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Abstract: Traffic sensors play a pivotal role in monitoring and assessing network-wide traffic condi-
tions. However, the substantial costs associated with deploying an extensive sensor network across
real-world highway systems can often prove prohibitive. Thus, the strategic selection of optimal sen-
sor locations within budget and resource constraints becomes imperative, leading to the well-known
Traffic Sensor Location Problem (TSLP). In this study, we introduce a novel framework to address the
TSLP for large-scale highway networks, focusing on maximizing information gain in a joint vector
space that comprehensively captures both network topology and segment-level features. To solve
this optimization problem, we devised a genetic algorithm (GA) with penalty handling. Additionally,
we developed a physics-guided random walk algorithm, which not only significantly reduces the
search space but offers remarkable flexibility in striking a practical balance between computational
load and the confidence of achieving global optimality. For illustration purposes, the proposed
framework was applied to the Savannah highway network in Georgia. The results from our GA
method align well with those from exhaustive research, but with significantly reduced computational
time. By leveraging information theory and maximizing information gain in a low-dimensional
vector space, the proposed framework permits parallel, scalable computation and offers considerable
potential in the strategic planning and deployment of various sensors for expansive, real-world
highway networks.

Keywords: Traffic Sensor Location Problem; topological embedding; information theory;
Kullback–Leibler divergence; genetic algorithm; physics-guided random walk

1. Introduction

Traffic sensors represent a critical component in the ongoing evolution of Intelligent
Transportation Systems (ITS) and provide essential data sources that can be leveraged by
modern and emerging AI systems to revolutionize traffic management and the strategic
planning of our vast highway networks. The significance of these sensors cannot be over-
stated as they offer crucial insights into traffic patterns, congestion levels, and dynamic road
conditions, all of which are instrumental in optimizing traffic flow and enhancing overall
road safety. However, as the role of traffic sensors in modern transportation infrastructure
becomes increasingly important, so do the substantial challenges that come with their
widespread deployment. These obstacles can range from the pragmatic constraints of
limited budgets to the intricacies of selecting appropriate sensor types and dealing with the
inherent possibility of sensor failures [1]. The quest to enhance the observability of traffic
flow, a crucial objective within the realm of ITS, necessitates the creation of extensive sensor
networks that can span vast geographical areas. This expansive network, while undeniably
powerful in its capacity to capture comprehensive traffic data, brings with it the need for
substantial initial investments for deployment and continuous, labor-intensive mainte-
nance. These formidable financial and operational burdens pose a significant obstacle to
the practical implementation of large traffic sensor networks.
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It is in addressing these challenges that the Traffic Sensor Location Problem (TSLP)
emerges as a critical focal point for transportation researchers and planners. This problem
encapsulates the intricate process of strategically placing traffic sensors to maximize their
utility while minimizing the financial and operational burdens associated with their main-
tenance and upkeep. Over the past few decades, extensive research has been devoted to
tackling the TSLP, resulting in a diverse range of proposed methods. These approaches can
be broadly classified into six categories [2]: O/D estimation [3,4], flow observability [5],
link flow inference [6–8], path reconstruction [9], traffic surveillance [10], and travel time
estimation [11]. Our proposed framework in this paper is related to flow observability and
link low inference, while emphasizing the overall network coverage. Given the nature of
the problem, which involves binary-choice decision for each candidate location, the most
popular approaches center on constructing and solving mixed-integer linear or nonlinear
programs. However, their practical utility in dealing with intricate, extensive real-world
highway networks is frequently constrained by distinct challenges [12], such as the exceed-
ingly high computational complexity associated with a large number of edges and nodes.
For instance, with a network of n links, the TSLP search space is 2n for a single sensor.
In large metropolitan regions, the highway network can rapidly expand to encompass
tens of thousands of links, rendering the traditional approach unviable. In the context of
this study, our objective is to harness data directly from regional transportation planning
models and address the TSLP through a novel data-driven approach by leveraging infor-
mation theory and maximizing information gain in a low-dimensional embedding (vector)
space that jointly captures complex network topology and pertinent segment-level features.
As such, the proposed framework is well suited for parallel, scalable computation with
modern graphics processing units (GPUs) or tensor processing units (TPUs) for large-scale,
real-world highway networks.

2. Methods

Our proposed framework is depicted in Figure 1. Firstly, we abstract the study
highway network as a directional graph, where each segment is treated as a node. Then,
we obtain the topological embedding of the graph in a vector space, where each node
(segment) is represented by a dense vector in Rn while preserving the network topology. To
enhance the topological embedding, we introduce additional dimensions (Rm) to account
for segment-specific features such as AADT, functional class, and the number of lanes.
This dimensional augmentation results in a joint vector space (R(n+m)), highlighted by the
shaded blue box in Figure 1. As a result, the inherent distance metric between two nodes
(or segments) in this joint vector space incorporates both their topological relationship and
segment attributes.

Subsequently, we model the node (segment) distribution of the network in this joint
vector space using kernel density estimation (KDE), which is referred to as model distribu-
tion, denoted by Q(x). On the other hand, the choice set of the proposed sensor locations
(segments), together with existing sensor locations, represents the data distribution of the
segments with a sensor, denoted by P(x). By such construct, the TSLP is formulated as
an optimization problem that minimizes the discrepancy between P(x) and Q(x), such as
Kullback–Leibler (KL) divergence, with respect to the proposed sensor locations. Notably,
this formulation presents a distinctive perspective compared to the common machine
learning scenario, wherein the data distribution (P(x)) is known and the objective is to train
the model (Q(x)) to align with the data. To effectively address this problem, we developed a
customized genetic algorithm integrated with physics-guided random walks (PGRW) that
operate from the existing sensor locations. This combination serves to effectively reduce
the search space for determining the optimal locations for new sensors.

To set up the stage for coherent presentation, we delineate the process into six key
components: (1) Graph Representation of Highway Network, (2) Topological Embed-
ding of Graph, (3) Construction of Joint Vector Space, (4) Kernel Density Estimation, (5)
Optimization Problem Formulation, and (6) Solution Algorithm. Throughout our discus-
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sion, we utilize the Savannah highway network as an illustrative example to facilitate a
comprehensive understanding of the process.
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Figure 1. Illustration of the proposed framework.

Each of the six components is discussed in detail subsequently with a dedicated subsection.

2.1. Graph Representation of Highway Network

This initial step involves the representation of a highway network as a graph to capture
its topology. For demonstration, the Savannah highway network is used, which consists
of 1616 segments with different functional classes, such as interstate highways, arterials,
collectors, and local roads. The GIS visualization of the network is shown in Figure 2. The
green dots indicate the locations of the 26 existing Continuous Count Stations (CCSs). In
this paper, sensor locations refer to CCSs.
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Both the undirected graph and the directed graph are constructed and shown in
Figure 3. Each node in the graph represents a road segment in the original highway
network. To capture the directional traffic flows, the directed graph is adopted in this study.
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Figure 3. Graph representation of the Savannah highway network.

A straightforward way of assessing the overall topology of a highway network is to
examine the distribution of the number of neighboring segments. As depicted in Figure 4,
most segments demonstrate connections with two neighbors, followed by segments with
four and three neighbors. The few segments with only one neighbor represent endpoints
or cul-de-sac segments.
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2.2. Topological Embedding of Graphs

To effectively capture meaningful representations of the directed graph mentioned
above, while simultaneously preserving its graph structure properties, we use the Node2Vec
embedding method proposed by Grover and Leskovec [13], which is a scalable learning-
based approach for embedding network topology. It harnesses the power of machine
learning and embedding techniques to learn vector representations that intricately capture
the nuanced relationships between nodes, rendering them highly useful for various down-
stream tasks in graph analysis. For our implementation, the adopted Node2Vec parameters
are shown in Table 1.
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Table 1. Parameters of Node2Vec algorithm.

Parameter Value Description

lwl 30 Walk length, i.e., the number of nodes in each walk
Nnw 200 Number of walks per node

p 1 The likelihood of backtracking the walk and immediately
revisiting a node in the random walk

q 1 The In-Out parameter q allows the traversal calculation to
differentiate between inward and outward nodes

ddim 8 The output Node2Vec embeddings dimension

Generally, the parameters p and q control the exploration and exploitation behavior
when the Node2Vec algorithm starts sampling the graph. Node2Vec uses a 2nd-order
random walk and guides the walking process by introducing a search bias α. Refer to
Equation (1),

πvx = αpq(t, x)· wvx (1)

where πvx denotes the unnormalized transition probability between nodes v and x and wvx
is the static edge weight. αpq(t, x) is computed by Equation (2),

αpq(t, x) =


1
p i f dtx = 0
1 i f dtx = 1
1
q i f dtx = 2

(2)

where dtx denotes the shortest path distance between nodes t and x [13].
When considering the current node v in the context of Node2Vec, two important

parameters, p and q, play a significant role in shaping the walker’s behavior. Setting
0 < p < 1 and q > 1 makes the walker more likely to exploit the visited nodes, favoring local
exploration, while reducing the likelihood of exploring nodes further away. Conversely,
when setting p > 1 and 0 < q < 1, the walker becomes more inclined to visit nodes further
away, promoting global exploration behavior. In our case, we intentionally set p = q = 1.
The reason behind this choice is that our implementation of the Node2Vec model aims
to encode the topology while maximally preserving the graph’s structure without bias
towards either local or global aspects.

For visualizing the embeddings produced by Node2Vec, we employ a 3D visualization
technique using Uniform Manifold Approximation and Projection (UMAP). The UMAP has
proven to be highly effective, offering competitive low-dimensional manifold representation
while also preserving more of the global structure of the embeddings [14]. As depicted
in Figure 5, the UMAP visualization demonstrates a balanced trade-off between local
and global connectivity. The current CCS locations are shown as red dots, indicating a
representative sampling of network segments in the embedding space.

In addition to topology embeddings, explicitly considering segment (node) features
becomes important when determining the optimal sensor placement. In practical scenarios,
state Departments of Transportation (DOTs) often prioritize achieving a well-balanced
network coverage by strategically distributing sensors across various types of facilities and
areas. To meet this requirement, we incorporate three important segment features, namely
Total Volume, Lanes, and Functional Class, and combine them with the 8-dimensional
Node2Vec embeddings, resulting in an expanded 11-dimensional joint feature space. This
allows us to create a comprehensive representation that takes into account both the topo-
logical characteristics and the specific attributes of individual segments. Furthermore,
we apply Min-Max scaling to all feature dimensions of the joint embedding space to en-
sure they share a consistent scale and contribute equally to the subsequent analysis and
decision-making process.
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2.3. Construction of Joint Vector Space
2.4. Kernel Density Estimation

Kernel density estimation (KDE) is a non-parametric method to estimate underly-
ing distribution directly from data samples. Unlike the histogram, the KDE produces
smooth estimate of the probability density function by using all sample data points and
convincingly reveals multimodality [15]. Particularly, KDE imposes a kernel, a smooth
and symmetric function, at each data point. The density estimation is derived by sum-
ming the contributions from these kernels. The choice of kernel and other parameters
(e.g., bandwidth) can affect the smoothness of the estimated density. With a dataset of
{ x1, x2, . . . , xk}, the kernel density estimator can be computed by Equation (3),

f̂h(x) =
1
k ∑k

i=1 Kh (x − xi) =
1
kh ∑k

i=1 K
(

x − xi
h

)
(3)

where 0 ≤ Kh(x − xi) < ∞ for all real x, and
∫ ∞
−∞ f̂h(x) dx = 1. K(.) is the kernel and

h > 0 is a smoothing parameter, referred to as bandwidth. h controls the smoothness
of the kernel. Improper selection of h can lead to one of two issues: over-smoothing or
under-smoothing. Over-smoothing fails to capture the underlying structure of data, and
eventually leads to an oversimplified representation of the true distribution, while under-
smoothing captures noises in the data and leads to inaccurate representation of the data [16].
Figure 6 shows the 3D visualization of varying bandwidth values. The bandwidth of 0.4
(Figure 6a) indicates over-smoothing, while the bandwidth of 0.05 (Figure 6d) shows under-
smoothing. The bandwidth of 0.2 (Figure 6b) is chosen to capture both local and global
structures. Eventually, this KDE serves as the model distribution, Q(x), for formulating our
optimization problem in the following section.

2.5. Optimization Problem Formulation

Drawing inspiration from information theory, we formulate an optimization problem
in the joint embedding space, guided by fundamental principles of information theory.
Specifically, we would like our choice set of new sensor locations to maximize the informa-
tion gain. This is equivalent to minimizing the Kullback–Leibler (KL) divergence between
the data distribution, denoted as P(x), and the model distribution, represented as Q(x),
through KDE. The KL divergence is also known as information divergence and relative
entropy, measuring the dissimilarity between two distributions. The KL divergence is
computed by Equation (4) for discrete probability distributions P(x) and Q(x), defined on
the same sample space χ [17].

DKL(P ∥ Q) = ∑xϵχ
P(x)log

(
P(x)
Q(x)

)
(4)
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The model distribution Q(x) is estimated based on the outputs (e.g., the loaded net-
work) of a travel demand model. The data distribution P(x) represents the choice set of
locations (segments) for the existing sensors (xe) and the planned sensors (xp). The objective
is to select the planned sensor sites xp to minimize the KL divergence between P(x) and
Q(x), in the joint embedding space as previously described. Thus, the optimization problem
is written in Equation (5),

min
xp

∑{xe , xp} P(x)log
(

P(x)
Q(x)

)
, xp ∈ χpgrw (5)

where χpgrw denotes the reduced search space by the PGRW algorithm, which is discussed
in the next section.

2.6. Solution Algorithm

In this subsection, we introduce a solution algorithm, which consists of two compo-
nents: (1) physics-guided random walk and (2) genetic algorithm. The former effectively
reduces the search space, while the latter conducts search with penalty handling.

2.6.1. Physics-Guided Random Walk

Given the potentially large solution space for real-world highway networks, it is
essential to reasonably narrow down the solution space first. For this purpose, we adopt a
random walk-based approach. The idea is to design walkers to start from existing sensor
locations, where traffic flows are known. Each walk is guided by traffic flows on the
neighboring segments (nodes) subject to the network topology. Through a finite number
of walk steps, each walker can cover a part of the network in the vicinity of existing
sensors. By viewing traffic flow as a “diffusion process” across a highway network, the
visited parts of network by the walkers are considered to be “inferable”, which leave the
remaining unvisited parts of the network to be explored for optimal sensor locations. In our
implementation, we let multiple walkers start walking at the same time from the current
sensor locations, which are 26 for the Savannah highway network.

To align with our intention on flow estimation, we guide all walkers with network
traffic flow information, referred to as physics-guided random walk (PGRW) in this paper.
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The probability of walking to each direct neighbor is computed by the softmax function of
Annual Average Daily Traffic (AADT) over all neighboring nodes by Equation (6),

σ(zi) =
ezi

∑k
j=1 ezj

, i, j = 1, . . . , k (6)

where k is the number of direct neighbors and zi is AADT on segment i.
In the context of the PGRW algorithm, users have the ability to specify their preferred

size for the reduced solution space when seeking optimal sensor locations. As an illustrative
example, we opted for a target search space size of 100. The outcomes of the PGRW
algorithm are visually presented in Figure 7, where distinct trajectories, distinguished by
triangle markers in varying colors, depict the diverse paths taken by different walkers
who started from the existing sensor locations. The presence of blue bubbles on the
graph signifies the unexplored segments, which collectively compose the reduced space
designated for the exploration of optimal sensor locations. It is important to underscore
that the selection of the search space size confers a degree of flexibility, allowing users to
strike a balance between computational resource usage and the confidence in achieving
global optimality.
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2.6.2. Genetic Algorithm

In recent years, a multitude of researchers have proposed various metaheuristic al-
gorithms to tackle real-world problems in engineering, economics, and management,
among other fields [18]. Generally, these algorithms draw inspiration from three primary
sources: biological evolution processes, physical laws, and swarm behavior [19,20]. Among
population-based metaheuristics, a dominant and widely adopted subset, these algorithms
iteratively search for optimal solutions by exploring a set of candidate solutions and lever-
aging population characteristics to guide the search [21]. An exemplary evolutionary
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algorithm within this family is the genetic algorithm (GA). In the GA, a population of can-
didate solutions (individuals) undergoes evolution through biological operators, including
selection, crossover, and mutation. The process commences with a randomly generated
population of individuals, and in each generation, every individual is evaluated by a fitness
function. The individuals with higher fitness scores are retained from the current popu-
lation and subsequently subjected to crossover and mutation to form a new generation.
This iterative process continues until either the maximum fitness score is achieved or the
maximum number of generations is reached.

In our setting, a gene is defined as a binary digit, taking the value of either 0 or 1.
Each gene represents the selection status of a specific node or segment within the network,
determining whether it is chosen for sensor placement. When a gene holds a value of
1, it signifies that the corresponding node or segment is selected for sensor placement,
whereas a value of 0 indicates that it is not chosen. By this gene definition, an individual is
represented as a binary string comprising candidate nodes or segments eligible for sensor
placement. This binary string encapsulates the selection configuration of nodes or segments,
with each gene in the string denoting the inclusion or exclusion of the corresponding node
or segment for sensor deployment.

We define the fitness function as the reciprocal of KL divergence between model
distribution Q(x) and data distribution P(x) as previously introduced.

It should be noted that the standard GA does not impose any restrictions on the num-
ber of “1” genes, which represent the segments selected for sensor placement in our setting.
In real-world applications, the number of sensors to be installed is typically constrained
by a limited budget or other practical considerations. Therefore, achieving a definitive
number of sensors is often practically preferable. To ensure that the GA conforms to such a
constraint, we employ a penalty trick, which involves pre-filtering candidate solutions that
fail to meet the required number of “1” genes prior to fitness evaluation. Non-compliant
solutions are assigned a substantial penalty with a low fitness score, effectively discourag-
ing their continued participation in the evolutionary process. The penalty trick preserves
the integrity of the GA’s evolution process while respecting the desired constraint on the
number of planned sensors. Algorithm 1 shows the implementation of our customized GA.

Algorithm 1. Pseudocode of GA with penalty trick.

1: Initialize population P with size Np
2: For generation i = 1 to Ng:
3: For j = 1 to Np:
4: If (the number of “1” gene in individual xj) ! = (the desired number of sensors):
5: assign a low fitness score (e.g., 0.00001) to individual xj.
6: Else: compute the fitness score for individual xj.
7: End for
8: Select the best m individuals in the population P and save them as population, P1
9: //crossover operation//
10: For j = 1 to

(
Np − m

)
:

11: randomly select two individuals xa and xb from population P
12: generate x′a and x′b by crossover.
13: save x′a and x′b to population P2
14: End for
15: //mutation operation//
16: For j = 1 to

(
Np − m

)
:

17: select an individual xj from P2
18: apply mutation to obtain individual x′′j
19: replace xj with x′′j in P2

20: End for
21: update population P = P1 + P2
22: End for
23: Return the best individual, xbest in population P
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3. Results

The optimal parameters for the GA were determined through a grid search and are
summarized in Table 2. Notably, for the parent selection process, we employed the roulette
wheel method.

Table 2. GA optimal parameters.

Parameter Value

Number of generations 100
Number of parents mating 30
Population size 100
Gene space [0, 1]
Parent selection roulette wheel
Crossover single point
Mutation random
Mutation percent for genes 5

The GA is subsequently implemented using the optimal parameters in Table 2 with
the reduced solution space previously generated by the PGRW (Figure 7). As depicted in
Figure 8, the evolution process demonstrates convergence, with the fitness score approach-
ing stability after approximately 130 evolutions.
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For illustrative purposes, consider adding five new sensor sites to the Savanna high-
way network. Figure 9 shows the GA identified optimal locations, depicted by blue circles,
for installing these new sensors. For comparison, the results derived from the exhaustive
search (ES) method are also displayed in Figure 9, denoted by the red solid dots. Notably,
four out of the five locations selected by the GA method align with those of the ES method.
Upon closer inspection within the overlapping area in Figure 9, it becomes evident that the
two divergent locations in the zoomed-in view correspond to the same direction of the same
extended roadway section, while the matched location is for the other direction. Regarding
computational efficiency, the GA method achieved convergence in 8 s, while the ES method
took up to 20 h. These experiments were conducted on a laptop equipped with an Intel(R)
Core(TM) i7-10870H CPU @ 2.20 GHz, 32 GB RAM, and NVIDIA GeForce RTX3070.
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4. Discussion and Conclusions

In this study, we introduce a novel framework designed to tackle the TSLP. Inspired
by information theory, our approach harnesses a distinctive fusion of network topology
and segment-level features within a unified embedding space to identify optimal sensor
locations, maximizing information gain. Unlike previous works, our proposed framework
operates in a low-dimensional vector space, facilitating parallel and scalable computation
using modern GPUs or TPUs, particularly for large-scale networks.

Employing a GA with penalty handling addresses the optimization challenge with
desirable constraints, while the integration of the PGRW algorithm expedites the solution
process. This dual approach not only significantly reduces the search space but also
strikes a balance between computational load and the confidence of achieving global
optimality. For illustration purposes, our framework has been applied to the Savannah
highway network. The outcomes align well with those of exhaustive search, but with much
faster convergence, demonstrating its potential for application in expansive real-world
metropolitan or statewide highway networks.

Nonetheless, it is crucial to emphasize that while the GA serves as our primary
solution method, our framework is inherently versatile and not bound to any specific
solution algorithms. The pursuit of an optimal solution, as evidenced by the objective of
minimizing KL divergence, is fundamentally shaped by the underlying network topology
and the construction of the joint embedding space.

However, we acknowledge specific limitations and suggest avenues for future re-
search. Our current investigation focused on three segment features, treating them equally
in the joint embedding space. An essential direction for further exploration involves incor-
porating stakeholder preferences and policy guidance into the optimization framework,
enabling a more nuanced consideration of diverse features and their varying contributions.
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Additionally, a promising research approach entails formulating separate or interconnected
optimization problems, especially for different sensor types with distinct purposes. This ap-
proach can facilitate a comprehensive planning and deployment strategy for large, hybrid
sensor networks, tailored to meet specific objectives and stakeholder requirements.
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