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Abstract: More than two years after the declaration of the COVID-19 pandemic, we are still experi-
encing contagious waves. As this is a long-lasting process, it becomes relevant to have a predictive
tool to identify the intensively active places within a region. This study presents the development of a
forecasting model applied to foresee the progress of the contagious process in Mexico and its regions.
The method comprehends aspects of deterministic and probabilistic modeling. The deterministic part
comprises the classical SIR model with some adjustments. The probabilistic part builds and populates
a three-dimensional array, which is then used to describe and recall the probabilities of going from
one status to another after some time, very much like a Markovian process. The process status is
modeled as the combination of two conditions: the infection exponential growth parameter and a
proxy variable we named “permissiveness” that accounts for all combined social activity factors
affecting COVID-19 propagation. The results offer projections of the exponential growth parameter
and the number of newly infected individuals for three weeks into the future. The proposed method’s
capabilities allow for predicting newly COVID-19-infected individuals with reasonable precision
while capturing the characteristic dynamics and behavior of the modeled system.

Keywords: COVID-19; SIR model; infectious diseases; forecasting methods; system dynamics pattern

1. Introduction

Months after the COVID-19 pandemic began in the year 2020, we expected the infection
process to reach a peak, and thereafter the number of susceptible individuals would
reduce, leading to the disease’s gradual attenuation. This reasoning assumed susceptible
people monotonically reduced as the number of immune people augmented by the natural
immunity developed once a person recovers from the disease. To date, there have been
multiple COVID-19 infection waves. Some assumptions leading to expect a one-wave
pandemic were distant from reality. The typically applied infectious model by Kermack
and McKendrick [1] had to be adjusted so it could reproduce repetitive waves.

Before vaccines were available, the immunity of individuals who recovered from
COVID-19 was a relevant theme of study. Not being certain about the prospective vac-
cines’ effectiveness and the time needed to have large quantities of vaccines available,
determining the extent of COVID-19 natural immunity was crucial to foresee and prepare
for the pandemics’ evolution. By the end of 2020, several studies [2–4] indicated that a
COVID-19 infection does not generate absolute immunity, but on the contrary, it generates
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natural immunity that fades in about six months. This period has been reduced for more
recent variants [2,5].

With the advent of vaccines, we also learned that most vaccines have important
effects on the disease severity, but the protection against infection varies from 60% to 95%,
depending on the type of vaccine, the individual’s age, race, gender, and other factors [6–8].
Studies are still required to determine the precise effectiveness of the current vaccines
against the novel variants. A consequence of this is the repetitive COVID-19 waves that
keep most countries from reaching a stable attitude towards this new reality. The arrival
of new strains added new variables that made an even more complex research problem,
evaluating the immunity and the time it may last [2]. The application of SIR models
incorporating delays in some stages of the infectious process replicated oscillatory behavior.
In their studies, Menendez [9] and Ebraheem et al. [10] added the category of Exposed
to the classical SIR model. The resulting SEIR model added a seven-day delay before
the infection stage and produced oscillations in the simulated results. However, these
oscillations did not resemble the amplitude and frequency of the oscillations later seen in
most countries. During the years 2020 and 2021, drastic modifications to social life were
imposed by most country governments. These universal and unprecedented variations
in social activity impacted the shapes of the infectious curves and could be a participant
in explaining the repetitive waves. In July of 2021, Thomas Hale et al. [11] published a
study to account for the relationship between the government closure and containment
measures and implemented a regression method to assess the Stringency Index [12], as
they referred to the aggregated index that measures the impact of all government social
measures. Rypdal, Bianchi, and Rypdal [13] and Rypdal [14] analyzed the classical SIR
model and added a function they called Intervention, which reproduced several infection
waves in their simulated results, thus showing that multiple COVID-19 waves come after a
delay in the government’s social measures. In a similar approach, G. Febres [15] assessed
the impact of the variable social activity. Febres modified the conventional SIR model by
incorporating a function to represent changes in social activity. Febres refers to this function
as the permissiveness. The permissiveness is greater in the same direction as it pressures
the infection growth. Despite the values of the Stringency Index and the permissiveness
growing in opposite directions, both indexes measure the same. Thomas Hale et al. and
Febres’ results showed that the Stringency Index (or the permissiveness) contributes to the
apparition of multiple waves in COVID-19’s infection curves. Looking for a model that
resembles the observable COVID-19 dynamics, Kiselev, Akberdin, and Kolpakov [16] added
the virus incubation time and the hospitalization time as parameters of their modified
SEIR model. This simulation reproduced some of the higher frequency oscillations of the
infection curve but did not show the repetitive waves of its general tendency.

The objective of this study is to present a forecasting method to estimate the near-future
infection process. A difficulty that emerges when building the forecast model is the seven-
day oscillatory behavior. These oscillations may be the reflex of a weekday-dependent
disease-reporting activity, an intrinsic virus transmission mechanism, or some resonance
associated with the weekday variant social activity. Interestingly, these sharp oscillations,
illustrated in the graphs of Appendix C with data from the Center for Humanitarian
Data [17], appear in distant regions worldwide and remain in the number of daily deaths.
Therefore, explaining them as an effect directly related to the activity of weekdays loses
strength, because in most countries, reporting death dates has legal implications that
enforce reporting actual dates. We computed the daily new-infected correlation diagrams
for six countries. Figure 1 shows the resulting diagrams evidencing a seven-day oscillatory
pattern overlapping the typical SIR wave behavior.

The method we present is a hybrid technique containing deterministic and proba-
bilistic procedures. A modified SIR math model is numerically solved to determine the
curve of the permissiveness curve. In our approach, the modified SIR model describes
the general dynamics of the process and is expected to represent the so-called infection
waves. The modified SIR model does not reproduce the more detailed seven-day oscil-
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latory behavior. The studies about forecasting situations that are similar to our case are
abundant in the field of financial markets and stock prices. When describing the dynamics
of the stock prices, several approaches include the dynamics fingerprint of the process.
For example, Lux and Marchesi [18] classify the traders according to the different reaction
patterns characterizing them and reproduce the market’s micro-dynamics as the result of
the complex interaction of these trader groups. Borland [19] reproduces great detailed
micro-dynamics in probabilistic terms by including noise into the equations, thus capturing
the distribution of the process’ behavior. Our approach, in contrast, relies on empirical
probabilities. Then, historical data are used to feed a probability distribution array that
allows for inspecting the likely infection growth for three weeks from the present time. The
method is applied using the data of the 32 Mexican states and their municipalities, thus
allowing us to recognize the most COVID-19-endangered regions at different geographical
scales. The number of tests may directly impact the newly infected data. In some countries,
the intensity test programs has varied. In Norway, for example, the data obtained from
the Oxford Martin School [20] shows that the tests progressively reduced from more than
50,300 test/day from 24 January of 2022 down to about 1000 test/day by the beginning
of May of 2022. In other countries, such as Mexico, the tests have faded, thus potentially
altering the base of the statistics. We also considered the reported positivity rate of the tests.
When these are high, it suggests that not enough tests are being made. Nevertheless, we
have not observed [21] a diminishing of the data about infections that we can associate
with the reduction in the testing activity. Therefore, we regard the infection data to keep its
reliability and comparability with previous months.
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Figure 1. COVD-19 correlation diagrams for daily new cases in Mexico, USA, Germany, Japan,
Nigeria, and Iraq. Correlations computed with data from 1 April 2020 to 31 May 2021.

2. Forecasting the Newly COVID-19-Infected Individuals

A forecasting model was built over the basis of a two-dimensional stochastic model.
One dimension represents the general conditions allowing or restricting the virus transmis-
sion, thus producing variable contagiousness of COVID-19. These conditions include all
factors that may affect the transmission rate. A second dimension represents the increasing
(or decreasing) condition of the contagious process.
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Since our concern is to prepare us for the near-future conditions relating to the pan-
demic, we regard it interesting to evaluate the change in the infection rate. Notice this is
not the infection rate but its variation over the future. Therefore, the proposed model is
designed to compute the probability that the infection rate grows at a specific rate, having
the current infection rate growth as a reference. This perspective has trouble when the
infection rate is near zero; we will deal with it later in this article.

Our model uses a two-dimensional space to define a 2D state for any geographic region
in our experimentation. The relationship between this state and the future projected process
condition serves to build a Markovian model that we use to classify the probability of experi-
encing new waves of infection in a series of geographic regions. Specifically, we applied the
model to the 32 states of Mexico and their 2457 municipalities. The parameters that make up
the two-dimensional random space represent, first, the “permeability” of the media through
which the virus is transmitted, and second, the growth of the rate of infection.

2.1. Modeling the Variable Condition of the Contagiousness of COVID-19

Arguably, multiple variable conditions are modifying the media that the virus trans-
mits through and the resulting contagious rate of COVID-19. Among the most influencing
parameters are the different social behavior patterns, the emergence of new virus strains,
and the vaccination campaign. We group these conditions in an aggregate parameter we
call permissiveness. Aiming to determine the permissiveness over time, we introduce the
time function v(t) into the SIR model presented by Kermack and McKendrick [1], where
the terms S, I, R, r, a, and N are the susceptible, the infected, the retired, the infection rate,
the removal rate, and the total population, respectively. The resulting modified model is
expressed in Equation (1a–d).

dS
dt

= −r S I v(t) , (1a)

dI
dt

= r v(t) S I − a I , (1b)

dR
dt

= a I , (1c)

N = S + I + R. (1d)

Equation (1a–d) is solved by numerically integrating Equation (1a–c). However, this
approach requires some previous estimation of v(t), which involves interpreting the reality
to suggest a permissiveness change over time that fits into the physical process data
that are registered. In 2021, Febres [15] presented an attempt to find feasible numerical
approximations to the permissiveness function. In that work, the Equation (1a–d) was
applied to the data of several countries while the curve v(t) was manually adjusted. The
results indicated that the solutions for Equation (1a–d) may be found by approximating, at
least manually, the values of the permissiveness. Later on, Febres [22] presented results
based on a method for computationally performing the approximation. The method,
which is the same we use in the present study, incorporates a PI controller to fit the
experienced data for each county or region modeled. The PI controller’s output is used
as a proxy variable to represent the permissiveness function v(t). Equation (2) represents
the output variable of a PI controller used to adjust the permissiveness value v(t). For
time t, the permissiveness is determined by considering the recent historical data of the
infected individuals, from w days in the past ID(t− w), to 1 day in the past ID(t− 1). At
every time t, the controller adjusts its output value v(t) to reduce the proportional and
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integral errors due to differences between the infected according to the data ID and the
newly infected integrated by the model IM.

v(t) = kp [ID(t− 1)− IM(t− 1)] + ki

w

∑
i=1

[ID(t− i)− IM(t− i)] . (2)

The control Equation (2) behaved well with a large time horizon w in the past, with
the constants kp = 23

S and ki = 0.001.
Figure 2 shows the results of this controlled adjustment simulation. The graphs in

the top row of Figure 2 illustrate the results when the Equation (1a–d) are solved for
the Mexican State of Puebla. The top-left graph shows the daily newly infected rate for
845 days registered to start from 26 February 2020 [23]. The graph in the center presents
the simulated infected individuals obtained from Equation (1a–d) adjusted for Puebla. On
the right graph, there is the permissiveness v(t) obtained for this solution. The graphs on
the bottom row show the time-detailed version of those on the top row.
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Figure 2. Daily new infected for the state Puebla, Mexico. The top-left graph shows the new daily
infected for 845 days registered starting from the 26 February 2020. The graph in the middle presents
the daily infected individuals obtained from the simulation of Equation (1a–d). The right graph
presents the permissiveness. The bottom row presents the same parameters in a detailed time scale.

The graphs in Figure 2 suffice to show the relevance of estimating the permissiveness.
The high permissiveness values observed at about day 505 announce the peak observed
days later in the daily newly infected rate. The precedence of the permissiveness values
on the infection rates is observed in most, if not all, COVID-19 infection waves of the
geographical regions modeled.

2.2. Modeling the Contagious Growth Process

The positive feed-backed nature of infectious diseases characterizes them as unstable
processes that tend to follow a tendency determined by the superposition of the dominant
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circumstances. The typical time-dependent behavior of the number of infected individuals
before peaks and valleys is exponential, either with a positive or a negative exponent.
Following this idea, we assume an exponential infectious growth process with exponent
λ dominating the process behavior during the epoch t to t+∆t. Thus, the projected number
of newly infected individuals at ∆t days into the future is:

It+∆t = It eλ ∆t , (3)

therefore, the exponential growth rate for this epoch is estimated as:

λ =
ln It+∆t − ln It

∆t
. (4)

2.3. The Projection Model

The data available allows us to build a probabilistic model capable of estimating the
number of individuals that will be infected in the future. This study is based on the classical
SIR model modified with the inclusion of the permissiveness function v(t). Therefore, the
model does not distinguish between symptomatic or asymptomatic individuals.

The values of λ(t) and v(t) are discretely handled by segmenting their value-ranges
in resolutions n and m, respectively. With the discrete versions of λ(t) and v(t), we can
now specify the process status by using the syntax (λi, vj), which refers to the infec-
tion rate at condition λi (with i = 1, 2, . . . , n), and the permissiveness vj is at condition
vj (with j = 1, 2, . . . , m).

We define the matrix Pk as formed by the probabilities of encountering, after ∆t days,
an infection growth rate corresponding with status λ(t + ∆t) ≈ λk given the fact the
process status at time t is (λi, vj) corresponds to an infection growth rate λ(t) ≈ λi and a
permissiveness v(t) ≈ vj. Then, the matrix Pk contains the conditional probabilities that,
after ∆t days into the future, the process will be at status λk. Formalizing this statement,
we write:

Pk =


pk11
Pk21

...
pkm1

pk12
pk22

...
pkm2

· · ·
· · ·
. . .
· · ·

pk1n
pk2n

...
pkmn

 , (5)

where the probability pkij is described as:

Probkij
(
λ(t + ∆t) is between values λL and λU

∣∣ λ(t) is at status λi and v(t) is at status vj).

In a compact way,

pkij =
(
λLk ≤ λ(t + ∆t) < λUk

∣∣ λLi ≤ λ(t) < λUi and vLj ≤ v(t) < vUj). (6)

Notice the matrix Pk contains only the probability discrete values of those time in-
tervals ∆t that specifically ended up with an infection growth rate λ(t + ∆t) such that
λLk ≤ λ(t + ∆t) < λUk. This fact probabilistically connects the prospective future infection
rate λk with a current status (λi, vj). Therefore, the structure P (without an index) can be
seen as an orthogonal three-dimensional array of numbers. Status λi and vj values are as-
signed according to a discrete scale with their corresponding minima (λL and λU), maxima
(vL and vU), and resolutions (n and m). The selection of the scale limits λL, vL, λU , and vU
and the resolutions n and m are important to adjust the model to properly observe the
range of values of the process simulated. The scale limits λL, vL, λU , and vU are selected
so that, for all times, the simulated values λ and v lay within the ranges λL to λU and
vL to vU , respectively. The scale resolutions n and m are chosen to divide the scales into as
many equal segments that distinguish among the continuous values of λ and v. Too small
resolutions will classify, within the same process conditions, many statuses that should not
be considered equal. Too large resolutions will create many statuses where the process has
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never been. We initially set small values for these resolutions and, while simulating with
the system, progressively increased them until the number of statuses with zero instances in
the past began to grow. We think this heuristically designed method to set the scales closely
maximizes the information captured when discretizing the continuous data representation
of the process.

After testing the model with Mexican regions of different populations, we found a
good model performance with parameters λL = −0.28 and λU = 0.28 with resolution
n = 15 and the vector of discretized λ values {−0.2613, −0.224, −0.1867, −0.1493, −0.112,
−0.0747, −0.0373, 0, 0, 0.0373, 0.0747, 0.112, 0.1493, 0.1867, 0.224, 0.2613}. Negative λ values
represent the growing factor when the daily newly infected rate is diminishing (after the
peak of an infection wave) and positive values correspond to the time when the number
of daily newly infected individuals is increasing (before reaching the peak of an infection
wave). For the discretized permissiveness values, we used vL = 0, representing absolute
lockdown, and vU = 1, representing the normal social activity before the pandemic. For
the permissiveness resolution, we used m = 10 and the vector of the discretized v values
{0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95}.

Once the structure P is formed and populated, it depicts a field of probabilities
associated with each current status (λc, vc) and thus can be used to obtain the vector E
of the probabilities of the process reaching λk when the current status is (λc, vc). The
vector E is the list of all the probability values of structure P located at coordinate values
(i, j) = (ic, jc), as shown below:

E = {p(0, ic, jc) , p(1, ic, jc) , p(2, ic, jc) , . . . , p(n− 1, ic, jc)} . (7)

On the other hand, we refer to the expression G = eλj∆t as the growth factor vector.
The growth factor vector contains the ranked values of the n possible digitized λ values,
thus forming an n × 1 vector that may be interpreted as the ranked set of the possible
individual growth factors that the process may experience after ∆t days. It is helpful to
notice that once the λ extreme values λL, λU , and its resolution n have been set, G is a
constant vector that is determined as:

G =


eλ0∗∆t

eλ1∗∆t

...
eλn−1∗∆t

 =


e−0.025∗21

e−0.0225∗21

...
e0.025∗21

 =


0.591555
0.623442

...
1.690459

 .

Finally, inserting E and G into Equation (3), we obtain the weighted growth factor
due to each discretized λ value. Out of the n possible λi values (λL ≤ λi < λU), only one
value, unknown at the time of each prediction, will occur. However, since each λi will occur
with the probability expressed in Equation (6), the expected value of the newly infected
individuals after ∆t days is estimated as the summation of the weighted effects of these
possible λi values. Thus,

It+∆t = It E G . (8)

It is worth emphasizing that vector G represents the growth factor correspond-
ing to the selected prediction time (∆t = 21 days) and the discrete scale selected for
λ (λL ≤ λi < λU , with resolution = n). Therefore, once these two parameters are set, G
becomes a constant vector. Vector G is then weighted with vector E, which carries the prob-
abilities that any λi occurs leading to the expected value It+∆t presented in Equation (8).

2.4. Populating the Multivariate Probability Structure P

The structure P represents an a posteriori computed probability or an empirical
probability. The structure P is computationally populated by inspecting the registered data
associated with each geographical region. Scanning the data for all Mexican states and
municipalities is a cumbersome task that we conducted using the complex system simulator
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Monet [24], which relies on the specially developed Data Autonomous Representation
(DAR) language that is specially adapted for handling multidimensional data. Some basic
functionalities are included in Appendices A and B.

Populating P begins with the first day of the past-time horizon and continues for each
day k approaching the present time. Depending on the λk obtained 21 days after each past
day assessed, a corresponding substructure Pk is inputted in with a counting function q.

As illustrated in Figure 3, structure P is formed by joining sub-structures Pk, which in
turn are fed considering the counting expression shown in Equation (9) over the prediction
horizon ∆t starting each day of the past-time horizon w:

pkic jc =
1

w− ∆t

w−∆t

∑
k=0

q(k, ic, jc) , (9)

where

q(k, ic, jc) =

{
1 , i f f or λ(t) = λc and v(t) = vc, status λ(t + ∆t) = λk

0 , otherwise
.
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At the end of the past-time scan, the whole P structure holds a complete description
of the stochastic process.

2.5. Monet, the Computing Environment, and DAR, the Data Autonomous Representation

Our implementation required handling several multidimensional numeric structures,
each one representing an aspect of the modeled system. These structures need an identity as
a whole, as there is the need to create mathematical operations where these structures are the
operands. Lacking the possibility of directly handling complex structure operations would
make this study difficult to manage. We used Monet as the simulation platform and its script
language DAR (Data Autonomous Representation), which represents multidimensional
numbers of any shape as a single identifiable compact parameter. The DAR language
also allows for defining mathematical operations and algorithms where the arguments are
complex structures.
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To illustrate the simulation using Monet, take, for example, the solution by the sim-
ulation of the differential Equation (1a–d) that is all included in the ten cells of Monet’s
interface grid shown in Figure 4. The cells under the column names Daily New Cases.LIST,
S.LIST, and R.LIST contain the values of variables I, S, and R, while the cells under the
column names dIdt.LIST, dSdt.LIST, and dRdt.LIST contain their corresponding deriva-
tives with respect to time (t). Column e.Permisness.TREE contains the values regarding
the PI-controlled variable v(t). In columns r.InfctRate.FLOT and r.InfctRate.FLOT are the
constant values of r and a.
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Figure 4. Monet’s user interface detail showing cells devoted to the solution of Equation (1a–d) for a
single Mexican state.

The values in the cell may be a constant or may be the result of executing an expression
associated with the cell. Explaining how the language DAR was used to write these
expressions is beyond the scope of this document. However, to give an idea of how
DAR works, we show the formula corresponding to the cell S.LIST, where the susceptible
individuals are computed by integrating the values contained in cell dSdt.LIST:

<S.LIST> = STRCTgrow(<S.LIST<IC><S.Init.INTG></>>, ]0[, 1, 1, <S.LIST{<Last>}> + <dSdt.LIST{<Last>}> *
<Dt.FLOT>, Compact)

The function STRCTgrow produces a growing list of elements, each with a value
determined by the fourth argument; in this case: <S.LIST{<Last>}> + <dSdt.LIST{<Last>}> *
<Dt.FLOT>. The elements are separated by the symbol ]0[ indicated in the second argument
of the function. The first function’s argument points to the cell where the growing structure
is located and the corresponding initial condition.

Encapsulating local computational problems and visually organizing parameters in the
screen grid, in turn, reduces the complexity of the whole solution while making it possible
to enlarge the model’s scope. The simulation of complex systems typically challenges
the researcher with non-linear behavior, non-regular spaces, and the size of the system
representation. When the target is to simulate many complex systems within the same
computing environment, the challenge becomes larger up to another scale.

When the regions simulated can be described as the joint of smaller geographical
regions, the functions included in Equation (1a–d) were computed by aggregating the
simulation results obtained from the more detailed data of the internal geographical regions.
Table A2, included in Appendix B, shows the calculation procedures involved in this
alternative computation. The procedure Sum (summation) of the aggregated values is used
when the value being processed is an absolute value. For intensive parameters, as the
derivative terms, the procedure Avg (average) is used.

3. Results
3.1. Prognostics for 21 Days into the Future

This task was intended to prepare for the most likely growing infection rates and
focus actions. The probability model expressed in Equation (8) was computed for Mexico
and the geographical regions at a national scale and at a state scale showing results for
each municipality. The resulting system was applied to the 32 Mexican states and their
2457 municipalities. Each probability model comprised more than 840 data points. The
data were obtained from the web page COVID-19 México [23] prepared by the Mexican
Consejo Nacional de Ciencia y Tecnología.

The projection time of 21 days was chosen. To make this choice, we first noticed the
seven-day oscillation in the infection rates observed at all scales in Mexico. This weekly cy-
cling behavior is present all around the world. The Appendix C includes graphs of the daily
newly COVID-19-infected individuals for several countries, evidencing that this seven-day
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oscillatory pattern takes place in countries on all continents. Studies mentioning the seven-
day oscillatory pattern consider that this behavior might be associated with epidemiological
or social factors leading to a higher transmission on certain days (Bukhari et al. [25]) or
that it might be associated with the weekday activity (Pavlicek et al. [26]) or with the
reporting of the individual cases (Bergman et al. [27], for New York City and Los Angeles).
However, a detailed look at the shapes of the oscillations reveals complex shapes which, in
our opinion, suggest there are other dominant causes present in this phenomenon. Thus,
we are not certain about the cause of these oscillations; that may be a matter of other
research. However, we know that taking a time horizon multiple of seven days will favor
the coherence of our results. Finally, we considered three weeks provide a reasonable time
to react according to the projections produced. However, applying this procedure without
additional modifications will produce oscillating prognostics that are inconvenient for in-
terpreting the hardness of the possible upcoming conditions. Therefore, our results present
the daily infected individuals averaged for the week centered 21 days into the future.

Figure 5 shows the daily infected individuals projection three weeks ahead of the
current time for the states of Mexico (left) and the Federal District municipalities (right).
The blue and red bubbles mean λ negative and positive values, thus signaling whether the
number of daily infected individuals is decreasing or increasing. The areas of the bubbles
are proportional to the population of the state or municipality represented.
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Figure 5. Projections of daily infected individuals and infection growth parameter. (Left) projections
for the states of Mexico. (Right) projections for the municipalities of DF (Distrito Federal, now
Ciudad de México). The vertical axis shows the average daily infected individuals expected for the
week centered 21 days after the most recent data registered day (20 June 2022). The horizontal axis
represents the current λ value.

3.2. Assessing the Precision of Prognostics

Since the projection model is an empirical probability model based on a status classifying
and counting system, computing the error by considering theoretical error distributions does
not apply. We see two types of deviations in the prognostics: (i) deviations of the math model
compared to the reality, including Equation (1a–d) and the exponential growth model suggested
for the number of newly infected individuals expressed in Equation (3); and (ii) differences
between the discrete values assigned to the permissiveness v and growth parameter λ versus
their actual values. Considering the diversity of the parameters affecting the precision of the
simulation, we evaluated the goodness of the method by graphically comparing the 21-day
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projections. Figure 6 compares the data registered for the state of Queretaro with the 21-day
projections obtained for the same data. On the left, Figure 6 shows the newly infected people that
occurred. The figure in the Center shows the 21-day predictions performed from day 45 to 845
of the pandemic. The right graph shows the projection’s normalized error computed as (Projected
Daily Infected−Daily Infected)/Daily Infected.
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Figure 6. A retrospective view of the 21-day projections compared with the number of newly infected
individuals registered during the past year. The graphs correspond to the state of Queretaro during
the 800 days prior to 20 June 2022, which is the last day in both graphs. On the left graph, the blue
dots represent the number of newly infected individuals registered when each day arrived on time.
On the center graph, the purple dots are the newly infected individuals projected 21 days ahead of
each date. The right graph shows the projection’s normalized error.

To compute the projections corresponding to the days in the past, the process depicted
in Figure 3 was repeated for each past day. For every past day simulated, the probabilities
computed rely on structure P, which must be fed with a past-time horizon of up to 800 days,
depending on the data available. To avoid the need for memorizing a structure P, each
day’s vector E is extracted from P and ‘multiplied’ by the growth factor vector G introduced
in Equation (8). The result represents the probability that each scaled λ value will occur ∆t
days into the future.

Comparing the left and center graphs in Figure 6, we observe two dimensions to
assess the projection’s quality: the outer-scale process trend, and the inner-scale oscillation
that we have referred to as the seven-day oscillation pattern. With the conditions of these
simulations, the normalized error shown in the right graph in Figure 6 shows the outer-scale
process trend established after day 180. Thereafter, the error rarely goes beyond the band
of −0.2 to 0.2 while it progressively concentrates around the zero-error axis, confirming
that an increase in the past-time horizon improves the quality of the pattern predictions.

The similarity between the original data (blue dots) and its counterpart prediction (purple
dots) is remarkable. Figure 6 shows the specific case of Queretaro, but the similarity between
the data and prediction graphs is evident in all the states and municipalities inspected.

An interesting aspect of the newly COVID-19-infected individuals is the shape of the
infection curve that goes up and down in a seven-day period producing the sensation of more
than one infection curve. There is only one curve, but a higher frequency oscillation makes it
appear as more than one curve. Since the first stages of the pandemic, we noticed the seven-day
oscillatory pattern in the number of newly infected individuals. The pattern is present in almost
every continent, country, and region we have inspected. Up to the date of this study, we
do not have an explanation for this. We have not had news about other explanations either.
Nevertheless, for the present study, the relevant fact is that the model successfully captured the
general tendency of the infected individuals and these oscillatory patterns.
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3.3. The Alternative of Aggregating More Detailed Region Values

Some graphs comparing the results obtained by (i) solving Equation (1a–d) using data
at the scale of the geographical region being simulated, and by (ii) aggregating the results
from the contained smaller geographical regions, are included in Appendix D. There is a
notorious similarity between any two graphs corresponding to the same region. As could
be expected, there is a loss of the oscillation patterns in the aggregated graphs due to the
noise included in the aggregation process.

4. Generalizing the Method

We applied the projection model to the COVID-19 pandemic’s infection process. In
most countries, but especially in Mexico, the evolution of the pandemic was registered
with reliable, well-organized, and daily updated data [23]. These circumstances provided
us with an excellent opportunity to develop and test this study’s projection method. This
application of the method has its value. However, it is worth describing the method as
a general procedure that is considered in situations comprising the required conditions.
Figure 7 illustrates the general steps toward generalizing the method.
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5. Discussion

A statistical–deterministic hybrid method was applied to simulate the COVID-19
infectious process and to forecast the number of daily new infected individuals. Taking
advantage of the rigorous available data for every state and municipality of Mexico, and
relying on the capabilities of Monet [22], we simulated 2490 instances of the model to rank
the 32 states, the 2447 municipalities, and the country, in the sense of the expected infection
growth. Some conditions are required to apply the method.

Apart from the fact of not including the asymptomatic individuals, which we have little
control of, the application of the method to predict the forthcoming infected individuals
after the prediction time ∆t would need one to assume future values for the permissiveness
function v(t). This may look like a limitation. However, the permissiveness function is
the reflex, at least partially, of the government’s decisions and actions. Thus, the method
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offers the possibility to assess the likely impact of modifying social activity to control the
COVID-19 infection process.

As in any probability-based predictor method, some volume of registered data is
required to produce reliable results. With the conditions of the simulations, the outer-scale
process predictions required about 180 data points. The reproduction of the inner-scale
oscillation pattern also requires 180 data points, but the reproduction of the pattern seems
to improve indefinitely as the number of points increases. Using the outer-scale process as
reference, we conjecture that the data points needed are about nine times the time into the
future to prognosticate. By intuition, we know the proportion varies with the number of
dimensions of the probabilistic model. This study’s model is two dimensional. Thus, we
propose the following rule to estimate the number of data points dp needed to reach good
quality predictions as a function of prediction time ∆t and the number of dimensions dim
of the probabilistic model:

dp ≈ 3dim·∆t . (10)

The requirements of the data, growing exponentially with the number of past dimen-
sions (dim) related to the prognostic, is obviously a limitation of the method. Nevertheless,
the hybridization of the statistical data with the SIR model makes the data requirements
approximated in Equation (10) lower than the data requirements that most time-series
projection methods would otherwise require. A drawback of the method related to the
data considered manifests when the status (λi, vj) at any time t appears for the first time
in the registered data. Then, the probabilities at the status are not observable, and thus
the prediction based on a previously experienced status is impossible. Since the number
of statuses represented in the model is m · n (the product of the resolutions of λ and v),
registering data large enough to cover all statuses at least once is not feasible. This is why
some points in the center graph of Figure 6 lay on the horizontal axis, meaning there is no
prediction corresponding at these times.

Besides the sufficient data points, every new application requires a fine-tuning process
to make the most of the simulator. Especially, the model’s PI controller must be tuned to
obtain good results. Additionally, applying the method to study many instances of the
same model, as in the present study, requires tools to handle multidimensional structures
representation, operations, and registering. Once these requirements are fulfilled, the
method can be massively applied in an integrated simulator.

The projection results proved to follow the general tendency of the process, with its
waves and valleys, and at the same time reproduce the inner scale system’s dynamics
represented by the observed weekly oscillations. We regard this as an interesting result
since the projection models we know about either capture the general tendency or the
inner dynamics as a process fingerprint, but not both at the same time. The capability of
simultaneously forecasting a set of different scenarios leads to the possibility of creating
prediction landscapes. Finally, we regard the capacity to capture the system’s large-scale
trends as well as its more detailed local characteristic dynamics as a relevant result, since it
places this method as an effective tool to study non-linear systems.

More than two years after the pandemic declaration, the daily COVID-19 death toll
seems to be slowly reducing. The vaccination campaigns, the improvement of the disease
treatment, and better logistical operations in hospitals are some of the reasons for this
achievement. Additionally, as Rypdal [14] suggests, the increase in the number of cases
related to more resilient lower-aged individuals contributes to lowering the death ratio.
Additionally, unfortunately, many of the most vulnerable people already died, so the
reduction might be also partly explained by survival bias. The infection process, however,
does not show similar progress. Infection waves continue to emerge in all states and
municipalities of Mexico. At the end of each wave, where we could talk about valleys,
the number of infected individuals is closer to zero, repeatedly tempting us to think the
epidemics will shortly finish. However, as Figure 6 illustrates for a specific state (one could
see the similar behavior in any other state), a new infection wave is beginning in Queretaro,
and there is no indication of these waves dissipating in the near future.
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Appendix A. The Data Autonomous Representation

The Data Autonomous Representation (DAR) is a script language specially designed to
handle information elements in a multidimensional logical environment. DAR consists of a
set of rules and syntaxes that allow for depicting and registering complex data structures.
DAR includes the possibility for constructing arithmetic operations and functions defined
over the space of multidimensional arguments. DAR handles three types of complex
structure topologies: ORTHOs, TREEs, and RINGs. These three types of structures are
regarded as the prime types of structures that, when properly combined, can describe any
complex data structure.

As a rule that applies to all structures, DAR uses special symbols to split elementary
components that form a compound multidimensional structure. The splitting symbols are of
the form ‘]d[‘. The opening and closing brackets (in that order) suggest the sides where the
elements are being separated. The letter ‘d’ is the number of the dimensions that the splitting
symbol ‘]d[‘refers to. The splitting dimension tag ‘d’ starts with the number zero (0).

Figure A1 shows examples of ORTH structures in one, two and three dimensions (a
figurative version).
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Figure A1. The color-property description of ORTH-structures of objects of one, two and three
dimensions. The particular case of one-dimension-ORTH can also be considered a LIST.

Since ORTHOs are perhaps the most frequently used data structure, this appendix
expands the explanation about them. ORTHOs: To this type belongs any structure being
formed by the same number of elements counted within any of the structure dimensions.
Thus, ORTHOs are regular sets of elements showing structural symmetry around any plane
oriented perpendicular to the direction of each dimension. To describe

One-dimensional structure, in Figure A1a:

DR]0[R]0[O]0[Y
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Two-dimensional structure, in Figure A1b:

B]0[LG]0[B]0[E]1[DB]0[B]0[LG]0[G]1[V]0[DB]0[B]0[B

Three-dimensional structure, in Figure A1c:

DB]0[LG]0[G]0[N]1[B]0[DB]0[LG]0[G]1[Y]0[B]0[DB]0[LG]2[R]0[G]0[O]0[Y]1[G]0[DR]0[R]0[O]1[N]0[G]0[DR]0[R

Extracting sub-structures: A very useful tool that DAR offers is the extracting sub-
structures feature. Extracting sub-ORTH structures is done using the Range-Limit-Splitting
symbol ‘] . . . [‘. The Range-Limit-Splitting symbol indicates that all the elements located
within the range limits indicated at the start and the end of the splitting symbol are included
in the selection. Thus, the extractor phrase {L] . . . [U} means that all the elements located
above (or equal to) the lower limit L, and below (or equal to) the upper limit U are included
in the structure extraction. The coordinate’s limits L and U refer to the corresponding
dimension of the subject structure. The limits of the multidimensional ORTH structures
are also specified using the two-dot dimension-splitting symbol (:). The general extracting
phrase {L0:L1:L2] . . . [U0:U1:U2} means that the elements within the limits specified for
dimensions zero, one, and two, respectively, are to be selected. An example helps to
understand the syntax. Extracting the eight elements of the close-plane lower two rows of
Figure A1c implies the following syntax:

G]0[DR]0[R]0[O]1[N]0[G]0[DR]0[R = <Figure.A1c{0:0:0] . . . [3:1:0}>

The extracted structure is shown in Figure A2.
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This syntax for specifying sub-ORTHs of any ORTH is applicable to ORTHs of any
number of dimensions. The number of splitting dimension symbols ‘:’ in the extracting
phrase indicates the number of dimensions (minus one) of the subject structure, therefore
meaning these two numbers must match.

Appendix B. Integrating Differential Equations with Monet

Appendix B.1. Computing Models Using Data at the Corresponding Scale

Monet is an effective tool to solve differential equations by articulating and integrating
differential expressions. Monet’s environment organizes expressions in arrays of cells.
The cells can allocate multidimensional expressions including orthogonal and tree-like
structures. Therefore, a complete list of values representing a time series of the daily newly
infected individuals is stored in a single cell. Six cells are required to model the core of
Equation (1a–d). As illustrated in Figures A3 and A4, these cells store the values for the
time series corresponding to dS

dt , S, dI
dt , I, dR

dt , and R. In the simulation, the variable I is
named ‘Daily New Cases.LIST’. Table A1 shows the procedures applied to compute the
variables of the Equation (1a–d):
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Table A1. Main procedures involved in integrating differential Equation (1a–d).

<dIdt.LIST> = STRCTgrow(<dIdt.LIST<IC><dIdt.Init.FLOT></>>, ]0[, 1, 1,
<r.InfctRate.FLOT{<Last>{0<RelDepth>0</>}}> * <e.Permness.TREE{<Last>{0<RelDepth>0</>}}> *
<S.LIST{<Last>}> * <Daily New Cases.LIST{<Last>}> - <a.RemRate.FLOT> * <Daily New
Cases.LIST{<Last>}>, Compact)

<Daily New Cases.LIST> = STRCTgrow(<Daily New Cases.LIST<IC><I.Init.INTG></>>, ]0[, 1, 1, <Daily New
Cases.LIST{<Last>}> + <dIdt.LIST{<Last>}> * <Dt.FLOT>, Compact)

<dSdt.LIST> = STRCTgrow(<dSdt.LIST<IC><dSdt.Init.FLOT></>>, ]0[, 1, 1, -1 *
<e.Permissiveness.TREE{<Last>{0<RelDepth>0</>}}> *
<r.InfctRate.FLOT{<Last>{0<RelDepth>0</>}}> * <S.LIST{<Last>}> * <Daily New
Cases.LIST{<Last>}>, Compact)

<S.INTG> = STRCTgrow(<S.LIST<IC><S.Init.INTG></>>, ]0[, 1, 1, <S.LIST{<Last>}> +<dSdt.LIST{<Last>}> *
<Dt.FLOT>, Compact)

<dRdt.LIST> = STRCTgrow(<dRdt.LIST<IC><dRdt.Init.FLOT></>>, ]0[, 1, 1, <a.RemRate.FLOT> * <Daily New
Cases.LIST{<Last>}>, Compact)

<R.LIST> = STRCTgrow(<R.LIST<IC><R.Init.INTG></>>, ]0[, 1, 1, <R.LIST{<Last>}> +<dRdt.LIST{<Last>}> *
<Dt.FLOT>, Compact)

The procedure STRCTgrow() used to determine the components of the Equation (1a–d)
builds a time series with the values of each equation’s component. To do so, every time
the simulation goes over the procedure STRCTgrow(), a new element is added to the
LIST structure representing the time series. The value of the element just added is com-
puted as the procedure’s argument indicates. When necessary, an expression of the form
<IC>InitialConditionValue</> guides the procedure towards the initial conditions of each
parameter. Performing these operations successively, the differential terms are computed
and integrated into the final solution of the differential equation. The elements forming the
resulting functions are separated by the split symbol ‘]0[‘.
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Monet stores procedures into cells to control the procedures stored in other cells. The
procedure SWC (Step Wise Compute) serves to coordinate the calculation of the rows stored
to model COVID-19 for each Mexican region. In the Column tagged as SWC.EXEC is stored
in the procedure text to execute the computation of the values included in the argument
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expression t.LIST] . . . [R.LIST. The split expression ] . . . [ returns all the values in the range
from t.LIST to R.LIST.

<SWC.EXEC> = SWC(t.LIST] . . . [R.LIST, 1, <Days.INTG> − <LastDay.INTG>, <Reset> = False, LastDay.INTG).

The other parameters indicate the size of discrete differential time, the number of
times the cycling calculation is performed, and a switch to continue the calculus from the
time registered in LastDay.INTG or from the very simulation beginning applying initial
conditions, and finally the name of the column (LastDay.INTG) where the last processing
time is stored.
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Appendix B.2. Computing Models Aggregating Results from Inner Detailed Scale

An alternative calculation process was performed by aggregating the simulation
results obtained with the more detailed data referring to the next inner geographical region.
Table A2 shows the procedures involved in this alternative computation. The Sum of the
aggregated values is used when the value being processed is an absolute value. When the
value being processed is an intensive parameter, as the derivative terms, the procedure Avg
(average) is used.

Table A2. Main procedures involved in integrating Differential Equation (1a–d).

<dIdt.LIST> = Avg(<dIdt.LIST><~><OFFSPRINGS>.<LEAF></~>, <void>)

<Daily New Cases.LIST> = Sum(<Daily New Cases.LIST><~><OFFSPRINGS>.<LEAF></~>, <void>)

<dSdt.LIST> = Avg(<dIdt.LIST><~><OFFSPRINGS>.<LEAF></~>, <void>)

<S.INTG> = Sum(<Daily New Cases.LIST><~><OFFSPRINGS>.<LEAF></~>, <void>)

<dRdt.LIST> = Avg(<dIdt.LIST><~><OFFSPRINGS>.<LEAF></~>, <void>)

<R.LIST> = Sum(<Daily New Cases.LIST><~><OFFSPRINGS>.<LEAF></~>, <void>)
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Appendix C. Graphs of Daily New Infected Individuals
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Figure A5. Graphs of COVID-19 Daily New Infected individuals for several countries. The purpose is to establish evidence that the seven-day oscillatory pattern
takes place in countries on all continents.
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Appendix D. Daily New Infected Model Computed at Different Scales
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Figure A6. Graphs of Daily New Infected individuals are included for Mexican regions at the scale of Country, States and Municipalities. Graphs show the result of
models computed with data at different scales and as the aggregated values of the models at the more detailed scale.
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