An Integrated Entropy-COPRAS Framework for Ningbo-Zhoushan Port Logistics Development from the Perspective of Dual Circulation
Abstract
:1. Research Background
2. Literature Review
3. Evaluation Index System of Port Logistics Based on “Dual Circulation” Pattern
3.1. Principles of Selecting Index
3.2. Analysis of the Composition of the Index System
4. An Integrated Entropy-COPRAS Framework for the Port Logistics Development
4.1. The Weights of Index System
4.2. Evaluation Process of COPRAS Method
5. Evaluation and Analysis of Ningbo-Zhoushan Port Logistics Development Level
5.1. Evaluation Results of Ningbo-Zhoushan Port Logistics Level
5.2. Analysis of Evaluation Results of Each Subsystem Index
5.3. Analysis of Comprehensive Evaluation Results of Logistics Level
5.4. Comparative Analysis with Major Domestic Ports
6. Conclusions
6.1. Main Contributions
6.2. Main Research Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, M.; Lu, J.; Qu, Z.; Yang, Z. Port vulnerability assessment from a supply chain perspective. Ocean. Coast. Manag. 2021, 213, 105851. [Google Scholar] [CrossRef]
- Feng, H.X.; Grifoll, M.; Zheng, P.J. From a feeder port to a hub port: The evolution pathways, dynamics and perspectives of Ningbo-Zhoushan port (China). Transp. Policy 2019, 76, 21–35. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Z.; Yang, Y.; Wu, J. Green efficiency evaluation and improvement of Chinese ports: A cross-efficiency model. Transp. Res. Part D-Transp. Environ. 2020, 88, 102590. [Google Scholar] [CrossRef]
- Tian, X.; Xu, L.; Liu, L.; Wang, S. Analysis and forecasting of port, logistics using TEI@ I methodology. Transp. Plan. Technol. 2013, 36, 685–702. [Google Scholar] [CrossRef]
- Fouda, R.A.N.; Romeo, N.D.; Azizi, M.; Fernandez, S.R. Port logistics in west and central Africa: A strategic development under globalization. Open J. Appl. Sci. 2014, 4, 76–84. [Google Scholar] [CrossRef]
- Ji, M.J.; Chu, Y.L. Optimization for hub-and-spoke port logistics network of dynamic hinterland. Phys. Procedia 2012, 33, 827–832. [Google Scholar]
- Chen, J.; Wan, Z.; Zhang, F.; Park, N.-K.; He, X.; Yin, W. Operational efficiency evaluation of iron ore logistics at the ports of Bohai Bay in China: Based on the PCA-DEA model. Math. Probl. Eng. 2016, 2016, 9604819. [Google Scholar] [CrossRef]
- Ha, M.H.; Yang, Z.L.; Lam, J.S.L. Port performance in container transport logistics: A multi-stakeholder perspective. Transp. Policy 2019, 73, 25–40. [Google Scholar] [CrossRef]
- Raimbault, N. From regional planning to port regionalization and urban logistics. The inland port and the governance of logistics development in the Paris region. J. Transp. Geogr. 2019, 78, 205–213. [Google Scholar] [CrossRef]
- Shi, X.; Li, H. Developing the port hinterland: Different perspectives and their application to Shenzhen Port, China. Res. Transp. Bus. Manag. 2016, 19, 42–50. [Google Scholar] [CrossRef]
- Zhou, L.J. Research on coordinated development of Nanjing Port logistics and hinterland economy based on gray correlation analysis. J. Coast. Res. 2020, 105, 215–218. [Google Scholar] [CrossRef]
- Hua, C.; Chen, J.; Wan, Z.; Xu, L.; Bai, Y.; Zheng, T.; Fei, Y. Evaluation and governance of green development practice of port: A sea port case of China. J. Clean. Prod. 2020, 249, 119434. [Google Scholar] [CrossRef]
- Feng, H.; Ye, C.; Gao, R.W. AHP-based evaluation of port logistics transportation efficiency. J. Coast. Res. 2020, 106, 477–480. [Google Scholar] [CrossRef]
- Gao, T.L.; Na, S.Y.; Dang, X.H.; Zhang, Y. Study of the competitiveness of Quanzhou Port on the belt and road in China based on a fuzzy-AHP and ELECTRE III model. Sustainability 2018, 10, 1253. [Google Scholar] [CrossRef]
- Ming, Z.; Yuan, Y.L. Port efficiency evaluation based on grey target model. J. Dalian Marit. Univ. 2007, 6, 130–132. [Google Scholar]
- Davarzani, H.; Fahimnia, B.; Bell, M.; Sarkis, J. Greening ports and maritime logistics: A review. Transp. Res. Part D Transp. Environ. 2016, 43, 473–487. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Kaklauskas, A.; Sarka, V. The new method of multicriteria complex proportional assessment of projects. Technol. Econ. Dev. Econ. 1994, 1, 131–139. [Google Scholar]
- Roozbahani, A.; Ghased, H.; Shahedany, M.H. Inter-basin water transfer planning with grey COP-RAS and fuzzy COPRAS techniques: A case study in Iranian Central Plateau. Sci. Total Environ. 2020, 726, 138499. [Google Scholar] [CrossRef]
- Alkan, O.; Albayrak, O.K. Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA. Renew. Energy 2020, 162, 712–726. [Google Scholar] [CrossRef]
- Hezer, S.; Gelmez, E.; Ozceylan, E. Comparative analysis of TOPSIS, VIKOR and COPRAS methods for the COVID-19 Regional Safety Assessment. J. Infect. Public Health 2021, 14, 775–786. [Google Scholar] [CrossRef]
- Mo, Y.; Zhao, Y.; Li, S.; Liu, X. Evaluation of port logistics competitiveness based on DEA. IOP Conf. Ser. Earth Environ. Sci. 2018, 189, 062041. [Google Scholar] [CrossRef]
- Wang, C.S.; Yang, Q.; Wu, S.H. Coordinated development relationship between port cluster and its hinterland economic system based on improved coupling coordination degree model: Empirical study from China’s port integration. Sustainability 2022, 14, 4963. [Google Scholar] [CrossRef]
- Jiang, Z.R.; Pi, C.F.; Zhu, H.Y.; Ye, S. Temporal and spatial evolution and influencing factors of the port system in Yangtze River Delta Region from the perspective of dual circulation: Comparing port domestic trade throughput with port foreign trade throughput. Transp. Policy 2022, 118, 79–90. [Google Scholar]
- Hu, Z.B.; Lan, F.; Xu, H. Green TFP heterogeneity in the ports of China’s pilot free trade zone under environmental constraints. Int. J. Environ. Res. Public Health 2021, 18, 12910. [Google Scholar] [CrossRef]
- Zhang, N.; Su, W.H.; Zhang, C.H.; Zeng, S.Z. Evaluation and selection model of community group purchase platform based on WEPLPA-CPT-EDAS method. Comput. Ind. Eng. 2022, 172, 108573. [Google Scholar] [CrossRef]
- Meng, B.; Kuang, H.; Niu, E.; Li, J.; Li, Z. Research on the transformation path of the green intelligent port: Outlining the perspective of the evolutionary game “government–port–third-party organization”. Sustainability 2020, 12, 8072. [Google Scholar] [CrossRef]
- Qing, P.P.; Cong, L.Y. The realistic logic, implementation path and value of the times of building a new development pattern of “dual circulation”. J. Chongqing Univ. 2020, 26, 24–34. [Google Scholar]
- Yang, S.; Pan, Y.; Zeng, S.Z. Decision making framework based Fermatean fuzzy integrated weighted distance and TOPSIS for green low-carbon port evaluation. Eng. Appl. Artif. Intell. 2022, 114, 105048. [Google Scholar] [CrossRef]
First-Level Index | Second-Level Index | Unit | References |
---|---|---|---|
Port infrastructure construction (X1) | Total number of berths (C11) | Individual | Mo et al. [21] Feng et al. [13] |
Berths above 10,000 tons (C12) | Individual | ||
Logistics capability (X2) | Cargo throughput (C21) | Tons | Mo et al. [21] Qing et al. [27] |
Container throughput (C22) | Wanteu | ||
Economy of port city (X3) | State revenue (C31) | One hundred million yuan | Mo et al. [21] Wang et al. [22] Yang et al. [28] |
Added value of primary industry (C32) | One hundred million yuan | ||
Added value of secondary industry (C33) | One hundred million yuan | ||
Per capita GDP (C34) | Yuan Dynasty (1206–1368) | ||
Volume of goods transported (C35) | Ten thousand tons | ||
Railway freight volume (C36) | Ten thousand tons | ||
Production logistics capacity (X4) | Productive berth (C41) | individual | Mo et al. [21] Jiang et al. [23] |
Productive berths with a tonnage of over 10,000 tons (C42) | individual | ||
International logistics capability (X5) | Foreign trade throughput (C51) | Tons | Mo et al. [21] Jiang et al. [23] |
International transit volume (C52) | Wanteu | ||
Green logistics capability (X6) | Coal throughput (C61) | Ten thousand tons | Hu et al. [24] Hua et al. [12] |
Ore throughput (C62) | Ten thousand tons | ||
Container volume of sea-rail combined transport (C63) | Wanteu | ||
Smart logistics capability (X7) | R&D expenditure (C71) | Ten thousand yuan | Hua et al. [12] Meng et al. [26] Yang et al. [28] |
Number of winning projects of the Science and Technology Award of China Port Association (C72) | Item |
w1 | 0.001 | w8 | 0.026 | w15 | 0.024 |
---|---|---|---|---|---|
w2 | 0.010 | w9 | 0.053 | w16 | 0.072 |
w3 | 0.014 | w10 | 0.009 | w17 | 0.480 |
w4 | 0.022 | w11 | 0.001 | w18 | 0.055 |
w5 | 0.028 | w12 | 0.010 | w19 | 0.135 |
w6 | 0.005 | w13 | 0.010 | ||
w7 | 0.029 | w14 | 0.019 |
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
---|---|---|---|---|---|---|---|
X1 | 0.769 | 0.804 | 0.834 | 0.875 | 0.910 | 0.970 | 1 |
X2 | 0.703 | 0.733 | 0.764 | 0.858 | 0.920 | 0.957 | 1 |
X3 | 0.634 | 0.669 | 0.717 | 0.818 | 0.906 | 0.971 | 1 |
X4 | 0.769 | 0.804 | 0.834 | 0.874 | 0.910 | 0.970 | 1 |
X5 | 0.732 | 0.766 | 0.793 | 0.883 | 0.939 | 0.977 | 1 |
X6 | 0.208 | 0.216 | 0.362 | 0.456 | 0.634 | 0.818 | 1 |
X7 | 1 | 0.591 | 0.836 | 0.612 | 0.549 | 0.726 | 0.663 |
Comprehensive Benefit Value | Comprehensive Cost Value | Comprehensive Evaluation Value | Utility Degree | Sort | |
---|---|---|---|---|---|
2014 | 0.084 | 0.014 | 0.097 | 44.01% | 6 |
2015 | 0.075 | 0.019 | 0.084 | 38.13% | 7 |
2016 | 0.098 | 0.009 | 0.118 | 53.39% | 5 |
2017 | 0.114 | 0.013 | 0.128 | 57.80% | 4 |
2018 | 0.143 | 0.014 | 0.156 | 70.64% | 3 |
2019 | 0.181 | 0.014 | 0.194 | 87.71% | 2 |
2020 | 0.209 | 0.014 | 0.221 | 100.00% | 1 |
Port | Comprehensive Benefit Value | Comprehensive Cost Value | Comprehensive Evaluation Value | Utility Degree | Sort |
---|---|---|---|---|---|
Y1 | 0.097 | 0.009 | 0.186 | 63.52% | 4 |
Y2 | 0.278 | 0.049 | 0.294 | 100.00% | 1 |
Y3 | 0.214 | 0.012 | 0.276 | 94.00% | 2 |
Y4 | 0.237 | 0.105 | 0.244 | 83.09% | 3 |
Year | Y1 | Y2 | Y3 | Y4 |
---|---|---|---|---|
2014 | 1.000 | 0.865 | 0.913 | 0.816 |
2015 | 1.000 | 0.774 | 0.798 | 0.607 |
2016 | 1.000 | 0.956 | 0.890 | 0.916 |
2017 | 0.708 | 0.958 | 1.000 | 0.883 |
2018 | 0.606 | 1.000 | 0.920 | 0.839 |
2019 | 0.537 | 1.000 | 0.848 | 0.854 |
2020 | 0.467 | 1.000 | 0.768 | 0.790 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, S.; Fang, Z.; He, Y.; Huang, L. An Integrated Entropy-COPRAS Framework for Ningbo-Zhoushan Port Logistics Development from the Perspective of Dual Circulation. Systems 2022, 10, 131. https://doi.org/10.3390/systems10050131
Zeng S, Fang Z, He Y, Huang L. An Integrated Entropy-COPRAS Framework for Ningbo-Zhoushan Port Logistics Development from the Perspective of Dual Circulation. Systems. 2022; 10(5):131. https://doi.org/10.3390/systems10050131
Chicago/Turabian StyleZeng, Shouzhen, Zitong Fang, Yuhang He, and Lina Huang. 2022. "An Integrated Entropy-COPRAS Framework for Ningbo-Zhoushan Port Logistics Development from the Perspective of Dual Circulation" Systems 10, no. 5: 131. https://doi.org/10.3390/systems10050131
APA StyleZeng, S., Fang, Z., He, Y., & Huang, L. (2022). An Integrated Entropy-COPRAS Framework for Ningbo-Zhoushan Port Logistics Development from the Perspective of Dual Circulation. Systems, 10(5), 131. https://doi.org/10.3390/systems10050131