pandemic, we have chosen to use the information from China in terms of
the accumulated reported infectious cases. The data for China was extracted from Reference [6],
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complemented by the more recent data from Reference [25] from 1 January up to 17 April 2020.
The exponential fit for the early phase of the China CR(t) dataset provided the estimates of the
three parameters, χ1 = 0.14936, χ2 = 0.37680, χ3 = 1.0, from which we have estimated t0 = 5.046.
The remaining data for the initial conditions, I0 and U0, and the early stage transmission rate, τ0,
are in fact recalculated from within the MCMC algorithm, since the changing values of f will affect
them, according to Equation (7c–e). The average times in the model were first taken as 1/ν = 7 and
1/η = 7 days and the isolation measures were taken at n = 25 days [6]. First, experimental data from
China from the period of 19 January up to 17 February was employed in demonstrating the estimation
of three parameters, f0, µ, and τ0, assuming there is no significant time variation in the function f (t)
(µ f = 0). In the absence of more informative priors, uniform distributions were employed for all three
parameters under estimation. Table 2 presents the prior information and the initial guesses for the
parameters. If the initial guesses were used to predict the CR(t) behavior, a marked over-estimation
of the accumulated reported infected individuals would occur, especially in the long term, as can be
noticed in Figure 2, confirming the need for a proper parameter estimation, as will be shown.

Table 2. Prior distributions and initial guesses for the parameters to be estimated f0, µ, and τ0

(Wuhan, China).

Case 1: CH3p

Parameter Prior Distribution Initial Guess Source

f0 U[0, 1] 0.5 estimated
µ U[0, 5] 0.1 estimated
τ0 U

[
0, 1× 10−6

]
4.478× 10−8 estimated

S0 11.0 × 106 fixed
t0 5.04617 fixed

1/ν 7 days fixed

1/η 7 days fixed

N 25 fixed

χ1 0.14936 fixed

χ2 0.37680 fixed

χ3 1.0 fixed
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Table 3. Estimated values and 99% confidence intervals for three parameters, f0, µ, and τ0 (Wuhan, China).

Case 1: CH3p

Parameter Estimated Values 99% Confidence Interval

f0 0.780719 [0.77956, 0.7818]

µ 0.135635 [0.135219, 1.136153]

τ0 4.47793× 10−8
[
4.47793× 10−8, 4.47793× 10−8

]
The central tendency (mean value) of the posteriors here sampled, after neglecting the first 20,000

burning in states of the chain, are called the estimated values. Both the estimated values and their 99%
confidence intervals are presented in Table 3. It should be mentioned that these values are fairly close
to those employed in Reference [6], where τ0 was estimated as 4.51 × 10−8. Once a value of f0 = 0.8
was assumed, which means that 20% of symptomatic infectious cases go unreported, it led to a good
agreement with the data by taking µ = 0.139 in Reference [6].

Figure 2 also demonstrates the adherence of the model with the data within this portion of the
dataset, once the estimated values in Table 3 are employed in the forward problem solution, as can be
seen from the excellent agreement between the estimated CR(t) (solid line) and the experimental data
from China (blue stars). The desired model validation is illustrated in Figure 3, confirming the excellent
agreement of China’s full dataset (period from 19 January until 16 April) with the mathematical model
predictions, after adopting the estimated values for the parameters in Table 3. It should be recalled that
non-informative priors were adopted for the three parameters, as presented in Table 2, and except for
the transmission rate, when Equation (7e) provides an excellent initial guess, the remaining guesses
were completely arbitrary. A uniform prior means that all possible values, in the specified limits,
are equally likely to be sampled, i.e., no prior information can be distinguished among possible values.
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Although the presently estimated parameters have led to a good prediction of the second phase
of the China epidemy evolution data, there are still uncertainties associated with the average times
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here assumed both equal to seven days, according to Reference [6]. This choice was based on early
observations of the infected asymptomatic and symptomatic patients in Wuhan, but more recent
studies have been refining the information on the epidemy evolution and the disease itself, such as in
References [26–28]. For this reason, we have also implemented a statistical inverse analysis with the
full dataset of China, but now seeking the estimation of five parameters, to simultaneously estimate
the average times (1/ν and 1/η). Both uniform and Gaussian distributions were adopted for the two
new parameters, with initial guesses of 1/ν = 7 days and 1/η = 7 days, and n = 25 days, as employed in
Reference [6]. Table 4 presents the prior information and the initial guesses for the parameters.

Table 4. Prior distributions and initial guesses for the five parameters to be estimated,
f0, µ, τ0, 1/ν and 1/η, (Wuhan, China)

Case 2: CH5p

Param. Prior Distribution Initial Guess

f0 U[0, 1] 0.8 estimated
µ U[0, 5] 0.131 estimated
τ0, U

[
0, 1× 10−6

]
4.4779× 10−8 estimated

1/ν N[5.2, σ = 2.1]
(Min = 1, Max = 21) 7 estimated

1/η N[10.4, σ = 2.6]
(Min = 1, Max = 21) 7 estimated

S0 11.0 × 106 fixed
t0 5.04617 fixed
N 25 fixed
χ1 0.14936 fixed
χ2 0.37680 fixed
χ3 1.0 fixed

Table 5 provides the estimated values and 99% confidence intervals for all five parameters,
with Gaussian priors for the two average times with data obtained from References [26–28],
after neglecting the first 15,000 burning in states of the chain. The most affected parameter in
comparison with the previous estimates is the average time 1/η, which is also the one with the widest
confidence interval. This behavior is also evident from the Markov chains for this parameter, now
simultaneously estimated. Figure 4 compares the theoretical predictions with the model incorporating
the five estimated parameters as in Table 5, against the full CR(t) dataset for China, confirming the
improved agreement. The 99% confidence interval bounds for this predicted behavior is also shown in
Figure 4, bounded by the grey lines.

Table 5. Estimated values and 99% confidence intervals for five parameters, f0, µ, τ0, 1/ν and 1/η
(Wuhan, China).

Case 2: CH5p

Parameter Estimated Values 99% Confidence Interval

f0 0.718491 [0.711595, 0.723138]
µ 0.132032 [0.131789, 0.13227]
τ0 4.47793× 10−8

[
4.47793× 10−8, 4.47793× 10−8

]
1/ν 6.20798 [6.12574, 6.25764]
1/η 11.2784 [10.4379, 12.3593]
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Figure 4. Comparison of the theoretical model for CR(t) with the five estimated parameter values
(solid black line) and 99% confidence intervals (gray lines), against the complete dataset for China from
19 January up to 16 April (blue cross)—Case 2: CH5p.

4.2. Model Application: Brazil

The CR(t) data for the accumulated reported infectious in Brazil, from 25 February (day 1),
when the first infected individual was reported, up to 29 June (day 127), is presented in Appendix A.
Similarly to the previous example with the data from China, a portion of the available data on
accumulated reported infectious was employed in the estimation of model parameters, up to 29 March
(day 35), when the present study was initiated. Then, a second portion of the data, from 30 March
(day 36) up to 23 April (day 60), was utilized in verifying this first constructed model.

Following the hybrid procedure described above, the exponential phase of the evolution was
first fitted, taking the data from day 10 to 25, yielding the estimates of the three parameters,
χ1 = 0.42552, χ2 = 0.293696, χ3 = 3.2335, from which we have estimated t0 = 6.9051. The remaining
data for the initial conditions, I0 and U0, and the early stage transmission rate, τ0, are in fact recalculated
from within the MCMC algorithm, since the changing values of f0 will affect them, according to
Equation (7c–e). The average times in the model were taken as 1/ν= 6.20798 days and 1/η= 11.2784 days,
which were obtained from the MCMC simulation on the full dataset for China (Table 5), as discussed
in the previous section.

The Brazilian states governments took isolation measures starting on n = 21 days, which was
enforced by most states and municipalities throughout the country within a few days. Moreover,
there were initially only 30,000 exam kits available, and an additional 30,000 were later acquired.
However, until mid-April at least, the resulting rather small ration of testing per million inhabitants in
Brazil and the retardation in the exam results confirmation, due to a centralized operation, has caused
a perceptible change in the data structure for the reported infectious cases, which can only be
represented by a time-varying function f (t). The progressive reduction on the number of executed
exams of the symptomatic individuals and the delay of the results availability, has certainly affected
the partition of reported to unreported cases by the end of this period covered by the dataset for
this first stage. Therefore, the more general model, including the time variation of the partition f (t),
and Equation (4c,d), was here implemented for a more refined inverse problem analysis. It is then
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expected that a reduction on the f value can be identified ( fmax < f0), with an abrupt variation on the
exponential behavior, here assumed as a sharp, functional time dependence (large µ f ). Therefore,
a statistical inverse problem analysis is undertaken, this time for estimating five parameters, namely,
f0, µ, τ0, fmax, and N f (Case 3—BR5p) aimed at enhancing the overall agreement with the CR(t) data
behavior, with a likely reduction on the partition of the reported and unreported infectious cases.

With uniform distributions for all five parameters, guided by the previous estimates for the first
three parameters, and arbitrary guesses for fmax, and N f , the prior distributions and initial guesses for
the five parameters are presented in Table 6 and the five estimated quantities, after neglecting the first
80,000 burning in states of the chain are shown in Table 7, together with the 99% confidence interval
for each parameter.

Table 6. Prior distributions and initial guesses for the five parameters to be estimated, f0, µ, τ0, fmax,
N f (Brazil).

Case 3—BR5p

Param. Prior Distribution Initial Guess Source

f 0 U[0, 1] 0.300 estimated
µ U[0, 5] 0.04 estimated
τ0 U

[
0, 1× 10−6

]
1.66755× 10−9 estimated

fmax U[0, 1] 0.165 estimated
Nf U[10, 35] 30.5 estimated
1/ν 6.20798 days fixed
1/η 11.2784 days fixed
S0 211.3 × 106 fixed
t0 6.90514 fixed
N 21 fixed
µf 10 fixed
χ1 0.42552 fixed
χ2 0.293696 fixed
χ3 3.2335 fixed

Table 7. Estimated values and 99% confidence intervals for five parameters f0, µ, τ0, fmax, and
N f (Brazil).

Case 3—BR5p

Parameter Estimated Values 99% Confidence Interval

f0 0.303671 [0.302624, 0.304697]
µ 0.0389639 [0.0388438, 0.0390961]
τ0 1.66755× 10−9

[
1.66755× 10−9, 1.66755× 10−9

]
fmax 0.156734 [0.156146, 0.157217]
N f 30.4197 [30.3522, 30.4915]

Figure 5 presents the predicted evolution of the accumulated reported infectious cases in Brazil,
CR(t), from 25 February up to day 150, plotted as the solid black line. Also shown in this figure are
the blue crosses in the first portion of the available data, up to 29 March, which were employed in
the estimation of the parameters in Table 7, that compose this initial model. In addition, the red dots
represent the second portion of the available data from 30 March until 23 April (day 60), that were not
employed in the parametric estimation, but were saved for model validation. It is clear that the built
model has an excellent predictive feature, reproducing the epidemy evolution up to the end of the
reserved data for validation (up to day 60), with a relative error below 5.8% during this first phase of
the epidemy evolution.
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Figure 5. Prediction of the accumulated reported infectious, CR(t), with the five estimated parameter
values from the available dataset for Brazil from 25 February up to 29 March (blue cross) and validated
with the data up to 23 April (red dots).

One can see the marked reduction on the f (t) parameter from the estimates in Table 7, which results
in the increase of the unreported to reported infectious cases, as is shown in Figure 6 for CR(t) and CU(t)
predictions up to 150 days. Clearly, the reduction on the testing, and thus, on the isolation of reported
infectious individuals, leads to an increase on the total number of infected symptomatic individuals
after 150 days (752,888 cases), including unreported (633,698) and reported cases (119,190). Both the
reported and unreported infectious individual curves, R(t) and U(t), show a peak at around the 70th day
(3 May). Naturally, these projections are inherently assuming that no new interventions or changes in
public health would occur from day 35 on, including circulation alterations and more intensive testing,
or otherwise, the estimated parameters would not represent such a new phenomenological situation.
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The initial phase estimation was repeated, starting with the first 35 data points, and successively
implementing another extra 10 points, up to 55 data points. The final behavior of the reported cases to
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the graphical scale remains essentially the same, reproducing quite well the remaining available data
up to around day 65. Therefore, the essential phenomenological characteristics of this initial phase are
captured by the adopted 35 points estimates, and was basically confirmed by increasing the number of
considered data points. As will be shown in what follows, though this initially constructed model
led to an accurate prediction of the actual epidemy evolution even up to around day 65, the data for
accumulated reported cases started detaching from the theoretical curve after this period, yielding
much higher values after a few weeks. For this reason, it is crucial to implement a scenarios analysis to
anticipate such a behavior, based on likely measures or unplanned changes in public health, as will be
discussed in the next section.

4.3. Scenarios Analyses: Brazil

Next, the model constructed with this initial parametric estimation is employed in the prediction
of the COVID-19 evolution in Brazil under different hypothesis. By the end of this initial period of
60 days, though the proposed model with parameters estimated from the data up to day 35 gave
very good predictions, it was already evident that the circulation in the country, as observed from the
COVID-19 mobility reports made available [29,30], was progressively increasing in comparison to the
first few weeks after the isolation measures, with respect to workplaces and groceries/pharmacies,
especially associated with private vehicles and pedestrian circulation. This tendency becomes more
evident after the Easter holiday, corresponding to day 50 onward, and it could be expected that a
reduction on the transmissivity attenuation factor would result. Besides, the first set of 500,000 testing
kits from a planned amount of 10 million [31], finally arrived in Brazil by day 60, with an expected
impact on increasing the partition factor, and thus, on increasing the number of reported cases with
respect to unreported ones, in the following days. Thus, the prospective scenarios here proposed are
aimed at interpreting the epidemy evolution as a result of these two alterations in public health.

Five scenarios were here explored: (i) This is the base case above proposed, assuming that the
initial public health interventions remain effective, with the same transmission rate decay due to
isolation and the same low partition parameter identified through the first 35 data points; (ii) due to
the progressive reduction on part of the circulation modes, a reduction on the transmission rate
decay parameter is implemented after day 50, but maintaining the same testing capability as before;
(iii) the same reduction on the transmission rate decay parameter of the previous scenario is kept,
but now with an increase in the partition coefficient representing an enhanced testing capability starting
at day 64; (iv) the transmission rate decay parameter is further reduced, to explore the influence of
further circulation increase, while keeping the same fraction of reported cases of the previous scenario,
through a more intensive testing; (v) a combination of interventions leading to further increasing
the transmission rate by reducing the decay parameter, but simultaneously further increasing the
conversion factor of unreported to reported cases with respect to the initially estimated value, f 0.

Table 8 summarizes both the fixed and variable parameter values adopted for these five scenarios.
The additional public health interventions simulated in the above scenarios act on either the time
variation of the transmission coefficient or on the reported to unreported partition coefficient.
The parametric changes are assumed to start at chosen dates further ahead of the initial set of
data (day 35), in the present case t = 50 and 64 days (N2 = 50; Nf 2 = 64), respectively, for acting on the
coefficients, τ(t) and f (t), according to the following parametrizations:

τ(t) = τ0 , 0 ≤ t ≤ N (12a)

τ(t) = τ0 exp(−µ(t−N)), N < t ≤ N2 (12b)

τ(t) = τ02 exp(−µ2(t−N2)), t > N2 (12c)

with
τ02 = τ0 exp(−µ(N2 −N)) (12d)
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f (t) = f0 , 0 ≤ t ≤ N f (12e)

f (t) = ( fmax− f0)
[
1− exp

(
−µ f

(
t−N f

))]
+ f0, N f < t ≤ N f 2 (12f)

f (t) = ( fmax2− f02)
[
1− exp

(
−µ f 2

(
t−N f 2

))]
+ f02, t > N f 2 (12g)

with
f02 = ( fmax− f0)

[
1− exp

(
−µ f

(
N f 2 −N f

))]
+ f0 (12h)

Table 8. Input data in each scenario for COVID-19 epidemy evolution in Brazil.

Fixed Parameters

Scenario All-(i) to (v)

f0 0.303671
µ 0.0389639
N 21
τ0 1.66755× 10−9

fmax 0.156734
µ f 2
N f 30.4197
1/ν 6.20798 days
1/η 11.2784 days
S0 211.3× 106

t0 6.90514
χ1 0.42552
χ2 0.293696
χ3 3.2335

Changing Parameters: (50–240th day)

Scenario (i) (ii) (iii) (iv) (v)

µ2 0 µ× 0.2 µ× 0.2 µ× 0.15 µ× 0.1
N2 - 50 50 50 50

fmax2 - - f0 × 1.25 f0 × 1.25 f0 × 1.5
µ f 2 0 0 0.05 0.05 0.05
N f 2 - 64 64 64 64

In the first scenario, it is assumed that no additional public health interventions are implemented,
other than those already reflected by the data up to 29 March (day 35), which would then be fully
maintained throughout the control period, and the epidemy should evolve from that date, under the
parameters above identified. Figure 5 has already shown the evolution of the accumulated and
instantaneous reported, CR(t) and R(t), unreported, CU(t) and U(t), infectious individuals, up to
150 days. Due to the fairly low value of f (t) starting with f0 ≈ 0.30 and dropping to fmax ≈ 0.16, in light
of the fairly low number of PCR kits made available and other implementation difficulties during this
initial phase, the accumulated number of reported infectious cases is quite low with respect to the
unreported ones, as already discussed. No predictions on casualties are here proposed, since these are
highly dependent on age structure, social-economic conditions, and health system response. It should
be recalled that this initial period of 35 days reflects the strict initial quarantine that was applied at
least at the most affected regions, starting in day 21, which is confirmed through the global mobility
reports [29,30]. However, these are ideal conditions that would be rather unlikely to be enforced for a
much longer period, due to the sociological and economic characteristics of the country. As will be
discussed more closely in what follows, the available mobility reports later on made available have in
fact clearly indicated that especially after the Easter holiday weekend (day 50 and on), the circulation
was progressively increased in average terms within the country, despite the quarantine measures
retained by most of the federation states.
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Therefore, the second scenario explores the implementation of a reduced decay of the transmission
rate by assuming, after day N2 = 50 (Equation (10c)), that the value of µ here identified could be reduced
by a factor of 0.2, thus around µ2 = 0.007793. The time variable transmission rate is then computed from
Equation (12c) after t > N2. The changes in the accumulated reported and unreported cases, as shown
in Figure 7, are quite significant. The predicted number of unreported symptomatic infectious cases is
now much higher reaching after 240 days around 6.14454 × 106 individuals, while the reported cases
would reach 1.1436 × 106 individuals, with a total of 7.28814 × 106 symptomatic infected individuals
and an impressive difference between reported and unreported cases, due to the maintained low value
of fmax.
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Though the reduced decay of the transmission rate shows a more realistic picture of the epidemy
evolution after day 60, it is known from the Brazilian Ministry of Health site [31] that the PCR testing
was markedly intensified after around day 60, corresponding to a total of about 3,820,000 applied tests
by 26 June, and continuously increasing, as opposed to only 60,000 tests applied in the initial phase of
the epidemy. Therefore, a more realistic picture of the ratio of reported to unreported cases is achieved
by simultaneously increasing the partition factor. Through the third scenario, one can predict the
consequences of reducing the exponential parameter that affects transmission rate, as in the previous
scenario, and increasing by 25% the partition with respect to the initial factor ( fmax2 = f0 × 1.25). This is
simulated here by progressively increasing the partition factor, starting after day N f 2 = 64, taking an
exponential parameter of µ f 2 = 0.05, as expressed by Equation (12g), to allow for a gradual increase in
testing. The changes in the accumulated and instantaneous reported and unreported symptomatic
cases, as shown in Figure 8, are even more significant than in the second scenario (ii), Figure 7.
The predicted number of accumulated unreported infectious cases is now reaching after 240 days
around 3.2041 × 106 individuals, while the reported cases would reach 1.51472 × 106 individuals, with
a marked decrease to a total of around 4.71882 × 106 infectious symptomatic cases with respect to
scenario (ii). Besides acting on the transmission rate along time, public health measures may also be
effective in reducing the overall epidemic dynamics through the ratio of reported to the unreported
infectious case, since the reported cases are, in general, directly isolated, and thus, interrupting the
contamination path, as demonstrated in this third scenario, where a marked reduction in the total
number of symptomatic infectious individuals from around 7.3 to 4.7 million is observed.
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By analyzing the data on the percentual average circulation increase from day 50 to day 120 [29,30],
assuming that the transmission rate can be approximately parametrized with the circulation, a reduction
on the exponential factor of 0.177 could be expected, lower than that proposed in scenario (iii). Therefore,
the fourth scenario examines the effect of further reducing the transmission factor coefficient, again
starting at day N2 = 50, by a factor of 0.15, thus around µ2 = 0.005845. The fraction of reported
and unreported infectious cases parameter, again reaches fmax2 = f0 × 1.25 = 0.3796, starting at
N f 2 = 64 days with µ f 2 = 0.05, such as in the previous scenario. Therefore, Figure 9 shows the
behavior of CR(t), R(t) and CU(t), U(t). The predicted number of unreported infectious cases would
now reach, after 240 days, around 5.06029 × 106 individuals, while the reported cases should reach
2.5922 × 106 individuals, with an also marked reduction to a total of around 7.65249 × 106 infectious
cases. The predicted total number of infectious cases becomes even higher than that achieved in
scenario (ii), illustrating the importance of an accurate estimation of the parameter that governs the
temporal attenuation behavior of the transmission factor.
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By the time the final revision of this paper was being prepared, different cities and states throughout
Brazil were taking partial isolation relaxation measures, while massive testing was being implemented
in various locations. In light of the continental dimensions of the country and the fairly heterogeneous
and non-simultaneous public health measures, the average overall response to these measures can be
analyzed by simultaneously reducing the transmission exponential factor and increasing the maximum
partition factor. Therefore, in the fifth scenario, the combination of public health measures affecting both
the transmission rate and the conversion factor of unreported to reported cases is analyzed for Brazil.
Let us consider that after day N2 = 50, the partial relaxation of social distancing leads to a reduction
of 0.1 on µ value previously identified, thus around, µ2 = 0.0038964, and simultaneously increasing
the fraction of reported and unreported infectious cases, to provide fmax2 = 0.4555, also starting after
N f 2 = 64 days, with µ f 2 = 0.05. The changes in the accumulated and instantaneous reported and
unreported cases are shown in Figure 10. The predicted number of unreported infectious cases is
now reaching after 240 days around 6.5372 × 106 individuals, while the reported cases should reach
4.74799 × 106 individuals, with a total of 11.2852 × 106 infectious symptomatic cases, around 47.5%
increase with respect to the previous scenario with lower transmission rates. Again, through the
increased testing, a number of mild symptomatic cases were moved from the unreported to the reported
cases evolution, thus moved to monitored isolation earlier, with some impact on the contagious chain,
as can be observed through the final ratio of reported to unreported cases. In overall terms, the results
for scenario (v) are markedly different from those for the previous scenario (iv), thus pointing out the
importance of careful control of the social distancing relaxation measures, together with more intensive
testing, to avoid such a marked change.
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Figure 10. Scenario (v) predictions for CR(t) (dashed black curve), CU(t) (dashed red curve), R(t) (solid
cyan curve) and U(t) (solid blue curve) with the five estimated parameter values from the available
dataset for Brazil from 25 February up to 29 March.

Figure 11a,b combine the data on accumulated reported and total (reported+unreported) infectious
symptomatic individuals, respectively, for the predictions provided through the five scenarios here
considered. Clearly, scenario (ii), though involving a more mild reduction in transmission rate
attenuation coefficient, leads to significant numbers of total symptomatic infectious individuals, close
to the values achieved for scenario (iv), essentially due to the fairly low partition factor that was retained
in this case. On the other hand, when examining the fairly different total infectious cases curves for
scenarios 4 and 5, it is clear that a proper combination of public health interventions, which would
involve a more careful control on the relaxation of social distancing and further intensification of
testing, should be implemented to achieve final results for scenario (v) closer to (iv), but with less strict
circulation restrictions. The red dots in Figure 11a represent the actual accumulated reported cases
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data available up to 29 June. Clearly, these results are already closely represented by the conditions
proposed for scenario (iv), without any previous parametric estimation. Such observation offers
possible initial guesses for the model redefinition that shall be undertaken in the next section, based on
the full dataset available at the completion of this work.
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4.4. Model Redefinition: Brazil

The first model construction for Brazil in Section 4.2, employing only the first 35 days of data
(up to 29 March) for the parametric estimation task, provided a fairly accurate prediction up to day 65
roughly to within 5% relative error on the accumulated reported cases evolution at this initial stage,
which corresponds to the end of April. However, expected alterations on public health measures and
behaviors that were initiated in the second half of April, have markedly modified the phenomenological
pattern and the corresponding mathematical representation of the epidemy evolution. The scenarios
analyzed in the previous section already anticipate the need for a model redefinition through a
complementary inverse problem analysis that accounts for the added information from day 36 up to
the last data available up to this work completion (day 127). The new parameters to be estimated
correspond to those introduced through Equation (10c,d,f,g), not accounted for in the first model
proposition and that were varied in the previous scenarios analysis, namely, µ2, N2, fmax2, µ f 2, and
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N f 2. As previously discussed, there is some prior information for the two date parameters, N2

and N f 2, based on the fixed values adopted in the scenarios analysis (days 50 and 64, respectively),
and therefore, an informative normal priori was employed for these two parameters. For the other three
parameters, non-informative uniform priors were employed, with initial guesses provided by scenario
(iv) previously discussed. Table 9 below summarizes the estimated values for the five parameters,
together with the corresponding 99% confidence intervals.

Table 9. Estimated values and 99% confidence intervals for five parameters, µ2, N2, fmax2, µ f 2, and
N f 2 (Brazil).

Case 4—BR5p

Parameter Estimated Values 99% Confidence Interval

µ2 0.00489914 [0.00489891, 0.00489951]
N2 50.2273 [50.2132, 50.2378]

fmax2 0.384824 [0.382447,0.386403]
µ f 2 0.0200351 [0.020032, 0.0200378]
N f 2 62.1399 [61.971, 62.3343]

Figure 12 presents the predicted evolution of the accumulated reported and unreported infectious
cases in Brazil, CR(t) and CU(t), from 25 February up to day 240, plotted as black and red dashed lines,
respectively. Also shown in this figure are the blue crosses in the first portion of the available data,
up to 29 March, which were employed in the estimation of the parameters in Table 7 that compose the
initially proposed model. In addition, the red dots represent the second portion of the available data
from 30 March until 29 June, that were now employed in the parametric estimation for the additional
five parameters in Table 9. The predicted number of unreported infectious cases is now reaching after
240 days around 8.24397 × 106 individuals, while the reported cases reach 3.78342 × 106 individuals,
with a total of 12.0274 × 106 infectious symptomatic cases. From the identified value of the partition
factor in Table 9, which is still well below the value encountered from the China analysis, there is space
for further intensification of the testing campaigns throughout Brazil, towards a reduction on the total
number of symptomatic infectious individuals in the long term.
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Figure 12. Prediction of the accumulated reported and unreported infectious, CR(t) and CU(t), with the
five estimated parameter values from the available dataset for Brazil from 25 February up to 29 March
(blue cross) together with the five new estimated parameter values from the data from 30 March to
29 June (red dots).

The short term predictions from the redefined model have also been compared to a statistical
simulation that employs a basic logistic growth model [32], essentially based on the data for reported
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infectious individuals. From the application in Reference [32] it has been computed from the data up
to 29 June, the values of accumulated reported cases estimated from 30 June (day 128) up to 13 July
(day 141), with 95% confidence intervals, as shown in Figure 13 below, together with the predictions of
the present redefined model. As can be seen, the present short-term predictions for the days 128 to 141
mostly fall within the 95% confidence interval estimates of the logistic growth model in Reference [32].
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Finally, Table 10 summarizes the predicted accumulated reported, unreported, and total
symptomatic infectious individuals at day t = 240 for each of the five scenarios previously considered
and for the redefined model with the full data set for Brazil (Appendix A). Also shown is the
maximum value of the number of instantaneous reported cases, Rmax, and the time of its occurrence,
tmax. Once more, it is quite evident that the first built model with the initial 35 data points could
only capture the phenomenological characteristics of the epidemy up to a certain date (roughly
up to day 65, as previously discussed). Then, the combination of circulation augmentation and
intensified testing led to a markedly different evolution, later confirmed by the redefined model.
The marked differences between these two models are observable through the predicted total number of
symptomatic individuals at day 240, varying from around 0.75 million in the first model to 12.03 million
in the second one. Moreover, the peaks of the instantaneous reported infectious individuals varied
from around day 70 in the first model to about day 147 in the second one. In between these two models,
one can observe from Table 10, the number of accumulated symptomatic individuals at 240 days
and the reported infections peaks predictions for the other four scenarios. Again we point out the
importance of the intensified testing and the proper isolation of those positively tested in the epidemy
evolution control, which is evident in the total number of symptomatic individuals, being much
lower for scenario (iii) with respect to (ii), while the peak of reported symptomatic cases is noticeably
advanced in time (roughly from day 127 down to day 117).

Table 10. Summary of predicted accumulated reported and unreported cases at day 240 for the scenarios
and maximum value and time of instantaneous reported infectious cases (Brazil).

Scenario CR(240) × 106 CU(240) × 106 [CR(240)+CU(240)] × 106 Rmax tmax

(i) 0.11919 0.633698 0.752888 26755 70.2
(ii) 1.14360 6.14454 7.28814 127209 127.4
(iii) 1.51472 3.20410 4.71882 201318 116.9
(iv) 2.59220 5.06029 7.65249 300014 129.5
(v) 4.74799 6.53720 11.2852 479487 141.9

New model 3.78342 8.24397 12.0274 403964 146.9
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5. Conclusions

The present work implements a mixed analytical-statistical inverse problem analysis in the
prediction of epidemy evolution, with a focus on the COVID-19 progression in Brazil. A SIRU-type
model is adopted, which inherently accounts for the unreported symptomatic infectious individuals.
The following aspects can be highlighted in the present study:

• Time-variable functional parametrizations are proposed for the transmissivity and for the partition
of reported and unreported symptomatic cases, which allow for the consideration of public health
measures along the epidemy evolution, such as reducing or increasing circulation and intensifying
PCR testing while isolating the positively tested individuals.

• The inverse problem analysis is based on the combination of an analytical parametric estimation
for the early phase epidemic exponential behavior with a Bayesian inference approach for a longer
following period that encompasses the initial public health interventions to control the epidemics.

• The evolution of the COVID-19 epidemy in China is considered for validation purposes, by taking
the first part of the dataset of accumulated reported infectious individuals to estimate the related
parameters, and retaining the rest of the evolution data for direct comparison with the predicted
results, with excellent agreement.

• The same approach is applied to the Brazilian case, this time employing an initial portion of the
available time series for the parametric estimates up to day 35, and then offering a validation of
the evolution prediction through the initially available remaining dataset up to day 60 (23 April).

• This first constructed model provides fairly accurate predictions up to day 65 below 5% relative
deviation, when the data starts detaching from the theoretical curve.

• Afterwards, some public health intervention measures are critically examined through five
different scenarios, permitting the inspection of their impact on the overall dynamics of the
disease proliferation. It was observed that a combination of careful control of the social distancing
relaxation and sanitary habits, together with more intensive testing for isolation of symptomatic
cases, would be necessary to achieve the overall control of the disease and avoid a second more
strict social distancing intervention.

• The model is then redefined employing the full data set at the completion of this work (day
36 to 127), and new parameters were identified to describe this second phase of the epidemy.
Predictions of the reported and unreported symptomatic cases are then offered with the redefined
model and briefly compared with a statistical simulation that employs a basic logistic growth
model for the short term epidemy behavior.

Further improvement on the modeling is envisioned by enriching the model with latency effects,
age structure discrimination, spatial demographic distribution dependence, and recovery factor
differentiation among isolated and non-isolated patients.
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Nomenclature

CR(t) cumulative number of reported infectious symptomatic cases at time t
CU(t) cumulative number of unreported infectious symptomatic cases at time t
DR(t) daily number of reported infectious symptomatic cases at time t
f (t) time-variable fraction of asymptomatic infectious cases who become reported symptomatic infectious cases
f0 initial fraction of asymptomatic infectious cases who become reported symptomatic infectious cases
fmax second value of fraction of asymptomatic infectious cases who become reported symptomatic infectious cases
fmax2 third value of fraction of asymptomatic infectious cases who become reported symptomatic infectious cases
I(t) number of asymptomatic infectious individuals at time t
I0 asymptomatic infectious individuals at initial time t0

N time in days of application of the first public health intervention that changes the transmission rate
N2 time in days of application of the second public health intervention that changes the transmission rate

N f
time in days for application of the first public health intervention that changes the fraction of asymptomatic
infectious cases that become reported symptomatic infectious cases

N f 2
time in days for application of the second public health intervention that changes the fraction of
asymptomatic infectious cases that become reported symptomatic infectious cases

NP total number of parameters in the estimation algorithm
M total number of measured data used in the estimation
R(t) number of reported symptomatic infectious individuals at time t
R0 reported symptomatic infectious individuals at initial time t0

P vector of parameters under estimation (P1, P2, . . . , PNP)
S(t) number of individuals susceptible to infection at time t
S0 number of individuals susceptible to infection at initial time t0

t time variable, in days
t0 beginning date of the epidemic, in days
U(t) number of unreported symptomatic infectious individuals at time t
U0 unreported symptomatic infectious individuals at initial time t0

Y vector of measured data (Ym at time tm, m = 1, . . . , M)
Greek Symbols
1/η average time in days that the symptomatic infectious cases remain with symptoms
1/ν average time in days that the asymptomatic infectious cases remain asymptomatic
ν1 rate at which asymptomatic infectious cases become reported symptomatic infectious cases
ν2 rate at which asymptomatic infectious cases become unreported symptomatic infectious cases
µ argument of the τ(t) function
µ2 argument of the τ(t) function
µ f argument of the f (t) function
µ f 2 argument of the f (t) function
π(Y) marginal probability density
π(Y|P) likelihood function
πposterior posterior probability density
πprior prior probability density
τ(t) time-variable transmission rate
τ0 initial amplitude of the τ(t) function
χ1 fitting parameter in the early exponential phase of the epidemy, Equation (7a)
χ2 fitting parameter in the early exponential phase of the epidemy, Equation (7a)
χ3 fitting parameter in the early exponential phase of the epidemy, Equation (7a)
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Appendix A

Table A1. Data for Brazil—accumulated reported cases, CR(t), and casualties.

DATE Day Deaths Infected DATE Day Deaths Infected

24 February 2020 1 0 0 28 April 2020 65 5050 72,149
25 February 2020 2 0 1 29 April 2020 66 5484 78,416
26 February 2020 3 0 1 30 April 2020 67 5912 85,507
27 February 2020 4 0 1 1 May 2020 68 6354 91,604
28 February 2020 5 0 1 2 May 2020 69 6750 96,559
29 February 2020 6 0 2 3 May 2020 70 7044 101,227

1 March 2020 7 0 2 4 May 2020 71 7321 107,780
2 March 2020 8 0 2 5 May 2020 72 7921 114,715
3 March 2020 9 0 2 6 May 2020 73 8536 125,218
4 March 2020 10 0 3 7 May 2020 74 9146 135,106
5 March 2020 11 0 8 8 May 2020 75 9897 145,328
6 March 2020 12 0 13 9 May 2020 76 10,627 155,939
7 March 2020 13 0 19 10 May 2020 77 11,123 162,699
8 March 2020 14 0 25 11 May 2020 78 11,519 168,331
9 March 2020 15 0 25 12 May 2020 79 12,400 177,589

10 March 2020 16 0 34 13 May 2020 80 13,149 188,974
11 March 2020 17 0 52 14 May 2020 81 13,993 202,918
12 March 2020 18 0 77 15 May 2020 82 14,817 218,223
13 March 2020 19 0 151 16 May 2020 83 15,633 233,142
14 March 2020 20 0 151 17 May 2020 84 16,118 241,080
15 March 2020 21 0 200 18 May 2020 85 16,792 254,220
16 March 2020 22 0 234 19 May 2020 86 17,971 271,628
17 March 2020 23 1 346 20 May 2020 87 18,859 291,579
18 March 2020 24 4 529 21 May 2020 88 20,047 310,087
19 March 2020 25 7 640 22 May 2020 89 21,048 330,890
20 March 2020 26 11 970 23 May 2020 90 22,013 347,398
21 March 2020 27 18 1178 24 May 2020 91 22,666 363,211
22 March 2020 28 25 1546 25 May 2020 92 23,473 374,898
23 March 2020 29 34 1924 26 May 2020 93 24,512 391,222
24 March 2020 30 46 2247 27 May 2020 94 25,598 411,821
25 March 2020 31 57 2433 28 May 2020 95 26,754 438,238
26 March 2020 32 77 2985 29 May 2020 96 27,878 465,166
27 March 2020 33 92 3417 30 May 2020 97 28,834 498,440
28 March 2020 34 111 3904 31 May 2020 98 29,314 514,200
29 March 2020 35 136 4256 1 June 2020 99 29,937 526,447
30 March 2020 36 159 4589 2 June 2020 100 31,199 555,383
31 March 2020 37 201 5744 3 June 2020 101 32,548 584,016
1 April 2020 38 242 6840 4 June 2020 102 34,021 614,941
2 April 2020 39 299 7911 5 June 2020 103 35,026 645,771
3 April 2020 40 359 9095 6 June 2020 104 35,930 672,846
4 April 2020 41 432 10,298 7 June 2020 105 36,455 691,758
5 April 2020 42 486 11,132 8 June 2020 106 37,134 707,412
6 April 2020 43 555 12,066 9 June 2020 107 38,406 739,503
7 April 2020 44 679 13,862 10 June 2020 108 39,680 772,416
8 April 2020 45 814 16,037 11 June 2020 109 40,919 802,828
9 April 2020 46 943 17,886 12 June 2020 110 41,828 828,810
10 April 2020 47 1065 19,730 13 June 2020 111 42,720 850,514
11 April 2020 48 1131 20,818 14 June 2020 112 43,332 867,624
12 April 2020 49 1225 22,206 15 June 2020 113 43,959 888,271
13 April 2020 50 1333 23,604 16 June 2020 114 45,241 923,189
14 April 2020 51 1541 25,371 17 June 2020 115 46,510 955,377
15 April 2020 52 1745 28,532 18 June 2020 116 47,748 978,142
16 April 2020 53 1933 30,449 19 June 2020 117 48,954 1032,913
17 April 2020 54 2143 33,759 20 June 2020 118 49,976 1067,579
18 April 2020 55 2359 36,739 21 June 2020 119 50,617 1085,038
19 April 2020 56 2468 38,688 22 June 2020 120 51,271 1,106,470
20 April 2020 57 2584 40,616 23 June 2020 121 52,645 1,145,906
21 April 2020 58 2751 43,131 24 June 2020 122 53,830 1,188,631
22 April 2020 59 2917 45,976 25 June 2020 123 54,971 1,228,114
23 April 2020 60 3320 49,711 26 June 2020 124 55,961 1,274,974
24 April 2020 61 3688 53,448 27 June 2020 125 57,070 1,313,667
25 April 2020 62 4047 58,973 28 June 2020 126 57,622 1,344,143
26 April 2020 63 4244 62,208 29 June 2020 127 58,314 1,368,195
27 April 2020 64 4554 66,541
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