AI-Based Environmental Color System in Achieving Sustainable Urban Development
Abstract
:1. Introduction
2. Related Work
2.1. Ways to Explore the Characteristics of the Urban Environment
2.2. Environmental Color and Atmosphere
2.3. Visual Information and Communication
3. Research Method
- Which places impressed you the most when you saw the eight squares in the Historic Centre of Macau?
- What objects are you particularly interested in when looking at the environmental content?
- What scenery would you like to revisit after seeing these squares?
- Describe the objects you are particularly interested in, e.g., features or color appearance;
- Please describe your overall impression or feeling of the Historic Centre of Macau.
4. Result Analysis and Discussion
4.1. Environmental Color and Atmosphere of the Historic Centre of Macau
4.2. Visual Information and Communication of the Historic Centre of Macau
4.3. Environmental Color and Representation of the Historic Centre of Macau
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNESCO World Heritage Centre. UNESCO Culture 2030 Indicators Project. 2019. Available online: https://is.gd/uZEMeR (accessed on 1 November 2022).
- Macao Special Administrative Region Government Printing Office. Law on the Protection of Cultural Heritage. 2013. Available online: https://is.gd/aSRNvR (accessed on 1 November 2022).
- Ramírez-Guerrero, G.; García-Onetti, J.; Arcila-Garrido, M.; Chica-Ruiz, J.A. A Tourism potential index for cultural heritage management through the ecosystem services approach. Sustainability 2021, 13, 6415. [Google Scholar] [CrossRef]
- Dobbie, M.F.; Farrelly, M.A. Using best-worst scaling to reveal preferences for retrofitting raingardens in suburban streets. Urban For. Urban Green. 2022, 74, 127619. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Gou, A. Study of the color characteristics of residential buildings in Shanghai. Color Res. Appl. 2020, 46, 240–257. [Google Scholar] [CrossRef]
- Zhang, H.; Chan, B.H.-S. Differentiating graffiti in Macao: Activity types, multimodality and institutional appropriation. Vis. Commun. 2022, 21, 560–580. [Google Scholar] [CrossRef]
- Yang, M. Investigating seasonal color change in the environment by color analysis and information visualization. Color Res. Appl. 2020, 45, 503–511. [Google Scholar] [CrossRef]
- Huang, Q.; Kobayashi, A. A proposal of designing diagrams as survey tools for environmental color workshop. J. Sci. Des. 2019, 3, 277–286. [Google Scholar] [CrossRef]
- Períes, L.; Kesman, M.C.; Barraud, S.D.L. El color como componente paisajístico en los catálogos de paisaje urbano. Rev. Arquit. 2020, 22, 58–66. [Google Scholar] [CrossRef]
- Papinutto, M.; Lao, J.; Lalanne, D.; Caldara, R. Watchers do not follow the eye movements of Walkers. Vis. Res. 2020, 176, 130–140. [Google Scholar] [CrossRef]
- Gao, H.; Zhou, S. Oriental Marco Polo Plaza Encounter: Choreographing Place and Placelessness from a Phenomenological Perspective. Sustainability 2021, 13, 6159. [Google Scholar] [CrossRef]
- Køster, A.; Fernandez, A.V. Investigating modes of being in the world: An introduction to Phenomenologically grounded qualitative research. Phenomenol. Cogn. Sci. 2021, 22, 149–169. [Google Scholar] [CrossRef]
- Hawkins, H. Cultural Geography I: Mediums. Prog. Hum. Geogr. 2021, 45, 1709–1720. [Google Scholar] [CrossRef]
- Urbanc, M.; Fridl, J.; Planinc, T.R. Landscapes as represented in textbooks and in students’ imagination: Stability, generational gap, image retention and recognisability. Child. Geogr. 2021, 19, 446–461. [Google Scholar] [CrossRef]
- Creem-Regehr, S.H.; Barhorst-Cates, E.M.; Tarampi, M.R.; Rand, K.M.; Legge, G.E. How can basic research on spatial cognition enhance the visual accessibility of architecture for people with low vision? Cogn. Res. Princ. Implic. 2021, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Gentsch, K.; Beermann, U.; Wu, L.; Trznadel, S.; Scherer, K.R. Temporal unfolding of micro-valences in facial expression evoked by visual, auditory, and olfactory stimuli. Affect. Sci. 2020, 1, 208–224. [Google Scholar] [CrossRef] [PubMed]
- Scherer, K.R. Theory convergence in emotion science is timely and realistic. Cogn. Emot. 2022, 36, 154–170. [Google Scholar] [CrossRef] [PubMed]
- Samalavičius, A. Towards Multisensory Architecture: Juhani Pallasmaa and Phenomenology of the Built Envi-ronment. Logos-Vilnius 2021, 109, 142–152. [Google Scholar] [CrossRef]
- Wu, B.; Zhu, Y.; Yu, K.; Nishimura, S.; Jin, Q. The effect of eye movements and cultural factors on product color selection. Hum. -Cent. Comput. Inf. Sci. 2020, 10, 48. [Google Scholar] [CrossRef]
- Kriken, J.L.; Enquist, P.; Rapaport, R. City Building: Nine Planning Principles for the Twenty-First Century; Princeton Architectural Press: New York, NY, USA, 2010. [Google Scholar]
- Moughtin, J.C. Urban Design: Street and Square; Architectural Press: Oxford, UK, 2003. [Google Scholar]
- Yi, J.H.; Jeon, J. A study on color conspicuity and color harmony of wayfinding signs according to outdoor environment types. Color Res. Appl. 2022, 47, 1259–1294. [Google Scholar] [CrossRef]
- Skaržauskienė, A.; Mačiulienė, M. Assessment of Digital Co-Creation for Public Open Spaces: Methodological Guidelines. Informatics 2019, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Pilarczyk, J.; Kuniecki, M.; Wołoszyn, K.; Sterna, R. Blue blood, red blood. How does the color of an emotional scene affect visual attention and pupil size? Vis. Res. 2020, 171, 36–45. [Google Scholar] [CrossRef]
- Damle, A.; Smith, P.J. Biasing cognitive processes during design: The effects of color. Des. Stud. 2009, 30, 521–540. [Google Scholar] [CrossRef]
- Khaire, P.; Kumar, P. Deep learning and RGB-D based human action, human–human and human–object interaction recognition: A survey. J. Vis. Commun. Image Represent. 2022, 86, 103531. [Google Scholar] [CrossRef]
- Bálizs, B. Meanings of the Color Yellow and Its Color Associates, Yellow-Black and Yellow-Green. Hung. Cult. Stud. 2021, 14, 100–120. [Google Scholar] [CrossRef]
- Gehl, J.; Svarre, B. How to Study Public Life; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Dowd, E.W.; Golomb, J.D. The Binding Problem after an eye movement. Atten. Percept. Psychophys. 2020, 82, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Schloss, K.B.; Leggon, Z.; Lessard, L. Semantic Discriminability for Visual Communication. IEEE Trans. Vis. Comput. Graph. 2021, 27, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Cultural Affairs Bureau. Macau Special Administrative Region Cultural Affairs Bureau, Planning Framework for the Conservation and Management of the Historic Centre of Macau: A consultation Text; Cultural Affairs Bureau: Macau, China, 2014. [Google Scholar]
- Grazuleviciute-Vileniske, I.; Seduikyte, L.; Daugelaite, A.; Rudokas, K. Links between heritage building, historic urban landscape and sustainable development: Systematic approach. Landsc. Arch. Art 2020, 17, 30–38. [Google Scholar] [CrossRef]
- Tobii® Technology. Determining the Tobii I-VT Fixation Filter’s Default Values Method Description and Results Discussion. 2012. Available online: https://www.vinis.co.kr/ivt_filter.pdf (accessed on 1 November 2022).
ⓕ St. Dominic’s Square | Number of Fixations in AOI (Include Zeroes) | Total Time of Interest Fixation Count | Total Time of Interest Duration | |
---|---|---|---|---|
Yellow Building | Green Apple | |||
Participant No. 01 | 19 | 2 | 61 | 22.48 |
Participant No. 02 | 12 | 3 | 34 | 14.50 |
Participant No. 03 | 20 | 7 | 125 | 44.66 |
Participant No. 04 | 10 | 12 | 68 | 29.78 |
Participant No. 05 | 5 | 1 | 22 | 7.24 |
Participant No. 06 | 12 | 6 | 46 | 15.57 |
Participant No. 07 | 10 | 4 | 87 | 28.56 |
Participant No. 08 | 19 | 1 | 73 | 27.49 |
Participant No. 09 | 10 | 3 | 85 | 30.46 |
Participant No. 10 | 16 | 6 | 50 | 16.74 |
Participant No. 11 | 8 | 1 | 36 | 11.24 |
Participant No. 12 | 4 | 0 | 20 | 11.42 |
Participant No. 13 | 8 | 1 | 63 | 19.45 |
Participant No. 14 | 11 | 4 | 52 | 17.82 |
Participant No. 15 | 12 | 0 | 48 | 18.50 |
Participant No. 16 | 20 | 0 | 147 | 47.59 |
Participant No. 17 | 8 | 3 | 63 | 23.70 |
Participant No. 18 | 30 | 14 | 119 | 68.46 |
Participant No. 19 | 7 | 0 | 26 | 8.99 |
Participant No. 20 | 20 | 1 | 67 | 24.90 |
Participant No. 21 | 11 | 2 | 42 | 12.92 |
Participant No. 22 | 4 | 4 | 29 | 10.91 |
Participant No. 23 | 24 | 5 | 77 | 30.62 |
Participant No. 24 | 10 | 4 | 39 | 13.67 |
Participant No. 25 | 13 | 0 | 47 | 14.29 |
Participant No. 26 | 15 | 0 | 66 | 20.97 |
Participant No. 27 | 11 | 4 | 48 | 19.60 |
Participant No. 28 | 12 | 1 | 94 | 25.58 |
Participant No. 29 | 7 | 0 | 15 | 4.75 |
Participant No. 30 | 7 | 7 | 73 | 28.23 |
Average | 12.00 | 2.75 | 60.73 | 22.37 |
Percentage Fixated (%) | 100.00 | 75.00 | ||
Variance | 74.67 | 4.25 | 985.65 | 175.19 |
Standard Deviation (n − 1) | 8.64 | 2.06 | 31.40 | 13.24 |
ⓕ St. Dominic’s Square | Yellow Building | Green Apple |
---|---|---|
Number of fixations in AOI (include zeroes) | ||
Average | 12.50 count | 3.20 count |
Standard Deviation (n − 1) | 6.15 count | 3.47 count |
Duration of fixations in AOI (include zeroes) | ||
Average | 3.63 s | 1.22 s |
Standard Deviation (n − 1) | 3.19 s | 1.56 s |
Variables | Homogeneity Test of Variance | Mean Equivalence t-Test | ||||
---|---|---|---|---|---|---|
F Value | p Value | t | Significance (Two Tails) | Mean Value Difference | Standard Error Value | |
Number of fixations | 7.078 | 0.010 | 7.218 | 0.001 * | 9.300 | 1.288 |
Fixation duration | 1.302 | 0.258 | 3.718 | 0.001 * | 2.412 | 0.649 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Song, W.; Zhou, J.; Tan, Y.; Wang, H. AI-Based Environmental Color System in Achieving Sustainable Urban Development. Systems 2023, 11, 135. https://doi.org/10.3390/systems11030135
Wang P, Song W, Zhou J, Tan Y, Wang H. AI-Based Environmental Color System in Achieving Sustainable Urban Development. Systems. 2023; 11(3):135. https://doi.org/10.3390/systems11030135
Chicago/Turabian StyleWang, Pohsun, Wu Song, Junling Zhou, Yongsheng Tan, and Hongkong Wang. 2023. "AI-Based Environmental Color System in Achieving Sustainable Urban Development" Systems 11, no. 3: 135. https://doi.org/10.3390/systems11030135
APA StyleWang, P., Song, W., Zhou, J., Tan, Y., & Wang, H. (2023). AI-Based Environmental Color System in Achieving Sustainable Urban Development. Systems, 11(3), 135. https://doi.org/10.3390/systems11030135