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Abstract: Internet of Things (IoT) technology has been incorporated into the majority of people’s
everyday lives and places of employment due to the quick development in information technology.
Modern agricultural techniques increasingly use the well-known and superior approach of managing
a farm known as “smart farming”. Utilizing a variety of information and agricultural technologies,
crops are observed for their general health and productivity. This requires monitoring the condition
of field crops and looking at many other indicators. The goal of smart agriculture is to reduce the
amount of money spent on agricultural inputs while keeping the quality of the final product constant.
The Internet of Things (IoT) has made smart agriculture possible through data collection and storage
techniques. For example, modern irrigation systems use effective sensor networks to collect field data
for the best plant irrigation. Smart agriculture will become more susceptible to cyber-attacks as its
reliance on the IoT ecosystem grows, because IoT networks have a large number of nodes but limited
resources, which makes security a difficult issue. Hence, it is crucial to have an intrusion detection
system (IDS) that can address such challenges. In this manuscript, an IoT-based privacy-preserving
anomaly detection model for smart agriculture has been proposed. The motivation behind this work
is twofold. Firstly, ensuring data privacy in IoT-based agriculture is of the utmost importance due
to the large volumes of sensitive information collected by IoT devices, including on environmental
conditions, crop health, and resource utilization data. Secondly, the timely detection of anomalies in
smart agriculture systems is critical to enable proactive interventions, such as preventing crop damage,
optimizing resource allocation, and ensuring sustainable farming practices. In this paper, we propose
a privacy-encoding-based enhanced deep learning framework for the difficulty of data encryption
and intrusion detection. In terms of data encoding, a novel method of a sparse capsule-auto encoder
(SCAE) is proposed along with feature selection, feature mapping, and feature normalization. An
SCAE is used to convert information into a new encrypted format in order to prevent deduction
attacks. An attention-based gated recurrent unit neural network model is proposed to detect the
intrusion. An AGRU is an advanced version of a GRU which is enhanced by an attention mechanism.
In the results section, the proposed model is compared with existing deep learning models using
two public datasets. Parameters such as recall, precision, accuracy, and F1-score are considered.
The proposed model has accuracy, recall, precision, and F1-score of 99.9%, 99.7%, 99.9%, and 99.8%,
respectively. The proposed method is compared using a variety of machine learning techniques such
as the deep neural network (DNN), convolutional neural network (CNN), recurrent neural network
(RNN), and long short-term memory (LSTM).

Keywords: intrusion detection; encryption or encoding; malware; smart agriculture; IoT; auto
encoder; GRU

1. Introduction

Agriculture and farming are regarded as two of the most important and fundamental
businesses that benefit humanity greatly and boost a country’s GDP [1]. Better farming
and agriculture management require technological support and breakthroughs [2]. To
enhance the quality and output of agricultural goods at a lower cost and with less human
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involvement, a group of tactics known as “smart agriculture” are used [3]. Due to the
continuous monitoring of numerous elements in the agricultural sector, smart farming
is totally based on Internet of Things technology [4], with numerous qualities including
water table and the development of plant and soil properties. Machine learning (ML)
algorithms are efficiently used to increase crop yield and lower the risk of crop damage [5].
The use of data analytics to make judgments and suggest the best crops for production in
the agricultural sector is also significant.

More than 80% of people on the planet have access to reliable Internet [6]. Spot
messaging, immersive two-way video chat, chance mobile contact, social networking,
voice-over-Internet protocol (VoIP), mobile phone calls, and e-commerce websites are just
a few of the ways in which technology has impacted modern life [7]. IoT is a technology
that serves as a future online platform for communication related to technology and the
environment. The technology is allegedly safer and more affordable in several industries,
including agriculture. With the use of intelligent devices and tools, farms can be tracked
and monitored autonomously in the area of agriculture with less human participation As it
helps farmers to make judgments about crop management and dynamic farming, smart
agriculture demonstrates interest in academia [8]. Crop production may be increased by
smart farming, which can also raise a nation’s GDP rate.

Crop output is reliant on the existence of vermin and plant disease [9]. Pests used to
hide behind leaves during the day to escape the warmness, and by dusk or dark, they were
visible on leaves [10]. Therefore, it is too difficult to notice their presence throughout the
day. Farmers may cause bugs to spread and multiply uncontrollably if they begin to harm
pests [11]. In order to get rid of pests and reduce agricultural damage, a lot of pesticides
must be sprayed on crops [12]. Additionally, if vegetables are sprayed with pesticides
while they are still growing, the pesticides remain in the plant even after washing. When
pests cause severe crop diseases, crops can occasionally become infected with bacteria.
To stop the spread of bacteria, the afflicted crops must be thoroughly cleaned. Without
effectively addressing the pest problem, this approach will harm the entire agricultural
production [13]. As a result, the researchers must consider the problem and should use IoT
and ML technologies to improve crop growth and insect detection in agricultural fields [14].

Sensors, connectivity, gateways, location, data analytics, and IoT components are
essential components for smart agriculture [15]. By gathering crucial data on numerous
agricultural characteristics including fertilizer level, soil moisture, and water level, sensors
are utilized to promote accurate farming. Network connectivity, including WIFI, cellular,
and ZigBee, is referred to as connectivity. Microcontrollers are referred to as gateways.
Arduino, Device Hive, and Raspberry PI are examples of IoT components. Four stages
make up the core operating structure of smart agriculture. The sensors first collect data
regarding the agricultural elements necessary for a crop’s development [16]. To sense
various agricultural characteristics, numerous sensors are utilized. The demands and
shortfalls in agriculture are then determined by mapping the sensed data with additional
criteria ] ML algorithms are used to find a solution for the given information. The cycle of
smart agriculture is continued in this way.

Security is regarded as a serious issue in IoT-ML-enabled smart agriculture. Location
monitoring, data theft, known-key assaults, data pollution, data injection, session hijacking,
cyber-agroterrorism, malicious code attacks, and repudiation attacks are just a few of the
attacks that can happen in an agricultural setting [17]. Data encryption, hashing, noise
mixing, message authentication codes, location concealment, identity-based cryptography,
digital signatures, multi-factor authentication, group signatures, fault-tolerance, blind
signatures, access control, traceable meta-data, and pseudonyms are the main defenses
against these attacks [18]. For secured data transmission, these solutions must be taken
into account.

If a fast DDoS attack occurs before the system has been trained or the detection has
been performed, it can be difficult to prevent the attack or minimize the damage caused by
it. By over-provisioning the network bandwidth capacity, the system can better withstand
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DDoS attacks [19]. This can be achieved by upgrading the network infrastructure or using
traffic filtering services provided by Internet service providers (ISPs). Configuring firewalls
and routers to drop traffic from known malicious IP addresses or blocking traffic to specific
ports can help to prevent or mitigate DDoS attacks. Cloud-based protection services can
provide protection against DDoS attacks by absorbing or mitigating attack traffic. These
services can be implemented quickly and are often more effective than traditional on-
premise solutions. By reducing the attack surface of the system, it becomes more difficult
for attackers to exploit vulnerabilities. This can be achieved by removing unnecessary
services or protocols, patching vulnerabilities, and implementing access controls [20]. By
training an attention-based gated recurrent unit neural network (AGRU) model to detect
DDoS attacks, the system can quickly identify and respond to attacks. The model can be
trained on historical data or using a simulated environment, enabling it to quickly adapt to
new attack types. While it is always preferable to have a detection system in place before
an attack occurs, the measures outlined above can help mitigate the damage caused by
a fast DDoS attack that occurs before the system has been trained or the detection has
been performed.

Motivation

An IoT-based privacy-preserving anomaly detection system in smart agriculture is
used to improve crop yield and reduce wastage while maintaining data privacy. These data
can be used to optimize farming practices and detect any anomalies that could potentially
harm the crop yield. Therefore, a privacy-preserving anomaly detection system that can
securely process data without revealing sensitive information is essential. Moreover, using
attention-based gated recurrent unit (GRU) networks can help to improve the accuracy of
anomaly detection. Attention mechanisms enable the model to focus on specific features
of the data that are relevant for detecting anomalies. The gated recurrent unit (GRU)
network is a type of recurrent neural network that is particularly effective in processing
sequential data. Therefore, an IoT-based privacy-preserving anomaly detection system
using an attention-based gated recurrent unit network can provide farmers and agricultural
organizations with a reliable and secure way to monitor crops and optimize farming
practices, while protecting sensitive data. These are the factors that motivated us to conduct
this research work.
Contributions:

• The first step in building the model is to collect data from IoT devices deployed in the
smart agriculture system. These devices can include sensors for measuring environ-
mental parameters, crop health, soil conditions, weather data, etc. The collected data
form the basis for anomaly detection.

• Preserving the privacy of sensitive data is crucial in any IoT-based system. Privacy-
preserving techniques such as data anonymization, encryption, or differential privacy
can be employed to protect personal and confidential information while ensuring
that data retain their utility for anomaly detection. These techniques can help in
compliance with privacy regulations and prevent unauthorized access.

• Data are changed into a new encoded format using the sparse capsule-auto encoder
approach to make them more resistant to attacks.

• The AGRU neural network model is utilized for detecting anomalies in the privacy-
preserved data. An AGRU extends the capabilities of the traditional GRU model by
incorporating an attention mechanism. The attention process allows the model to
focus on important features or time steps, effectively capturing temporal dependencies
and identifying abnormal patterns in the data. The AGRU model is trained on labeled
data, distinguishing between normal and anomalous instances.

• The trained AGRU model is evaluated using appropriate performance metrics such
as accuracy, precision, recall, and F1-score. The model’s performance is assessed on
both training and testing datasets to ensure its generalization ability. If necessary, the
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model can be refined via hyper parameter tuning or employing ensemble techniques
to further improve its anomaly detection capabilities.

Section 2 represents the associated work, including the table that explains the benefits
and drawbacks of the current methodologies. Section 3 shows the proposed methodology
and discusses the proposed model with equations, figures, etc. Section 4 shows the findings
from a comparison of the proposed model to existing models using graphs, tables, etc. The
conclusion, which includes future scope and references, is found in Section 5.

2. Related Works

The existing methods used to enhance the agricultural domain are discussed below.
IoT-driven data mining for smart crop prediction in the peasant agricultural sector

was presented by Mendoza et al. [21]. The approach makes use of Internet of Things (IoT)
sensors to record agricultural characteristics and collect information from peasants via
mobile applications about the volume of crop production. The solution incorporates data
storage services, IoT message hubs, ML models, and IoT data analytics along with data
mining concepts. The method’s advantage is that it makes use of less expensive IoT sensors,
data analysis services, and well-known data storage devices. The method’s drawback is
that the system requires routine maintenance. An ML-based strategy for precise agriculture
in 5G-based IoT was presented by Murugamani et al. [22]. The proposed approach involves
assessing soil quality and looking for diseases in cotton leaves. Using regression-based tech-
niques, cotton leaf disease can be identified and classified. The farmer received information
about the crop’s infection via a mobile application. Raspberry Pi served as an interface for
four different kinds of sensors. The process was inexpensive. Due to the presence of big
particles in sandy soil, the method’s accuracy was limited. The idea of the detection and
classification of intrusions into IoT networks used in agriculture was put forth by Raghu-
vanshi et al. [23]. By using principal component analysis, features from the pre-processed
NSL-KDD dataset were extracted. The pre-processed data were then classified using ML
methods such as linear regression, support vector machine (SVM), and random forest.
The method’s benefit is that it makes sure that the IoT network is secure. The method’s
low categorization accuracy is a drawback. Kethineni et al. [24] developed a powerful
intrusion detection system for smart agriculture DDoS attack detection. Data normalization
and label encoding were used to pre-process the gathered data. The CNN algorithm was
merged with the Bi-GRU model, which can both detect and categorize intrusions. The
attention mechanism in the BiGRU model looks for the most important characteristics
that can be used to recognize the DDoS attack. The wild horse optimization algorithm
was also used to improve the model’s classification accuracy. Nevertheless, only some IoT
attacks were detected using this method. Ferrag et al. [25] introduced CNNs, deep neural
networks, and recurrent neural networks. The effectiveness of deep learning and machine
learning methods for cyber-security in agriculture 4.0 was specifically evaluated. Using
two brand-new real traffic datasets, the CICDDoS2019 dataset and the TON IoT dataset,
the efficiency of each model was examined for both binary and multi-class classifications.
For multiple-dimensional time series data produced using the smart agricultural Internet
of Things, Cheng et al. [26] suggested a GAN-based anomaly detection algorithm. For the
purpose of identifying anomalies, the model employed reconstruction techniques after
learning the distribution patterns of typical data using the GAN structure. An upgraded
improved LSTM network was taken into consideration to serve as the foundation for the
GAN because time series data have temporal dependence and there may be a potential
correlation between multiple variables. The encoder–decoder was chosen as the GAN
generator to address the generator inversion problem. By doing this, the requirement for
real-time anomaly detection was effectively addressed while the computation time was
also decreased. However, the time window size option was the most important factor to
be taken into account; even if the time window was extended, the model’s performance
decreased. A serial–parallel convolutional bidirectional gated recurrent network model
incorporating ensemble classifiers was a flexible and systematic hybrid model proposed
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by Zhang et al. [27]. In terms of identifying smart contract vulnerabilities, the model
demonstrated excellent performance gains. A serial–parallel convolution (SPCNN) was
also suggested as a viable option for a hybrid model. By preserving the temporal struc-
ture and geographic location data, it extracts characteristics from the input sequence for
multivariate combinations. The model’s resilience increased throughout the classification
stage by using the ensemble classifier. However, the technique struggles to detect integer
overflow vulnerabilities. A more scalable method of identifying smart contract vulnerabili-
ties was presented by Zhang et al. [28] using a multiple-objective detection neural network
(MODNN). Without specialized or predetermined information, MODNN can validate
12 types of vulnerabilities, including 10 known risks, and find additional unknown types
using implicit characteristics and multi-objective detection (MOD) techniques. Because of
its great scalability and support for simultaneous vulnerability detection, it does not require
separate models to be trained for different types of vulnerabilities, saving both a lot of time
and money. The absence of smart contract vulnerability datasets was also addressed in this
work by the creation of a smart contract-crawler (SCC). An experimental review of neural-
based approaches for network intrusion management was presented by Di Mauro et al. [29].
A critical comparison of approaches shares a common paradigm including intrusion de-
tection, such as weightless neural networks. Then, the CIC-IDS-2017/2018 dataset was
utilized, wherein single-class cases (benign vs. malign) and multi-class cases (n benign
vs. malign1... vs. malignk) were deemed to be important. The network abnormal traffic
detection model based on semi-supervised deep reinforcement learning was presented by
Dong, S et al. [30]. A semi-supervised double deep Q-network (SSDDQN)-based optimiza-
tion model for network anomalous traffic identification was dependent on the double deep
Q-network. In SSDDQN, the current network adopts the auto encoder to rebuild the traffic
features. A deep neural network was applied as a classifier. The NSL-KDD and AWID
datasets were used for training with testing and made for a comprehensive comparison.
Deep learning for the categorization of Sentinel-2 image time series was presented by
Pelletier, C. et al. [31]. The two leading deep learning approaches for handling temporal
data, recurrent neural networks and temporal convolutional neural networks, were used
Rangwani, D et al. [32], Vangala, A et al. [33], Vidyashree et al. [34]. For precise and current
land cover mapping across huge areas, satellite image time series have shown to be indis-
pensable Chen, M et al. [35], Gutpa, A et al. [36], Bakthavatchalam et al. [37]. The majority
of SITS-related writings have emphasized the use of conventional classification techniques
such as random forests Colombo-Mendoza, L.O et al. [38], Murugamani, C et al. [39],
Raghuvanshi, A et al. [40].

However, with the increasing adoption of these technologies, there are several security
issues that need to be considered to prevent privacy leaks and other potential consequences.
A major security issue in smart agriculture is the risk of data breaches. Farmers and
agricultural companies collect and store sensitive data on crop yields, weather patterns,
and soil conditions, which can be valuable to cyber-criminals. If these data fall into the
wrong hands, they can be used to manipulate markets, cause crop failures, and other
harmful activities. Another issue is the vulnerability of the devices and networks used
in smart agriculture. These devices, such as sensors and drones, are often connected to
the Internet and can be hacked, leaving the entire system open to attacks. Malware and
other malicious software can also be introduced into the system through these devices,
compromising sensitive data. The consequences of privacy leakage in smart agriculture
can be significant. For instance, if the data collected from smart agriculture systems were to
be leaked, it could lead to decreased confidence in the industry and ultimately a decline
in the adoption of these technologies. Additionally, farmers could face serious financial
losses if their sensitive data, such as crop yields or pricing data, were to fall into the hands
of competitors or malicious actors. Overall, it is crucial to ensure that smart agriculture
systems are designed with security and privacy.

A comparison with the state-of the art techniques is shown in Table 1.
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Table 1. Comparison with state-of the art techniques.

Author and Year Aim Merits Demerits

Mendoza et al., 2022 [21]

IoT-driven data mining for
smart prediction of crops in

the domain of
peasant farming

It uses cheaper IoT sensors, data
analytical services, and popular

data storage devices

The system needs
periodic service

Murugamani et al., 2022 [22]
ML-based approach for
precise agriculture in

5G-based IoT
Affordable

In sandy soil, the accuracy is
lower due to the presence of

large particles

Raghuvanshi et al., 2022 [23]
Detection and classification of
intrusions into IoT networks

utilized in agriculture

It ensures security in IoT
network Classification accuracy is low

Kethineni et al., 2023 [24]
Powerful intrusion detection
system for smart agriculture

DDoS attack detection
Accurate detection Only some IoT attacks

are detected

Ferrag et al., 2021 [25] For cyber-security in
agriculture 4.0

Examined for both binary and
multi-class classifications Complexity while using

Cheng et al., 2022 [26]

Multiple-dimensional time
series data produced using
smart agricultural Internet

of Things

GAN because time series data
have a temporal dependence
and there may be potential

correlation between multiple
variables

Even if the time window is
extended, the model’s
performance is going

to decrease

Zhang et al., 2022 [27] A flexible and systematic
hybrid model

Identifying smart contract
vulnerabilities, the model

demonstrated excellent
performance gains

Technique struggles to detect
integer overflow
vulnerabilities

Zhang et al., 2022 [28] Identifying smart contract
vulnerabilities

Its great scalability and support
for simultaneous vulnerability
detection; it does not require
separate models to be trained

for different types of
vulnerabilities

The system may be complex
in nature

Di Mauro et al., 2020 [29]

Experimental review of
neural-based approaches for

network intrusion
management

Depends on time complexity
and the feed-forward

incremental learning activated
in WiSARD

Neural networks require large
amounts of labeled data to be

trained effectively

Dong, S et al., 2021 [30]

Network abnormal traffic
detection model depends on

semi-supervised deep
reinforcement learning

Improved efficiency
Difficulty with adversarial

attacks and limited
interpretability

Pelletier, C. et al., 2019 [31] Categorization of
Sentinel-2 image time series

High accuracy in image
classification and improved

generalization

Requires significant
computational resources to be
trained and operated, which

can be expensive and
time-consuming

3. Proposed Methodology

Because of the development and widespread usage of Internet of Things (IoT) devices,
precision agriculture is revolutionizing traditional farming methods. The Internet is an open
channel that the agricultural and IoT industries utilize to help farmers to collect, process,
monitor, and make informed decisions about their farms. However, using the Internet
exposes users to a variety of risks, including security risks (such as carrying out cyber-
attacks), data privacy risks (such as inference attacks and data poisoning), etc. The use of
traditional centralized security methods has drawbacks in terms of scalability, verifiability,
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traceability, and single point of failure. We proposed a privacy-encoding-based enhanced
deep learning framework that uses an intrusion detection model, transformation technique,
and perturbation-based encoding. The secrecy is considered to be the unprocessed data
produced via IoT-based smart agriculture in this study. The four steps of privacy were used
here. Feature selection, feature mapping, feature normalization, and feature encoding were
used for a normal strategy, along with intrusion detection. The feature selection method
uses processing time and offers more dependable and superior privacy. Data are changed
into a new encoded format using the sparse capsule-auto encoder approach to make them
more resistant to attacks. In order to detect intrusions, attention-based gated recurrent
unit neural networks are used with encoded data. To demonstrate the effectiveness of the
suggested framework for recognizing normal and attack patterns, the ToN-IoT dataset and
IoT Botnet were used to test and train the proposed method. The whole framework is
depicted in Figure 1.
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3.1. Strategies for Detecting Intrusions

A piece of equipment or program known as the intrusion detection system (IDS)
monitors online activity and guards authorized network users against illegal actions that
risk availability, integrity, and security. The intrusion detection system can be generically
categorized according to two factors: (I) installation and (II) detection method. Host-
based intrusion detection systems (HIDSs) and network-based intrusion detection systems
(NIDSs) are the first two categories into which IDS-basis deployment is split. The host-
based intrusion detection scheme was created in the host computer (device/client). Internal
invasion is less likely with HIDS, while NIDS records and examines the movement of
detected packets. Second, there are two categories of IDS-based detection techniques:
(I) knowledge- or signature-based (SIDS) and (II) anomaly-based (AIDS). To identify an
active attack, SIDS uses an authentication system. Although SIDS has a high probability
of recognition, it cannot detect newly occurring disruptive events in the network. In con-
trast, in AIDS, typical computer system behavior is represented using statistical, machine
learning, or knowledge-based techniques. When AIDS observes a discrepancy between
the proposed model behavior and the actual behavior, the discrepancy is interpreted as
an intrusion.



Systems 2023, 11, 304 8 of 26

3.2. Feature Mapping

IoT feature values can be found in both categorical and numerical forms in network
traffic. Categorical values are transformed into numerical values using the mapping
approach. For instance, the ToN-IoT dataset’s protocol feature value is transformed into
ordered numbers such as 1, 2, etc. This is due to the privacy-preservation mechanism’s
ability to handle numerical attributes, as seen below.

3.3. Feature Selection

To find the most diverse characteristics for the available dataset, the feature selection
procedure was used. Better characteristics increase the likelihood of accurate classification.
Reducing duplicate and repeated components from IoT network traffic accelerates pro-
cessing while improving detection techniques and privacy. The proposed model chooses
its features based on a reciprocal information-based process. The quantity of information
gained from the feature f1 through the feature f2 is approximately calculated between the
two random characteristics f1 and f2. Using the below equation, the mutual information
(MI) function was computed (1).

MI( f1; f2) =
∫ ∫ P( f1, f2)

P( f1)P( f2) 12

f1

∫ ∫
f2

P( f1, f2)log (1)

where the general probability function is given by P( f1, f2) of function f1 and f2.P( f1)
and P( f1) are the marginal density functions. The mutual information between the target
variable f2 and the subset of the selected features Z will be optimized when selecting
a feature.

M = argmax
M

U(Z; f2), s.t.|M| = X (2)

X is the total number of characteristics that were chosen and employed in the model’s
development. To choose the most advantageous number of features, each of the aforemen-
tioned processes were carried out with respect to the training dataset.

3.4. Feature Normalization

This technique transforms feature data to a common scale between 0 and 1. The
maximum value of a feature is changed to 1, while the smallest value is transformed to 0.
Deep learning methods’ training times are sped up in this way. The min–max normalization
method is employed in privacy-encoding-based enhanced deep learning architecture.

N f =
f − fmin
f minmax

(3)

f denotes the feature that needs to be shrunk and N f denotes the new feature; fmax
represents the highest value and fmin defines the lowest value for each given feature.

3.5. Feature Encoding

The auto encoder is used to encrypt the feature normalized data. The sparse capsule-auto
encoder (SCAE) is the suggested auto encoder which is discussed in the following section.

3.5.1. Auto Encoder (AE)

An auto encoder is a three-layer symmetric neural network that extracts the relevant
features from unlabeled high-dimensional complex input utilizing system design that
has been enhanced via unsupervised layer-by-layer greedy learning. A typical AE’s con-
struction is depicted in Figure 2. Encoding and decoding refer to the operations that are
performed from the hidden layer to the output and from the input to the hidden layer,
respectively. The decoding reconstructs the input data under the extracted features after
the encoding has extracted features from the dataset.
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Figure 2. The structure of an auto encoder.

In order to create l significant features x = [x1, x2, x3, . . . xk]
C ∈ Rk×1 from an unlabeled

training sample s = [s1, s2, s3, . . . sl ]
C ∈ Rl×1 using the whole connection layer, the input is

translated by the encoder to the hidden state. Then, using the same technique, the decoder
creates the output x̂ = [x̂1, x̂2, x̂3, . . . x̂k]

C ∈ Rk×1 from the feature s. Equations (4) and (5) are
descriptions of the encoding and decoding processes, respectively:

s = f (x) = Φa f

(
W(1)x + ba

)
(4)

x̂ = g(s) = Φa f

(
W(2)s + bb

)
(5)

where W(1) and W(2) are the entire connection layer weight matrices, ba and bb are the full
connection layer bias matrices, and Φa f activates a nonlinear activation process made up of
a number of different types, such as the ReLU, TanH, and sigmoid.

The intrinsic characteristics S of the input are acquired as the reconstruction loss in the
parameter set, which is constantly minimized

{
W(1), ba, W(2), bb

}
. The mean square error

(MSE) loss function and cross-entropy (CE) loss function are frequently used to calculate
the reconstruction error among the input vector x and reconstruction vector x̂. For a single
training dataset x = [x1, x2, x3, . . . xk]

C ∈ Rk×1, the CE loss function is exhibited in (6), and
the MSE loss function is exhibited in (7):

Dce = −
k

∑
i=1

[xilog(x̂i) + (1− xi)log(1− x̂i)] (6)

Dmse =
1
2k

k

∑
i=1
‖x̂i − x̂i‖2 (7)

3.5.2. Capsule Auto Encoder

The capsule auto encoder is used in addition to the sparse auto encoder to improve
efficiency and strengthen attack prevention because the sparse auto encoder cannot defend
the smart agriculture database by itself. The conventional capsule auto encoder has two
main modules which are the object capsule auto encoder (OCAE) and part capsule auto
encoder (PCAE). To begin, the PCAE employs a CNN to extract the pose, presence, and
features of each component of the objects in the input image. After encoding the scat-
tered components produced by the PCAE into bigger objects using a set transformer, the
OCAE outputs the presence probabilities of all of the potential objects. The classifier then
outputs a classification outcome based on the output of the OCAE. Figure 3 illustrates
the CAE architecture, which is comparable to that of the normal AE but uses a different
calculation method.
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The encoder translates the input into a feature layer to produce the feature set
s =

[
sC

1 , sC
2
]C

= [[s1, . . . sk/2], [sk/2+1, . . . , sk]]
C ∈ Rk×1 for an unlabeled training sam-

ple x = [x1, x2, x3, . . . xk]
C ∈ Rk×1, and the decoder subsequently produces the output

x̂ = [x̂1, x̂2, x̂3, . . . x̂k]
C ∈ Rk×1. Equations (8) and (9) can be used to explain the encoding

and decoding methods:

s =
[
sC

1 , sC
2

]C
= f (x) = Φa f

(
W(1)x + ba

)
= Φa f

([
WC(1)

1 , WC(1)
2

]C
+

[
b

W(1)
1

, b
W(1)

2

]C
)

(8)

x̂ = g(s) = Φa f

(
W(2)s + bb

)
= Φa f

(
W(2)

[
sC

1 , sC
2

]C
+ bW(2)

)
(9)

where W(1) ∈ Rk×k and W(2) ∈ Rk×k are their weight matrices and bW(1) ∈ Rk×1 and
bW(2) ∈ Rk×1 are the entire connection layers’ bias vectors. The bias vectors and weight
matrices for the vector feature s1 are W(1) ∈ R(k/2)×k and b

W(1)
1
∈ R(k/2)×1, respectively.

The weight matrices along the bias vectors of vector feature s2 are W(1) ∈ R(k/2)×k and
b

W(1)
2
∈ R(k/2)×1, respectively.

Both CAE and conventional AE go through the same training process. As a result, by
minimizing the loss function, the ideal parameter set

{
W(1), bW(1) , W(2), bW(2)

}
and also

the intrinsic vector features are achieved. As demonstrated in (10), the MSE loss function is
employed in this study.

Dmse =
1
2k

k

∑
i=1
‖x̂i − x̂i‖2 =

1
2k

k

∑
i=1
‖x̂i −Φa f

(
W(2)Φa f

(
W(1)x + bW(1)

)
+ bW(2)

)
‖

2
(10)

CAE can extract two vector features {s1, s2} during training, whereas normal AE can
only extract l scalar features {s1, s2, s3 . . . sl}. Vector features have been shown to exceed
scalar features in classification situations.

3.5.3. Sparse Capsule-Auto Encoder (SCAE)

After choosing the features using the MI-based feature selection procedure, the re-
duced features are extracted from the provided raw data utilizing the SCAE technique. In
SCAE, the original data are transmitted over a weight link to the hidden layer. To recreate
the results, the hidden layer’s activation value is mapped to an output layer. By carefully
changing the weight that is meant to provide proper data representations, the reconstruc-
tion error is reduced. The total number of concealed nodes is widely distributed to prevent
excessive node activation. Additionally, the sparse penalty restriction is included to restrict
“active” neurons, and if a neuron’s output equals 1, the auto encoder (AE) transforms into
a SCAE during application; otherwise, the neuron is referred to as “inactive”. Consider
the dataset DSi =

[
dsij, ds22, . . . dsmn

]
, where i = 1, . . . m indicates a number of samples
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and j = 1, . . . n indicates the dimension of samples. Using Equation (11), it is possible to
determine the activation hl of the hidden layer node.

hl = a fl

(
b(1) + W(1)dt

)
(11)

where W(1) stands for the weight connecting the input and hidden layers and b(1) represents
the bias. The “elu” function, which represents the activation function, is employed. To
decode the hidden layer and obtain original data, Equation (12) determines the weight
relationship between both the output and hidden layer.

r̂ = a fl

(
b(2) + W(2)hl

)
(12)

r̂ stands for reconstructed data. W(2) stands for the weight among the output and
hidden layer, while b(2) stands for the bias.

In AE, minimizing the reconstruction error Rl , which may be calculated as variance
between the input data dt and reconstructing data r̂, the parameter set is indicated through
ε =

{
W(1), b(1), W(2), b(2)

}
. Using Equation (13), the, di,i = 1, . . . m cost functioning of the

auto encoder is calculated for the dataset.

HE(ε) =
m

∑
i=1

Rl

(
dt(i), r̂i

)
(13)

The hidden unit’s mean activation is H = 1 . . . jl , which, in the context of SCAE, can
be calculated using Equation (13), and it is pre-summated to be near to ‘0’, indicating
that the bulk of neurons in the hidden layer are “deactivated”. To penalize ϑk, the sparse
penalty is presented if the established sparse parameter ϑ significantly deviates from it.
When determining the difference between the derived sparse parameter ϑk and ϑ using
Equation (14), Kullback–Leibler (KL) divergence is applied.

ϑk =
1
m

m

∑
i=1

(a fl(bk + Wikdti)) (14)

jl

∑
k=1

PQ(ϑ‖ϑk) =
jl

∑
k=1

ϑlog
ϑ

ϑk
+ (1− ϑ)log

(1− ϑ)

(1− ϑk)
(15)

Nevertheless, Equation (16) can be used to define the total cost function and sparse
constraint for SCAE.

HSE(ε) =
m

∑
i=1

Rl

(
dt(i), r̂i

)
+

jl

∑
k=1

PQ(ϑ‖ϑk) (16)

where HE(ε) and the ε parameter are tuned for the sparse penalty. The back propagation
algorithm’s original weight and bias are updated to resolve the partial derivative of HSE to
ε and lower the cost function. A trained SCAE network is acquired when the parameter
has been upgraded. The product of the existence probability of part capsules and the
value of the learned alpha channel for each determine the mixing probabilities of various
components. The pre-training procedure in the suggested method aids SCAE in learning
many nonlinear transformations, capturing the major changes in frequency spectra. After
nonlinear transformation, the feature vector is directly truncated to ensure that the two
features are distinct from one another and that the following features are diverse. The
SCAE is then assisted in finding the substantially discriminative data from various stages
throughout the fine-tuning phase, thus enhancing the independence of the generated vector
features. The hidden layer’s activation value is seen as an extracted feature.
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3.6. Intrusion Detection Using AGRU

In the proposed approach, the intrusion detection stage is crucial. An attention-based
AGRU (Algorithm 1) was employed for detection. The following section gives a more
detailed examination.

Attention-Based Gated Recurrent Unit Neural Network Algorithm (AGRU)

A traditional feed-forward neural network has evolved into a recurrent neural network
(RNN). The data flow in the conventional neural network paradigm is unidirectional, that
is, starting with the input layer and then moving via the hidden layer to the output layer.
Figure 4 depicts the reset gate Ri and update gate Ui, the two gate structure components
that make up the GRU. The current moment set of the hidden states is where the flow
of information about the hidden states from the previous moment in the current set is
controlled by the Ri gate. The Ui gate is used to govern how much irrelevant content from
the previous state has to be forgotten and to decide the amount of the hidden state that
should be kept.
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In this study, we utilized Ri to signify the reset gate and Ui to denote the update gate,
as illustrated in Figure 4. After that, the GRU learning model can be explained as follows.

First, in a GRU, past information (si) and present information (yi) define the reset gate
and update gate.

Ri = σ(WR•[si−1, yi]) (17)

Ui = σ(WU•[si−1, yi]) (18)

Algorithm 1: AGRU

Reset gate and update gate are given as follows:
Ri = σ(WR•[si−1, yi]) (17)
Ui = σ(WU•[si−1, yi]) (18)
The reset gate, which controls a GRU’s candidate set, operates according to the following formula:
s̃i = tanh(Ws•[Ri × si−1, yi]) (19)
Third, the GRU updates si using the following formula during the update memory phase:
si = (1−Ui)× si−1 +Ui × s̃i (20)
The forward propagation’s final result is zi which can be calculated using the following formula:

zi = so f tmax(W0 ∗ si)

The reset gate, which controls a GRU’s candidate set, operates according to the follow-
ing formula:

s̃i = tanh(Ws•[Ri × si−1, yi]) (19)
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Third, the GRU updates si using the following formula during the update mem-
ory phase:

si = (1−Ui)× si−1 + Ui × s̃i (20)

The forward propagation’s final result is zi, which can be calculated using the follow-
ing formula:

zi = so f tmax(W0 ∗ si) (21)

The ability to concentrate on certain items due to attention in the human visual system
can significantly increase how successfully people process visual information. Attention is
a method that simulates cognitive attention in neural networks. It is a well-liked approach
in the disciplines of machine translation and recommendation systems, among others.
Deep neural networks may more quickly latch onto key areas of the objective from an
amount of data, eliminate irrelevant data, and work more efficiently by incorporating
attention processes. The attention mechanism and deep learning model can be compared
to a weight matrix. To determine the proper attention level, the associated weight value for
each input value is multiplied by the input value. The weight factor can be increased by
maximum attention.

In the multi-channel time series prediction task, the ultimate objective is to predict ri
at the subsequent time based on the physical values from g1 to gi, previously observed in
the time window j. Nevertheless, more complex temporal properties are seen in time series
data sensor information. Different time steps have varying degrees of success in foretelling
future data. In order to acquire pertinent information to aid in the prediction of the future
physical value r̂i, we applied soft attention to derive a context vector ci. The following
formula determines the attention mechanism:

βt =
exp(St)

∑i=1
t=1 exp(St)

(22)

At each time step, we calculated the associated weight score, and then applied the
softmax function to normalize the score to generate the distribution of conditional probabil-
ities βt, which indicates the relevance of the tth time window for prediction. The function
calculates the score St.

St = tanh
(

alhst + b
)

(23)

where a and b are learning parameters that may be trained along with other model pa-
rameters. The context vector vi is calculated by the attention mechanism as the weighted
average of all of the concealed states of hs1 to hsi−1.

vi =
i=1

∑
t=1

βthst (24)

We integrated the data from the two vectors, the context vector vi, and the current
hidden state hsi to produce an attentional hidden state, as shown below:

k∗ = tanh(wk[vi; hsi]) (25)

To avert overfitting, the attentional vector k∗ is supplied into the dropout layer. The
dense layer predicts the following data.

Time complexity for attention-based gated recurrent unit neural network.
This depends upon the number of input features, the number of time steps, the size of

the hidden layer, and the number of attention heads.
Assuming that the input has N features, the hidden layer size is H, the number of time

steps is T, and the number of attention heads is A, the time complexity of an attention-based
GRU can be expressed as O(TAH∧2 + TH∧2).
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The first term in the equation, TAH∧2, corresponds to the computational cost of
computing the attention weights. The attention mechanism involves computing a weighted
sum of the hidden states from each time step, and this operation needs to be performed
for each attention head. The complexity of computing the attention weights for one head
is O(TH∧2), and since there are A attention heads, the total complexity for computing
the attention weights is TAH∧2 The second term in the equation, TH∧2, corresponds to
the computational cost of updating the hidden state using the GRU cell. This operation
involves matrix multiplications and element-wise operations, and it needs to be performed
for each time step. The complexity of updating the hidden state for one time step is
O(H∧2), and since there are T time steps, the total complexity for updating the hidden
state is TH∧2. Overall, the time complexity of an attention-based GRU neural network is
O(TAH∧2 + TH∧2). This complexity can be reduced by using techniques such as pruning,
quantization, or parallelization, which can help to speed up the computations and reduce
the memory requirements of the network.

Using an attention mechanism in combination with the recurring neural network for
the identification of an intrusion detection task further complicates and improves the model.

4. Results and Discussion

To validate the efficacy of the proposed technique, the performance indicators of
accuracy, detection rate, precision, f-score, testing and training, validation accuracy and
validation loss, confusion matrix analysis, and RoC curve were examined and compared
with the existing techniques. The implementation took place using Python and the results
were tested and plotted.

Python programming was employed in the creation of the PEDL framework. The
Intel(R) Core(TM) i5-3570 CPU clocked at 3.40 GHz 3.40 GHz, together with 8 GB of in-
stalled RAM, powers the SST003.seahost.local computer. Two datasets based on IoT, which
are IoT-Botnet and ToN-IoT, were utilized to evaluate the effectiveness of the intrusion
detection systems (IDs). These were chosen because they offer a variety of security proce-
dures and reliable IoT network results. To train and assess how well the PEDL technique
distinguishes between attack and typical observations, these datasets were divided into
testing and training sets. The results were compared using the deep neural network, con-
volutional neural network, recurrent neural network, and long short-term memory. The
hyper parameters are given in Tables 2 and 3, representing the system configuration.

Table 2. Hyper parameters.

Hyper Parameters

No. of hidden layers 10

No. of hidden nodes 60

Dropout rate 0.2

Optimizer adam

Activation relu

No. of epoch 20

Batch size 121

Loss Mean square error
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Table 3. System configuration.

System Configuration

Device name SST003

Processor Intel(R) Core(TM) i5-3570 CPU @ 3.40 GHz 3.40 GHz

Installed RAM 8.00 GB (7.89 GB usable)

Device ID 330431F3-8552-4664-BCAD-E0108D59137B

Product ID 00330-80000-00000-AA440

System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

Edition Windows 10 Pro

Version 21H2

OS build 19044.2728

4.1. Datasets Used to Assess the Efficiency of the PEDL Structure

Two of the latest IoT-based publicly accessible datasets were utilized to confirm the
efficacy of the suggested PEDL approach. The training and test sets were divided into 70%
and 30%, respectively. Below is a description of each dataset’s specifics:

ToN-IoT: The ToN-IoT dataset holds a variety of information gathered from IoT and
IoT sensor telemetry records. This dataset includes a variety of current attack instances
that have been discovered in IoT contexts, viz, Backdoor, MITM, DDoS, DoS, Injection,
Password, Scanning, XSS, and Ransomware. A normal vector, nine different sorts of attacks,
and 43 labeled features make up this dataset. These features are used to detect the external
attack for the smart agriculture. The model utilizes 378,782 data points from this dataset,
which are later separated into 303,025 and 75,757 for training and testing purposes. Table 4
tabulates common and unique attack event statistics.

Table 4. The training and testing details of the dataset.

Dataset Partition of Class Entire Occurrences Rate of Class
Frequency (%)

ToN-IoT training set

Backdoor (0) 14,135 4.35

DDoS (1) 13,971 4.32

DoS (2) 13,913 4.33

Injection (3) 14,071 4.34

MITM (4) 727 0.21

Normal (5) 209,792 65.06

Password (6) 14,017 4.37

Ransomware (7) 13,992 4.32

Scanning (8) 14,100 4.29

XSS (9) 14,012 4.36

ToN-IoT testing set

Backdoor (0) 5865 4.29

DDoS (1) 6029 4.36

DoS (2) 6087 4.33

Injection (3) 5929 4.31

MITM (4) 316 0.25

Normal (5) 90,208 65.07

Password (6) 5983 4.26

Ransomware (7) 6008 4.36

Scanning (8) 5900 4.44

XSS (9) 5988 4.28
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Table 4. Cont.

Dataset Partition of Class Entire Occurrences Rate of Class
Frequency (%)

IoT Botnet training set

DDoS (0) 455,786 33.56

DoS (1) 445,578 32.80

Reconnaissance (2) 388,508 28.60%

Normal (3) 68,038 5.01%

Theft (4) 364 0.03%

IoT Botnet testing set

DDoS (0) 73,602 33.59%

DoS (1) 71,971 32.85%

Reconnaissance (2) 62,477 28.51%

Normal (3) 11,015 5.03%

Theft (4) 48 0.02%

IoT Botnet: The above was modified to create the IoT Botnet dataset. Only a few flow
features, out of 46 network features, are present in BoT-IoT. The BoT-IoT flow characteristics
and network features are multiplied and optimized using a network traffic flow detector.
This dataset contains a standard vector, four alternative attack types, and 88 tagged features.
This dataset contains 50,000 data points that are separated into 40,000 and 10,000 for training
with testing. These properties are used to train the model to detect an attack and also
enable effective communication for smart agriculture. The statistics of common and unique
assault occurrences in the dataset are depicted in Table 4.

4.2. Description of Evaluation Metrics

To determine the effectiveness of the IDS, multiple performance evaluation matrices
were employed. Recall, accuracy, F1-score, and precision were some of these measure-
ments. Nevertheless, many parameters that were utilized to calculate these ratings are
explained below.

The efficacy of the IDS in distinguishing between invasive and nonintrusive activities
is described by the metrics in this area. An IDS, which is a binary classifier, may provide
one of the following outcomes: true positive (pt) refers to the accurate classification of an
intrusion; true negative (nt) refers to the accurate classification of a reasonable action; false
positive (p f ) refers to the incorrect classification of a reasonable action as an intrusion; and
false negative (n f ) refers to the incorrect classification of an intrusion. The well-known
measures are given below.

Accuracy: This measurement is simply the percentage of validation sets or test sets
that an IDS correctly classifies. Accuracy is achieved using the following:

Accuracy =
pt + nt

pt + nt + p f + n f
(26)

Precision: This indicator shows how often the IDS’s classified activities are intrusive.
Precision is achieved using the following:

precision =
pt

pt + p f
(27)

Recall: This statistic measures the proportion of invasive behaviors that the IDS deems
to be intrusive. The recall is also known as the detection rate (DR). Detection rate data are
acquired via the following:

Recall =
pt

pt + n f
(28)
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F1-score: This measure is a weighted harmonic mean of memory and precision,
which represents the importance of recall with respect to accuracy. When assessing a
multi-class classification, the F-score is also used. Equation (29) provides the F1-score.
By micro-averaging using the class frequency (mico-F1) or macro-averaging based on the
identical relevance of all classes, the final F1-score is achieved (macro-F1). When there
is an unbalance in the classes, binary and multi-class classifiers are evaluated using the
F1-score in comparison to the G-measure, which is the geometric mean of the detection rate
and accuracy.

F1− score = 2 ∗ DR× precision
DR + precision

(29)

4.3. Evaluation of Intrusion Detection System

Each dataset’s twenty characteristics are subjected to the attention-based GRU ap-
proach for confidentiality. This technique shields data against inference attacks that may
gather private model information. Including both datasets, the attention-based GRU was
built up using the 20 characteristics listed in Table 5 as the input layer. One output node, five
hidden nodes, and an Elu activation function make up the encoder. The final model was set
up to predict attacks and normal classes using the following parameters: optimizer = Adam,
epochs = 10, batch size = 100, and dropout = 0.1.

Table 5. Statistics of the features chosen using the two datasets.

Dataset Selected Features Overall Features Selected

ToN IoT 20 F1, F2, F5, F8, F10, F13, F14, F16, F19, F24, F29, F30,
F33, F36, F37, F39, F41, F43, F46, F47

IoT Botnet 20 F1, F3, F6, F9, F11, F15, F17, F21, F23, F26, F27, F28,
F31, F33, F38, F45, F49, F68, F75, F84

4.4. Accuracy and Loss Curve Analysis

The best fit is shown if the validation and training loss or accuracy increased and
stabilized at a certain point (i.e., the model does not underfit or overfit). Both accuracy
and loss are examined when the epoch size changes. Figure 5 illustrates how validation
and training accuracy both rise linearly in IoT Botnet and then stabilize for a considerable
amount of time beyond a certain threshold. It means that the model is perfectly fitted (no
under- or overfit), and Figure 6 represents the training and validation loss of the ToN IoT
dataset, which demonstrates that the validation and training losses will vary slightly. The
model appears to fit.
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4.5. Confusion Matrix and ROC Analysis

The confusion matrix is the measurement that displays the classification’s outcome.
For example, it displays the accurate and inaccurate categorization results. For binary
classification, it may have 2 × 2 dimensions. For multi-class classification, including N
classes, it may have N × N dimensions. Despite not being a standalone statistic, the
confusion matrix serves as a foundation for other measures that may be used to measure
efficacy. Utilizing the confusion matrix (CM), the suggested attention-based GRU-based
IDS’s performance is examined. This provides a clear description of the classifier’s behavior
in identifying the samples included in the dataset’s various classes. The classifying results
of the attention-based GRU-based IDS employing the ToN-IoT and IoT Botnet datasets
are displayed in Figure 7. In CM, the columns represent anticipated labels, while the
rows represent genuine labels. The suggested attention-based GRU-based IDS employing
the changed dataset obtains, according to Figure 7, an equivalent detection level to the
original datasets.
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linked to a continuous variable. It is a plot of coordinates with a vertical axis for the true
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positive rate (TPR) and a horizontal axis for the false positive rate (FPR). The AUC, often
known as the area under the ROC curve, is recognized as being a crucial evaluation metric.

ROC =
p f

p f + nt
(30)

The proposed model has better values than the existing models, as shown by the ROC
curve which is represented in Figure 8.
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Some of the most effective evaluation metrics for imbalanced datasets are the class-
wise prediction outcomes of accuracy, F1-score, and detection rate. The frequencies for the
attack and normal classes are imbalanced in both datasets of IoT Botnet and ToN-IoT. Thus,
data are calculated at the class level to assess the efficacy of the proposed attention-based
GRU IDS. The initial class-wise prediction results and converted datasets are obtained
using pt, nt, p f , and n f and depending on the DR, F1-score, and PR. The initial class-
wise prediction results that were generated utilizing the ToN-IoT and IoT Botnet datasets
are shown in Tables 6 and 7. It is important to note that the suggested attention-based
GRU IDS has improved results for the majority of the threat vectors after implementing
confidentiality and overall has a small difference compared to the original datasets.

Table 6. Class-wise prediction of ToN-IoT dataset.

TON-IOT Dataset

Class Precision Detection Rate F1-Score Accuracy

normal 99.7% 99.7% 99.7% 99.6%

scanning 99.4% 99.2% 99.3% 99.9%

dos 99.1% 99.2% 99.1% 99.9%

injection 99.3% 99.3% 99.3% 99.9%

ddos 99.4% 99.4% 99.4% 99.9%

password 99.2% 99.3% 99.3% 99.9%

xss 99.2% 99.1% 99.2% 99.9%

ransomware 99% 99.3% 99.2% 99.9%

backdoor 99.3% 99.4% 99.4% 99.9%

mitm 99.5% 99.5% 99.5% 99.9%
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Table 7. Class-wise prediction of ToN-IoT dataset.

IOT-Botnet Dataset

Class Precision Detection Rate F1-Score Accuracy

DDoS 98.5% 98.5% 98.5% 98.5%

DoS 98.3% 98.3% 98.3% 98.5%

Reconnaissance 97.2% 97.1% 97.1% 99.8%

Normal 95.8% 94.5% 95.2% 99.9%

Theft 1 1 1 1

4.6. Comparisons with Existing Detection Models

Recent state-of-the-art methods were contrasted with the attention-based GRU IDS. For
result comparison, DNN, RNN, CNN, and LSTM are four unique deep learning algorithms.
The results of the existing techniques were acquired utilizing both of the datasets in the
same situation. The performance of the attention-based GRU was assessed and compared
using evaluation metrics, including class-level precision, detection rate, F1-score, and
overall accuracy.

Figure 9a compares the proposed model’s accuracy with existing models. The pro-
posed model was achieved with an accuracy of 99.3%, which is high among the existing
models because LSTM models require a large dataset to train it, so it becomes much slower
than the other existing methods. DNN is a complex model with a large training time, but
the accuracy is high compared to other existing models. The location and direction of an
object are not encoded by CNN. There must be an absence of spatial invariance with respect
to the supplied data and there must be lots of training data. The conventional RNN is
too slow compared to the other existing methods, and it is also complex to train and faces
problems such as gradient vanishing and exploding. Figure 9b shows the detection rate or
recall. Here, the proposed technique attains a recall rate of 99.3%. The recall rate is higher
than that of the other existing methods. The F1-score is displayed in Figure 9c. Here, the
proposed technique attains 98.2%. The F1-score is higher than that of the other existing
methods. Figure 9d shows the precision. The proposed technique attains precision of 98.2%.
The precision is higher than that of the other existing methods.
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Figure 10a displays the accuracy of the proposed method. The accuracy is 99.8%.
Compared to the other approaches now in use, the accuracy is higher. Figure 10b shows
the detection rate or recall. The proposed method has a recall rate of 99.1%. The recall rate
is higher than that of the other existing methods. The proposed model’s F1-score is shown
in Figure 10c. The recall rates for the suggested model are 99.1%. The F1-score is greater
than that of the other existing techniques. The proposed model’s precision is displayed in
Figure 10d. The proposed method attains 99.1% accuracy. The precision is greater than that
of the other existing methods.
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In these figures, the proposed classifier obtained improved classification results as
compared with other conventional deep learning models. Table 8 shows the performance
comparison analysis over other exiting studies Kumar, S.D et al. [41].

Table 8. Comparison of proposed classification performance with other state-of-the-art studies.

Methods F1-Score (%) Recall (%) Precision (%)

AGRU (Proposed) 98.2 for IoT Botnet,
99.1 for ToN-IoT

99.3 for IoT Botnet,
99.8 for ToN-IoT

98.2 for IoT Botnet,
99.1 for ToN-IoT

Generative Adversarial
Networks (GAN) 94.82 95.55 92.37

Auto Encoder (AE) 72.38 75.26 69.48

MAD-GAN 87.54 89.23 85.41

Tad-GAN 93.48 94.13 91.08

By comparing it with other existing studies Vatti, R. et al [42], the detection perfor-
mance of the proposed AGRU model is enhanced due to its higher efficiency. For each
dataset, the proposed anomaly detection model generates improved results. The exist-
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ing studies show several limitations while detecting the anomalies from the given input
data, meaning that the detection outcomes are reduced Patel, B et al. [43]. Figure 11a–d
shows the performance comparison of the proposed classification methods with other
conventional RNNs.

Systems 2023, 11, x FOR PEER REVIEW  22  of  27 
 

 

   
(c)  (d) 

Figure 10. (a) Accuracy, (b) detection rate, (c) F1-score, and (d) precision of the ToN-IoT dataset. 

In these figures, the proposed classifier obtained  improved classification results as 

compared with other conventional deep learning models. Table 8 shows the performance 

comparison analysis over other exiting studies Kumar, S.D et al. [41]. 

Table 8. Comparison of proposed classification performance with other state-of-the-art studies. 

Methods  F1-Score (%)  Recall (%)  Precision (%) 

AGRU (Proposed) 
98.2 for IoT Botnet, 99.1 for 

ToN-IoT 

99.3 for IoT Botnet, 99.8 

for ToN-IoT 

98.2 for IoT Botnet, 99.1 for 

ToN-IoT 

Generative Adversarial Net-

works (GAN) 
94.82  95.55  92.37 

Auto Encoder (AE)  72.38  75.26  69.48 

MAD-GAN  87.54  89.23  85.41 

Tad-GAN  93.48  94.13  91.08 

By comparing it with other existing studies Vatti, R. et al [42], the detection perfor-

mance of the proposed AGRU model  is enhanced due to  its higher efficiency. For each 

dataset, the proposed anomaly detection model generates improved results. The existing 

studies show several limitations while detecting the anomalies from the given input data, 

meaning that the detection outcomes are reduced Patel, B et al. [43]. Figure 11a–d shows 

the performance comparison of the proposed classification methods with other conven-

tional RNNs. 

   
(a)  (b) 

Systems 2023, 11, x FOR PEER REVIEW  23  of  27 
 

 

   
(c)  (d) 

Figure 11. (a–d) Performance comparison of different RNNs with the proposed method. (a) Accu-

racy in IoT Botnet dataset. (b) F-measure in IoT Botnet dataset. (c) Accuracy in ToN-IoT dataset. (d) 

F-measure in ToN-IoT dataset. 

Here,  the  proposed AGRU  is  analyzed  using previous models,  such  as  attention 

LSTM, Mogrifier LSTM, transform with attentional LSTM, and RNN. The analysis shows 

that the proposed detection model has improved performance compared to the existing 

models. The values attained for the comparison analysis with different RNNs are depicted 

in Table 9. 

Table 9. Performance comparison of diverse RNNs with proposed AGRU. 

Classification  Dataset-1  Dataset-2 

Methods  Accuracy  F-Measure  Accuracy  F-Measure 

Proposed  0.996  0.983  0.993  0.977 

Mogrifier LSTM  0.842  0.792  0.852  0.802 

Attention LSTM  0.749  0.719  0.772  0.699 

Transform with atten-

tion LSTM 
0.867  0.847  0.861  0.857 

RNN  0.822  0.8  0.8  0.82 

On the other hand, the strength of the proposed SCAE model is analyzed by perform-

ing a comparison with other methods, and is illustrated in Figure 12. 

   
(a)  (b) 

Figure 11. (a–d) Performance comparison of different RNNs with the proposed method. (a) Accuracy
in IoT Botnet dataset. (b) F-measure in IoT Botnet dataset. (c) Accuracy in ToN-IoT dataset. (d) F-
measure in ToN-IoT dataset.

Here, the proposed AGRU is analyzed using previous models, such as attention LSTM,
Mogrifier LSTM, transform with attentional LSTM, and RNN. The analysis shows that the
proposed detection model has improved performance compared to the existing models.
The values attained for the comparison analysis with different RNNs are depicted in Table 9.

Table 9. Performance comparison of diverse RNNs with proposed AGRU.

Classification Dataset-1 Dataset-2

Methods Accuracy F-Measure Accuracy F-Measure

Proposed 0.996 0.983 0.993 0.977

Mogrifier LSTM 0.842 0.792 0.852 0.802

Attention LSTM 0.749 0.719 0.772 0.699

Transform with
attention LSTM 0.867 0.847 0.861 0.857

RNN 0.822 0.8 0.8 0.82
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On the other hand, the strength of the proposed SCAE model is analyzed by perform-
ing a comparison with other methods, and is illustrated in Figure 12.
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The above analysis proves the effectiveness of the proposed SCAE-based feature
encoding model. Here, the efficiency of the proposed technique is compared to the existing
models, such as auto encoder (AE), sparse auto encoder (SAE), and capsule auto encoder
(CAE). The result analysis proves that the proposed model achieved improved performance
compared to the other methods. The values obtained for the feature encoding comparison
are portrayed in Table 10.

Table 10. Comparison analysis of proposed feature encoding method over others.

Methods Dataset 1 Dataset 2

Proposed 0.996 0.983 0.993 0.977

AE 0.702 0.672 0.78 0.69

CAE 0.65 0.6 0.69 0.61

SAE 0.72 0.71 0.75 0.76

The above results show the efficacy of the proposed methods and they show that the
proposed techniques are highly suitable for detecting anomalies in IoT devices for the smart
agriculture domain.

Figure 13 shows the time complexity analysis. Here, the proposed AGRU design’s
CPU operation time and memory usage linearly increase. Here, the time complexity of the
proposed AGRU is lower than those of the existing LSTM, DNN, CNN, and RNN designs.
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5. Conclusions

Attacks and vulnerabilities in smart farming demonstrate the significance of security in
IoT-based farming. With the help of encryption and intrusion detection using an attention-
based gated recurrent unit neural network algorithm and sparse capsule auto encoder, we
suggested a privacy-encoding-based enhanced deep learning framework. We examined
how to construct a reliable encryption and intrusion detection scheme for an IoT network
environment. To prevent deduction attacks, SCAE was used to change information into
a new encrypted format. By enhancing a GRU, we put forward a neural network model
called AGRU. Then, we suggested a fresh approach to intrusion detection using the AGRU.
This approach might significantly increase intrusion detection’s potency. We tested the
effectiveness of our proposed AGRU-based intrusion detection technique using simulated
trials. The experiment results demonstrated that our suggested AGRU-based intrusion
detection approach could produce a significant improvement in effectiveness and accuracy
when compared to several current intrusion detection methods including LSTM, CNN,
RNN, and DNN. The proposed model has 99.9% accuracy, 99.7% precision, 99.9% recall,
and 99.8% F1-score, respectively. In this proposed work, the hyper parameters were not
optimally tuned. By considering this limitation, an efficient optimization algorithm will
be introduced in future work for a parameter tuning purpose. We intend to carry out
more research on intrusion detection and develop an improved encryption method for
smart agriculture in the future. Additionally, we will focus on the categorization and early
detection time analysis of more cyber-malware in complex systems in the actual world.
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