Improving Acceptability of Cost Savings Allocation in Ridesharing Systems Based on Analysis of Proportional Methods
Abstract
:1. Introduction
2. Proportional Methods to Divide Cost Savings among Ridesharing Participants
3. Comparison with Proportional Allocation Methods
4. Results
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
- (i)
- First, it is shown that the highest rewarding rate for shared rides under the Local Proportional Method is greater than that of the Global Proportional Method. Let the winning bid of driver be the shared ride with the highest rewarding rate for shared rides under the Local Proportional Method.
- (ii)
- If the Local Proportional Method is used, the rewarding rate for passenger is , where . The rewarding rate for passenger is . If the Local Proportional Method is used, the rewarding rate for driver is , where .
- (iii)
- In the Global Proportional Method, the rewarding rate for passenger is . The rewarding rate for passenger is = . In the Global Proportional Method, the rewarding rate for driver is . The rewarding rate for driver is . Therefore, the rewarding rate for each passenger and each driver is the same.
Appendix C
- (i)
- If the Fifty-Fifty Method is used, the rewarding rate for passenger is with .
- (ii)
- In the Global Proportional Method, the rewarding rate for passenger is .
- (iii)
- According to (i), the number of acceptable shared rides under the Fifty-Fifty Method is .
References
- International Energy Agency. World Energy Outlook 2018; IEA: Paris, France, 2018; Available online: https://www.iea.org/reports/world-energy-outlook-2018 (accessed on 5 February 2023).
- International Energy Agency. World Energy Outlook 2022; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 5 February 2023).
- U.S. Energy Information Administration, Monthly Energy Review. 2022. Available online: https://www.eia.gov/totalenergy/data/monthly/archive/00352204.pdf (accessed on 28 February 2023).
- Opstal, W.V.; Borms, L. Startups and circular economy strategies: Profile differences, barriers and enablers. J. Clean. Prod. 2023, 396, 136510. [Google Scholar] [CrossRef]
- Hossain, M. Sharing economy: A comprehensive literature review. Int. J. Hosp. Manag. 2020, 87, 102470. [Google Scholar] [CrossRef]
- Xu, X.; Hao, J.; Zheng, Y. Multi-objective artificial bee colony algorithm for multi-stage resource leveling problem in sharing logistics network. Comput. Ind. Eng. 2020, 142, 106338. [Google Scholar] [CrossRef]
- Vandycke, N.; Sehmi, G.S.; Sandoval, I.R.; Lee, Y. Defining the Role of Transport in the Circular Economy. 2022. Available online: https://blogs.worldbank.org/transport/defining-role-transport-circular-economy (accessed on 5 February 2023).
- Castellanos, S.; Grant-Muller, S.; Wright, K. Technology, transport, and the sharing economy: Towards a working taxonomy for shared mobility. Transp. Rev. 2022, 42, 318–336. [Google Scholar] [CrossRef]
- Mourad, A.; Puchinger, J.; Chu, C. A survey of models and algorithms for optimizing shared mobility. Transp. Res. Part B Methodol. 2019, 123, 323–346. [Google Scholar] [CrossRef]
- Sun, R.; Wu, X.; Chen, Y. Assessing the impacts of ridesharing services: An agent-based simulation approach. J. Clean. Prod. 2022, 372, 133664. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Du, M.; Liu, D.; Kwan, M.-P. Understanding the spatiotemporal variation of ride-hailing orders under different travel distances. Travel Behav. Soc. 2023, 32, 100581. [Google Scholar] [CrossRef]
- Wieding, S.V.; Sprei, F.; Hult, C.; Hult, Å.; Roth, A.; Persson, M. Drivers and barriers to business-to-business carsharing for work trips—A case study of Gothenburg, Sweden. Case Stud. Transp. Policy 2022, 10, 2330–2336. [Google Scholar] [CrossRef]
- Bruglieri, M.; Ciccarelli, D.; Colorni, A.; Luè, A. PoliUniPool: A carpooling system for universities. Procedia Soc. Behav. Sci. 2011, 20, 558–567. [Google Scholar] [CrossRef] [Green Version]
- Liftango. Available online: https://www.newcastle.edu.au/our-uni/campuses-and-locations/transport/rideshare-liftango (accessed on 5 February 2023).
- Furuhata, M.; Dessouky, M.; Ordóñez, F.; Brunet, M.; Wang, X.; Koenig, S. Ridesharing: The state-of-the-art and future direc-tions. Transp. Res. Pt. B Methodol. 2013, 57, 28–46. [Google Scholar] [CrossRef]
- Agatz, N.; Erera, A.; Savelsbergh, M.; Wang, X. Optimization for dynamic ride-sharing: A review. Eur. J. Oper. Res. 2012, 223, 295–303. [Google Scholar] [CrossRef]
- Brown, A.E. Who and where rideshares? Rideshare travel and use in Los Angeles. Transp. Res. Part A Policy Pract. 2020, 136, 120–134. [Google Scholar] [CrossRef]
- Hwang, K.; Giuliano, G. The Determinants of Ridesharing: Literature Review; Working Paper UCTC No. 38; The University of California Transportation Center: Berkeley, CA, USA, 1990; Available online: https://escholarship.org/uc/item/3r91r3r4 (accessed on 5 February 2023).
- Zhang, F.; Roberts, S.; Goldman, C. A Survey Study Measuring People’s Preferences Towards Automated and Non-Automated Ridesplitting. In Proceedings of the Driving Assessment Conference 10, Santa Fe, NM, USA, 24–27 June 2019; pp. 92–98. [Google Scholar]
- Thaithatkul, P.; Seo, T.; Kusakabe, T.; Asakura, Y. Adoption of dynamic ridesharing system under influence of information on social network. Transp. Res. Procedia 2019, 37, 401–408. [Google Scholar] [CrossRef]
- Hsieh, F.-S. Development and Comparison of Ten Differential-Evolution and Particle Swarm-Optimization Based Algorithms for Discount-Guaranteed Ridesharing Systems. Appl. Sci. 2022, 12, 9544. [Google Scholar] [CrossRef]
- Hsieh, F.-S. Grouping Patients for Ridesharing in Non-emergency Medical Care Services, To appear. In Proceedings of the 13th IEEE Annual Computing and Communication Workshop and Conference (CCWC 2023), Virtual, 8–11 March 2023; pp. 939–942. [Google Scholar]
- Hsieh, F.S. A Comparative Study of Several Metaheuristic Algorithms to Optimize Monetary Incentive in Ridesharing Systems. ISPRS Int. J. Geo-Inf. 2020, 9, 590. [Google Scholar] [CrossRef]
- Berlingerio, M.; Ghaddar, B.; Guidotti, R.; Pascale, A.; Sassi, A. The GRAAL of carpooling: GReen And sociAL optimization from crowd-sourced data. Transp. Res. Part C Emerg. Technol. 2017, 80, 20–36. [Google Scholar] [CrossRef]
- Saisubramanian, S.; Basich, C.; Zilberstein, S.; Goldman, C.V. Satisfying Social Preferences in Ridesharing Services. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 3720–3725. [Google Scholar]
- Hsieh, F.S. Trust-Based Recommendation for Shared Mobility Systems Based on a Discrete Self-Adaptive Neighborhood Search Differential Evolution Algorithm. Electronics 2022, 11, 776. [Google Scholar] [CrossRef]
- Bistaffa, F.; Farinelli, A.; Ramchurn, S.D. Sharing rides with friends: A coalition formation algorithm for ridesharing. In Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 608–614. [Google Scholar]
- Sun, Z.; Wang, Y.; Zhou, H.; Jiao, J.; Overstreet, R.E. Travel behaviours, user characteristics, and social-economic impacts of shared transportation: A comprehensive review. Int. J. Logist. Res. Appl. 2021, 24, 51–78. [Google Scholar] [CrossRef]
- Hyland, M.; Mahmassani, H.S. Operational benefits and challenges of shared-ride automated mobility-on-demand services. Transp. Res. Part A Policy Pract. 2020, 134, 251–270. [Google Scholar] [CrossRef]
- Hansen, T.; Sener, I.N. Strangers on this Road We Are on: A Literature Review of Pooling in on-Demand Mobility Services. Transp. Res. Rec. 2022. [Google Scholar] [CrossRef]
- Waerden, P.; Lem, A.; Schaefer, W. Investigation of Factors that Stimulate Car Drivers to Change from Car to Carpooling in City Center Oriented Work Trips. Transp. Res. Procedia 2015, 10, 335–344. [Google Scholar] [CrossRef] [Green Version]
- Guajardoa, M.; Ronnqvist, M. A review on cost allocation methods in collaborative transportation. Int. Trans. Oper. Res. 2016, 23, 371–392. [Google Scholar] [CrossRef]
- Kalai, E. Proportional solutions to bargaining situations: Intertemporal utility comparisons. Econometrica 1977, 45, 1623–1630. [Google Scholar] [CrossRef]
- Schmeidler, D. The Nucleolus of a Characteristic Function Game. SIAM J. Appl. Math. 1969, 17, 1163–1170. [Google Scholar] [CrossRef]
- Shapley, L.S. A Value for N-Person Games. A Value N-Pers. Games 1952, 28, 307–317. [Google Scholar]
- Perea, F.; Puerto, J. A heuristic procedure for computing the nucleolus. Comput. Oper. Res. 2019, 112, 104764. [Google Scholar] [CrossRef]
- Fatima, S.S.; Wooldridge, M.; Jennings, N.R. A linear approximation method for the Shapley value. Artif. Intell. 2008, 172, 1673–1699. [Google Scholar] [CrossRef] [Green Version]
- Levinger, C.; Hazon, N.; Azaria, A. Computing the Shapley Value for Ride-Sharing and Routing Games. In Proceedings of the 19th International Conference on Autonomous Agents and Multi-Agent Systems, Auckland, New Zealand, 9–13 May 2020; pp. 1895–1897. [Google Scholar]
- Lu, W.; Quadrifoglio, L. Fair cost allocation for ridesharing services—Modeling, mathematical programming and an algorithm to find the nucleolus. Transp. Res. Part B Methodol. 2019, 121, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Cipolina-Kun, L.; Yazdanpanah, V.; Stein, S.; Gerding, E.H. A Proportional Pricing Mechanism for Ridesharing Services with Meeting Points. In Proceedings of the PRIMA 2022: Principles and Practice of Multi-Agent Systems: 24th International Conference, Valencia, Spain, 16–18 November 2022; pp. 523–539. [Google Scholar]
- Wang, X.; Agatz, N.; Erera, A. Stable Matching for Dynamic Ride-Sharing Systems. Transp. Sci. 2018, 52, 850–867. [Google Scholar] [CrossRef]
- Agatz, N.A.H.; Erera, A.L.; Savelsbergh, M.W.P.; Wang, X. Dynamic ride-sharing: A simulation study in metro Atlanta. Transp. Res. Part B Methodol. 2011, 45, 1450–1464. [Google Scholar] [CrossRef]
- Hsieh, F.S.; Zhan, F.; Guo, Y. A solution methodology for carpooling systems based on double auctions and cooperative coevolutionary particle swarms. Appl. Intell. 2019, 49, 741–763. [Google Scholar] [CrossRef]
- Hsieh, F.-S. A Comparison of Three Ridesharing Cost Savings Allocation Schemes Based on the Number of Acceptable Shared Rides. Energies 2021, 14, 6931. [Google Scholar] [CrossRef]
Variable | Meaning |
---|---|
a passenger, and is the number of passengers | |
a driver, and is the number of drivers | |
the index of a location, | |
total bids submitted by driver | |
A bid of a driver, and is the number of bids submitted by driver driver ‘s -th bid | |
= , where : seats allocated to pick-up location of passenger , : seats released at drop-off location of passenger , : original cost of the driver without ridesharing : the transport cost of driver ’s -th bid. | |
passenger ’s bid = , where : seats requested for pick-up location of passenger , : seats released at drop-off location of passenger , : passenger ’s original cost without ridesharing. | |
driver ’s decision variable; if = 1, the bid of driver is a winning bid and the bid of driver is not a winning bid otherwise ( = 0) | |
passenger ’s decision variable; if = 1, passenger ’s bid is a winning bid and passenger ’s bid is not a winning bid otherwise ( = 0) | |
ridesharing information provider’s share value | |
passenger ’s share value | |
driver ’s share value | |
the set of passengers on the ride of driver ’s –th bid | |
the cost savings function | |
the cost savings function of driver ’s –th bid |
Scheme | Stakeholder | Share Value | |
---|---|---|---|
Fifty-Fifty (FF) Method | information provider | (7) | |
passenger | (8) | ||
driver | (9) | ||
Local Proportional (LP) Method | information provider | (10) | |
passenger | (11) | ||
where, | (12) | ||
driver | (13) | ||
where, | (14) | ||
Global Proportional (GP) Method | information provider | (15) | |
passenger | (16) | ||
driver | (17) |
Case 1 | Participant | GP | GP Accepted | LP | LP Accepted | FF | FF Accepted |
---|---|---|---|---|---|---|---|
Ride 1 | D1 | 0.114 | 1 | 0.114 | 1 | 0.069 | 0 |
P1 | 0.114 | 1 | 0.114 | 1 | 0.34 | 0 | |
Total rides | 1 | 1 | 0 | ||||
Participants on acceptable rides | 2 | 2 | 0 |
Case 2 | Participant | GP | GP Accepted | LP | LP Accepted | FF | FF Accepted |
---|---|---|---|---|---|---|---|
Ride 1 | D1 | 0.21 | 1 | 0.119 | 1 | 0.068 | 0 |
P1 | 0.21 | 1 | 0.119 | 1 | 0.475 | 0 | |
Ride 2 | D2 | 0.21 | 1 | 0.218 | 1 | 0.142 | 1 |
P2 | 0.21 | 1 | 0.218 | 1 | 0.475 | 1 | |
Ride 3 | D3 | 0.21 | 1 | 0.277 | 1 | 0.196 | 1 |
P3 | 0.21 | 1 | 0.277 | 1 | 0.475 | 1 | |
Total rides | 3 | 3 | 2 | ||||
Participants on acceptable rides | 6 | 6 | 4 |
Case 3 | Participant | GP | GP Accepted | LP | LP Accepted | FF | FF Accepted |
---|---|---|---|---|---|---|---|
Ride 1 | D1 | 0.166 | 1 | 0.189 | 1 | 0.121 | 1 |
P1 | 0.166 | 1 | 0.189 | 1 | 0.438 | 1 | |
Ride 2 | D2 | 0.166 | 1 | 0.098 | 0 | 0.06 | 0 |
P2 | 0.166 | 1 | 0.098 | 0 | 0.258 | 0 | |
Ride 3 | D3 | 0.166 | 1 | 0.193 | 1 | 0.121 | 1 |
P3 | 0.166 | 1 | 0.193 | 1 | 0.475 | 1 | |
Total rides | 3 | 2 | 2 | ||||
Participants on acceptable rides | 6 | 4 | 4 |
Case 4 | Participant | GP | GP Accepted | LP | LP Accepted | FF | FF Accepted |
---|---|---|---|---|---|---|---|
Ride 1 | D1 | 0.209 | 1 | 0.232 | 1 | 0.154 | 1 |
P1 | 0.209 | 1 | 0.232 | 1 | 0.475 | 1 | |
Ride 2 | D2 | 0.209 | 1 | 0.054 | 0 | 0.034 | 0 |
P2 | 0.209 | 1 | 0.054 | 0 | 0.132 | 0 | |
Ride 3 | D3 | 0.209 | 1 | 0.353 | 1 | 0.28 | 1 |
P3 | 0.209 | 1 | 0.353 | 1 | 0.475 | 1 | |
Total rides | 3 | 2 | 2 | ||||
Participants on acceptable rides | 6 | 4 | 4 |
Case 5 | Participant | GP | GP Accepted | LP | LP Accepted | FF | FF Accepted |
---|---|---|---|---|---|---|---|
Ride 1 | D1 | 0.207 | 1 | 0.265 | 1 | 0.184 | 1 |
P1 | 0.207 | 1 | 0.265 | 1 | 0.475 | 1 | |
Ride 2 | D2 | 0.207 | 1 | 0.138 | 1 | 0.081 | 0 |
P2 | 0.207 | 1 | 0.138 | 1 | 0.475 | 0 | |
Ride 3 | D3 | 0.207 | 1 | 0.223 | 1 | 0.145 | 1 |
P3 | 0.207 | 1 | 0.223 | 1 | 0.475 | 1 | |
Total rides | 3 | 3 | 2 | ||||
Participants on acceptable rides | 6 | 6 | 4 |
Case 6 | Participant | GP | GP Accepted | LP | LP Accepted | FF | FF Accepted |
---|---|---|---|---|---|---|---|
Ride 1 | D1 | 0.2 | 1 | 0.192 | 1 | 0.123 | 1 |
P1 | 0.2 | 1 | 0.192 | 1 | 0.434 | 1 | |
Ride 2 | D2 | 0.2 | 1 | 0.12 | 1 | 0.069 | 0 |
P2 | 0.2 | 1 | 0.12 | 1 | 0.471 | 0 | |
Ride 3 | D3 | 0.2 | 1 | 0.253 | 1 | 0.172 | 1 |
P3 | 0.2 | 1 | 0.253 | 1 | 0.475 | 1 | |
Ride 4 | D4 | 0.2 | 1 | 0.254 | 1 | 0.174 | 1 |
P4 | 0.2 | 1 | 0.254 | 1 | 0.475 | 1 | |
Total rides | 4 | 4 | 3 | ||||
Participants on acceptable rides | 8 | 8 | 6 |
Case 7 | Participant | GP | GP Accepted | LP | LP Accepted | FF | FF Accepted |
---|---|---|---|---|---|---|---|
Ride 1 | D1 | 0.234 | 1 | 0.241 | 1 | 0.172 | 1 |
P1 | 0.234 | 1 | 0.241 | 1 | 0.401 | 1 | |
Ride 2 | D2 | 0.234 | 1 | 0.238 | 1 | 0.159 | 1 |
P2 | 0.234 | 1 | 0.238 | 1 | 0.475 | 1 | |
Ride 3 | D3 | 0.234 | 1 | 0.144 | 1 | 0.085 | 0 |
P3 | 0.234 | 1 | 0.144 | 1 | 0.475 | 0 | |
Ride 4 | D4 | 0.234 | 1 | 0.153 | 1 | 0.091 | 0 |
P4 | 0.234 | 1 | 0.153 | 1 | 0.475 | 0 | |
Ride 5 | D5 | 0.234 | 1 | 0.331 | 1 | 0.254 | 1 |
P5 | 0.234 | 1 | 0.331 | 1 | 0.475 | 1 | |
Total rides | 5 | 5 | 3 | ||||
Participants on acceptable rides | 10 | 10 | 6 |
Case 8 | Participant | GP | GP Accepted | LP | LP Accepted | FF | FF Accepted |
---|---|---|---|---|---|---|---|
Ride 1 | D1 | 0.181 | 1 | 0.222 | 1 | 0.155 | 1 |
P1 | 0.181 | 1 | 0.222 | 1 | 0.389 | 1 | |
Ride 2 | D2 | 0.181 | 1 | 0.223 | 1 | 0.146 | 1 |
P2 | 0.181 | 1 | 0.223 | 1 | 0.475 | 1 | |
Ride 3 | D3 | 0.181 | 1 | 0.275 | 1 | 0.194 | 1 |
P3 | 0.181 | 1 | 0.275 | 1 | 0.475 | 1 | |
Ride 4 | D4 | 0.181 | 1 | 0.21 | 1 | 0.135 | 1 |
P4 | 0.181 | 1 | 0.21 | 1 | 0.475 | 1 | |
Ride 5 | D5 | 0.181 | 1 | 0.145 | 1 | 0.085 | 0 |
P5 | 0.181 | 1 | 0.145 | 1 | 0.475 | 0 | |
Ride 6 | D6 | 0.181 | 1 | 0.029 | 0 | 0.019 | 0 |
P6 | 0.181 | 1 | 0.029 | 0 | 0.062 | 0 | |
Ride 7 | D7 | 0.181 | 1 | 0.2 | 1 | 0.127 | 1 |
P7 | 0.181 | 1 | 0.2 | 1 | 0.475 | 1 | |
Total rides | 7 | 6 | 5 | ||||
Participants on acceptable rides | 14 | 12 | 10 |
Case 1 | Participant | GP | GP Accepted | LP | LP Accepted | FF | FF Accepted |
---|---|---|---|---|---|---|---|
Ride 1 | D1 | 0.096 | 0 | 0.096 | 0 | 0.058 | 0 |
P1 | 0.096 | 0 | 0.096 | 0 | 0.286 | 0 | |
Total rides | 0 | 0 | 0 | ||||
Participants on acceptable rides | 0 | 0 | 0 |
Case 2 | Participant | GP | GP Accepted | LP | LP Accepted | FF | FF Accepted |
---|---|---|---|---|---|---|---|
Ride 1 | D1 | 0.176 | 0 | 0.1 | 0 | 0.057 | 0 |
P1 | 0.176 | 0 | 0.1 | 0 | 0.4 | 0 | |
Ride 2 | D2 | 0.176 | 0 | 0.184 | 0 | 0.119 | 0 |
P2 | 0.176 | 0 | 0.184 | 0 | 0.4 | 0 | |
Ride 3 | D3 | 0.176 | 0 | 0.234 | 1 | 0.165 | 0 |
P3 | 0.176 | 0 | 0.234 | 1 | 0.4 | 0 | |
Total rides | 0 | 1 | 0 | ||||
Participants on acceptable rides | 0 | 2 | 0 |
Case 3 | Participant | GP | GP Accepted | LP | LP Accepted | FF | FF Accepted |
---|---|---|---|---|---|---|---|
Ride 1 | D1 | 0.14 | 0 | 0.159 | 0 | 0.102 | 0 |
P1 | 0.14 | 0 | 0.159 | 0 | 0.369 | 0 | |
Ride 2 | D2 | 0.14 | 0 | 0.082 | 0 | 0.051 | 0 |
P2 | 0.14 | 0 | 0.082 | 0 | 0.217 | 0 | |
Ride 3 | D3 | 0.14 | 0 | 0.163 | 0 | 0.102 | 0 |
P3 | 0.14 | 0 | 0.163 | 0 | 0.4 | 0 | |
Total rides | 0 | 0 | 0 | ||||
Participants on acceptable rides | 0 | 0 | 0 |
Case 4 | Participant | GP | GP Accepted | LP | LP Accepted | FF | FF Accepted |
---|---|---|---|---|---|---|---|
Ride 1 | D1 | 0.176 | 0 | 0.196 | 0 | 0.13 | 0 |
P1 | 0.176 | 0 | 0.196 | 0 | 0.4 | 0 | |
Ride 2 | D2 | 0.176 | 0 | 0.045 | 0 | 0.029 | 0 |
P2 | 0.176 | 0 | 0.045 | 0 | 0.111 | 0 | |
Ride 3 | D3 | 0.176 | 0 | 0.297 | 1 | 0.236 | 1 |
P3 | 0.176 | 0 | 0.297 | 1 | 0.4 | 1 | |
Total rides | 0 | 1 | 1 | ||||
Participants on acceptable rides | 0 | 2 | 2 |
Case 5 | Participant | GP | GP Accepted | LP | LP Accepted | FF | FF Accepted |
---|---|---|---|---|---|---|---|
Ride 1 | D1 | 0.174 | 0 | 0.224 | 1 | 0.155 | 0 |
P1 | 0.174 | 0 | 0.224 | 1 | 0.4 | 0 | |
Ride 2 | D2 | 0.174 | 0 | 0.116 | 0 | 0.068 | 0 |
P2 | 0.174 | 0 | 0.116 | 0 | 0.4 | 0 | |
Ride 3 | D3 | 0.174 | 0 | 0.187 | 0 | 0.122 | 0 |
P3 | 0.174 | 0 | 0.187 | 0 | 0.4 | 0 | |
Total rides | 0 | 1 | 0 | ||||
Participants on acceptable rides | 0 | 2 | 0 |
Case 6 | Participant | GP | GP Accepted | LP | LP Accepted | FF | FF Accepted |
---|---|---|---|---|---|---|---|
Ride 1 | D1 | 0.168 | 0 | 0.161 | 0 | 0.103 | 0 |
P1 | 0.168 | 0 | 0.161 | 0 | 0.365 | 0 | |
Ride 2 | D2 | 0.168 | 0 | 0.101 | 0 | 0.058 | 0 |
P2 | 0.168 | 0 | 0.101 | 0 | 0.397 | 0 | |
Ride 3 | D3 | 0.168 | 0 | 0.213 | 1 | 0.145 | 0 |
P3 | 0.168 | 0 | 0.213 | 1 | 0.4 | 0 | |
Ride 4 | D4 | 0.168 | 0 | 0.214 | 1 | 0.146 | 0 |
P4 | 0.168 | 0 | 0.214 | 1 | 0.4 | 0 | |
Total rides | 0 | 2 | 0 | ||||
Participants on acceptable rides | 0 | 4 | 0 |
Case 7 | Participant | GP | GP Accepted | LP | LP Accepted | FF | FF Accepted |
---|---|---|---|---|---|---|---|
Ride 1 | D1 | 0.197 | 0 | 0.203 | 1 | 0.145 | 0 |
P1 | 0.197 | 0 | 0.203 | 1 | 0.337 | 0 | |
Ride 2 | D2 | 0.197 | 0 | 0.201 | 1 | 0.134 | 0 |
P2 | 0.197 | 0 | 0.201 | 1 | 0.4 | 0 | |
Ride 3 | D3 | 0.197 | 0 | 0.121 | 0 | 0.071 | 0 |
P3 | 0.197 | 0 | 0.121 | 0 | 0.4 | 0 | |
Ride 4 | D4 | 0.197 | 0 | 0.129 | 0 | 0.077 | 0 |
P4 | 0.197 | 0 | 0.129 | 0 | 0.4 | 0 | |
Ride 5 | D5 | 0.197 | 0 | 0.279 | 1 | 0.214 | 1 |
P5 | 0.197 | 0 | 0.279 | 1 | 0.4 | 1 | |
Total rides | 0 | 3 | 1 | ||||
Participants on acceptable rides | 0 | 6 | 2 |
Case 8 | Participant | GP | GP Accepted | LP | LP Accepted | FF | FF Accepted |
---|---|---|---|---|---|---|---|
Ride 1 | D1 | 0.152 | 0 | 0.187 | 0 | 0.131 | 0 |
P1 | 0.152 | 0 | 0.187 | 0 | 0.328 | 0 | |
Ride 2 | D2 | 0.152 | 0 | 0.188 | 0 | 0.123 | 0 |
P2 | 0.152 | 0 | 0.188 | 0 | 0.4 | 0 | |
Ride 3 | D3 | 0.152 | 0 | 0.232 | 1 | 0.163 | 0 |
P3 | 0.152 | 0 | 0.232 | 1 | 0.4 | 0 | |
Ride 4 | D4 | 0.152 | 0 | 0.177 | 0 | 0.114 | 0 |
P4 | 0.152 | 0 | 0.177 | 0 | 0.4 | 0 | |
Ride 5 | D5 | 0.152 | 0 | 0.122 | 0 | 0.072 | 0 |
P5 | 0.152 | 0 | 0.122 | 0 | 0.4 | 0 | |
Ride 6 | D6 | 0.152 | 0 | 0.025 | 0 | 0.016 | 0 |
P6 | 0.152 | 0 | 0.025 | 0 | 0.052 | 0 | |
Ride 7 | D7 | 0.152 | 0 | 0.169 | 0 | 0.107 | 0 |
P7 | 0.152 | 0 | 0.169 | 0 | 0.4 | 0 | |
Total rides | 0 | 1 | 0 | ||||
Participants on acceptable rides | 0 | 2 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, F.-S. Improving Acceptability of Cost Savings Allocation in Ridesharing Systems Based on Analysis of Proportional Methods. Systems 2023, 11, 187. https://doi.org/10.3390/systems11040187
Hsieh F-S. Improving Acceptability of Cost Savings Allocation in Ridesharing Systems Based on Analysis of Proportional Methods. Systems. 2023; 11(4):187. https://doi.org/10.3390/systems11040187
Chicago/Turabian StyleHsieh, Fu-Shiung. 2023. "Improving Acceptability of Cost Savings Allocation in Ridesharing Systems Based on Analysis of Proportional Methods" Systems 11, no. 4: 187. https://doi.org/10.3390/systems11040187
APA StyleHsieh, F. -S. (2023). Improving Acceptability of Cost Savings Allocation in Ridesharing Systems Based on Analysis of Proportional Methods. Systems, 11(4), 187. https://doi.org/10.3390/systems11040187