The Innovative Research on Sustainable Microgrid Artwork Design Based on Regression Analysis and Multi-Objective Optimization
Abstract
:1. Introduction
2. Problem Formulations
3. Improved Butterfly Optimization Algorithm
3.1. Fragrance
3.2. Butterfly Movement
4. Simulation Outcomes
4.1. Implementing the Suggested IBOA Scheme
4.2. Weighting Coefficients’ Impact
4.3. PV Panels’ Effects
4.4. Energy Costs’ Effects
4.5. Comparing IBOA Efficiency
4.6. Implementing the Suggested Scheme on the Standard 33-Bus IEEE System
- Case 1: With no consideration for DSM and in the absence of CHP agents in the MG.
- Case 2: With no consideration for DSM and using CHP units in the MG.
- Case 3: Through the consideration of DSM and in the absence of CHP agents in the MG.
- Case 4: Through the consideration of DSM and using CHP units in the MG.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oliveira, V.; Tenfen, D.; Fernandes, R. Demand side management in Brazil: Brief history, lessons learned, status, challenges, and trends. Renew. Sustain. Energy 2023, 183, 113437. [Google Scholar]
- Gelchu, M.A.; Ehnberg, J.; Shiferaw, D.; Ahlgren, E.O. Impact of demand-side management on the sizing of autonomous solar PV-based mini-grids. Energy 2023, 278, 127884. [Google Scholar]
- Jokar, H.; Bahmani-Firouzi, B.; Simab, M. Bilevel model for security-constrained and reliability transmission and distribution substation energy management considering large-scale energy storage and demand side management. Energy Rep. 2022, 8, 2617–2629. [Google Scholar]
- Damisa, U.; Nwulu, N.; Sun, Y. A robust energy and reserve dispatch model for prosumer microgrids incorporating demand response aggregators. J. Renew. Sustain. Energy 2018, 10, 055301. [Google Scholar]
- Bustos, R.; Marín, L.G.; Navas-Fonseca, A.; Reyes-Chamorro, L.; Sáez, D. Hierarchical energy management system for multi-microgrid coordination with demand-side management. Appl. Energy 2023, 342, 121145. [Google Scholar]
- Ali, L.; Muyeen, S.M.; Bizhani, H.; Ghosh, A. A multi-objective optimization for planning of networked microgrid using a game theory for peer-to-peer energy trading scheme. IET Gener. Transm. Distrib. 2021, 15, 3423–3434. [Google Scholar]
- Topa, A.; Cruz, N.; Álvarez, J.; Torres, J. On the optimal demand-side management in microgrids through polygonal composition. Sustain. Energy Grids Netw. 2023, 34, 101066. [Google Scholar]
- Karimi, H.; Niknam, T.; Dehghani, M.; Ghiasi, M.; Ghasemigarpachi, M.; Padmanaban, S.; Tabatabaee, S.; Aliev, H. Automated distribution networks reliability optimization in the presence of DG units considering probability customer interruption: A practical case study. IEEE Access 2021, 9, 98490–98505. [Google Scholar]
- De Lara Filho, M.O.; Pinto, R.S.; De Campos, A.C.; Vila, C.U.; Tabarro, F.H. Day-Ahead Robust Operation Planning of Microgrids Under Uncertainties Considering DERs and Demand Response. In Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies Conference-Latin America (ISGT Latin America), Lima, Peru, 15–17 September 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Abdulnasser, G.; Ali, A.; Shaaban, M.F.; Mohamed, E.E.M. Stochastic multi-objectives optimal scheduling of energy hubs with responsive demands in smart microgrids. J. Energy Storage 2022, 55, 105536. [Google Scholar]
- Saffar, A.; Ghasemi, A. Energy management of a renewable-based isolated micro-grid by optimal utilization of dump loads and plug-in electric vehicles. J. Energy Storage 2021, 39, 102643. [Google Scholar]
- Ebrahimi, S.R.; Rahimiyan, M.; Assili, M.; Hajizadeh, A. Home energy management under correlated uncertainties: A statistical analysis through Copula. Appl. Energy 2022, 305, 117753. [Google Scholar]
- Ghasemi, M.; Kazemi, A.; Gilani, M.A.; Shafie-Khah, M. A stochastic planning model for improving resilience of distribution system considering master-slave distributed generators and network reconfiguration. IEEE Access 2021, 9, 78859–78872. [Google Scholar]
- Eghbali, N.; Hakimi, S.M.; Hasankhani, A.; Derakhshan, G.; Abdi, B. Stochastic energy management for a renewable energy based microgrid considering battery, hydrogen storage, and demand response. Sustain. Energy Grids Netw. 2022, 30, 100652. [Google Scholar]
- Castaño, J.C.; Garces, A.; Fosso, O.B. Short-Term Hydrothermal Scheduling With Solar and Wind Farms Using Second-Order Cone Optimization With Chance-Box Constraints. IEEE Access 2021, 9, 74095–74109. [Google Scholar]
- Wang, Y.; Yu, H.; Yong, M.; Huang, Y.; Zhang, F.; Wang, X. Optimal scheduling of integrated energy systems with combined heat and power generation, photovoltaic and energy storage considering battery lifetime loss. Energies 2018, 11, 1676. [Google Scholar]
- Chettri, P.K.; Sharma, K.; Dewan, S.; Acharya, B.K. Butterfly diversity in human-modified ecosystems of southern Sikkim, the eastern Himalaya, India. J. Threat. Taxa 2018, 10, 11551–11565. [Google Scholar]
- Liu, B.; Zhou, B.; Yang, D.; Li, G.; Cao, J.; Bu, S.; Littler, T. Optimal planning of hybrid renewable energy system considering virtual energy storage of desalination plant based on mixed-integer NSGA-III. Desalination 2022, 521, 115382. [Google Scholar]
- Liu, Z.; Hajiali, M.; Torabi, A.; Ahmadi, B. Novel forecasting model based on improved wavelet transform, informative feature selection, and hybrid support vector machine on wind power forecasting. J. Ambient Intell. Humaniz. Comput. 2018, 9, 1919–1931. [Google Scholar]
- Alweshah, M.; Al Khalaileh, S.; Gupta, B.B.; Almomani, A.; Hammouri, A.I. The monarch butterfly optimization algorithm for solving feature selection problems. Neural Comput. Appl. 2022, 34, 11267–11281. [Google Scholar]
- Dashtdar, M.; Flah, A.; Hosseinimoghadam, S.M.S.; Kotb, H.; Jasińska, E.; Gono, R.; Leonowicz, Z.; Jasiński, M. Optimal Operation of Microgrids with Demand-Side Management Based on a Combination of Genetic Algorithm and Artificial Bee Colony. Sustainability 2022, 14, 6759. [Google Scholar]
- Moghaddam, A.A.; Seifi, A.; Niknam, T.; Pahlavani, M.R. Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source. Energy 2011, 36, 6490–6507. [Google Scholar]
Production agent | Diesel generator |
Minimum power | 100 kW |
Maximum power | 4000 kW |
Cost function |
Load | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
A | 0 | 0 | 0 | 0.032 | 0 | 0 | 0.02 | 0 | 0 | 0 |
B | 0.23 | 0.53 | 0.61 | 0.96 | 0.52 | 0.11 | 0.33 | 0.25 | 0.16 | 0.48 |
C | 1 | 2 | 1 | 5 | 3 | 4 | 5 | 3 | 2 | 3 |
Time of Loads Shifting Regarding Hours | Costs | Coefficients | |||||
---|---|---|---|---|---|---|---|
3 | 1 | DC ($) | 53,820 | 1 | |||
0 | 0 | ||||||
1 | 8 | OC ($) | 3,081,652.3 | 1 | |||
0 | 2 | ||||||
0 | 0 | F | 3,135,472.3 |
Coefficients | 1 | 1 | 1 | Sans DSM | |
0 | 1 | 2 | |||
Time of load shifting, hours | 6 | 3 | 0 | - | |
0 | 0 | 1 | - | ||
5 | 0 | 0 | - | ||
6 | 0 | 0 | - | ||
17 | 0 | 1 | - | ||
4 | 1 | 0 | - | ||
17 | 0 | 0 | - | ||
9 | 8 | 1 | - | ||
2 | 2 | 0 | - | ||
23 | 0 | 0 | - | ||
Prices | F | 3,016,445 | 3,135,472.3 | 3,193,278.2 | 3,144,023.3 |
OC ($) | 3,016,445 | 3,081,652.3 | 3,174,678.2 | 3,144,023.3 | |
DC ($) | 0 | 53,820 | 18,600 | - |
PV | Sans PV | Using PV | |
---|---|---|---|
Time of load shifting, hours | 1 | 3 | |
1 | 0 | ||
1 | 0 | ||
0 | 0 | ||
0 | 0 | ||
0 | 1 | ||
1 | 0 | ||
4 | 8 | ||
0 | 2 | ||
0 | 0 | ||
Prices | F | 5,582,978.2 | 3,135,472.3 |
OC ($) | 5,556,267.2 | 3,081,652.3 | |
DC ($) | 26,720 | 53,820 |
Cost | Constant | Changeable | |
---|---|---|---|
Time of load shifting, hours | 3 | 3 | |
1 | 0 | ||
1 | 0 | ||
0 | 0 | ||
0 | 0 | ||
1 | 1 | ||
0 | 0 | ||
8 | 8 | ||
3 | 2 | ||
1 | 0 | ||
Prices | F | 3,091,198.29 | 3,135,472.3354 |
OC ($) | 3,026,958.2900 | 3,081,652.3354 | |
DC ($) | 64,240 | 53,820 |
Units | WT | FC | Grid | PV | MT | BAT |
---|---|---|---|---|---|---|
15 | 30 | 30 | 25 | 30 | 30 | |
0 | 3 | −30 | 0.33 | 6 | −30 |
Bus | 25 | 8 | 7 | 2 |
---|---|---|---|---|
(kW/H) | 700 | 250 | 250 | 100 |
(kW/H) | 700 | 250 | 250 | 200 |
50 | 35 | 45 | 27 | |
0 | 25 | 25 | 25 | |
0 | 50 | 20 | 20 | |
400 | 500 | 550 | 400 | |
50 | 20 | 40 | 50 |
Bus | 16 | 8 |
---|---|---|
A | 0.0345 | 0.0435 |
B | 14.5 | 36 |
C | 26.5 | 12.5 |
D | 0.03 | 0.027 |
E | 4.2 | 0.6 |
F | 0.31 | 0.011 |
1356 | 1800 | |
1258 | 2470 | |
400 | 810 |
Case No. | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Coefficients | 0 | 0 | 1 | 1 | |
1 | 1 | 1 | 1 | ||
Profit ($) | 2185.7133 | 5697.2560 | 2194.4243 | 5617.7067 | |
Income ($) | 7492 | 7956.636 | 7185.814 | 7898.686 | |
Price ($) | 5306.29 | 2349.38 | 4991.39 | 2280.98 |
Algorithms | IBOA | BOA | GA |
---|---|---|---|
Price decrease (%) | 57.01 | 50.7 | 25 |
Price ($) | 2281 | 2617 | 3978 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.; Liu, D.; Dehghan, B. The Innovative Research on Sustainable Microgrid Artwork Design Based on Regression Analysis and Multi-Objective Optimization. Systems 2023, 11, 354. https://doi.org/10.3390/systems11070354
Chang S, Liu D, Dehghan B. The Innovative Research on Sustainable Microgrid Artwork Design Based on Regression Analysis and Multi-Objective Optimization. Systems. 2023; 11(7):354. https://doi.org/10.3390/systems11070354
Chicago/Turabian StyleChang, Shuang, Dian Liu, and Bahram Dehghan. 2023. "The Innovative Research on Sustainable Microgrid Artwork Design Based on Regression Analysis and Multi-Objective Optimization" Systems 11, no. 7: 354. https://doi.org/10.3390/systems11070354
APA StyleChang, S., Liu, D., & Dehghan, B. (2023). The Innovative Research on Sustainable Microgrid Artwork Design Based on Regression Analysis and Multi-Objective Optimization. Systems, 11(7), 354. https://doi.org/10.3390/systems11070354