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Abstract: The latest advances in spatial information technology have led to the emergence of Volun-
teered Geographic Information (VGI) as enrichment to existing spatial data sources. Additionally,
Decision Support Systems (DSS) are among the fields that have seen major advances. Volunteered
Geographic Information (VGI) has great potential as a valuable data source to decision support
systems. Several studies have been proposed to integrate VGI data into DSS. However, as VGI
data may have different levels of quality, integrating VGI data with poor quality may affect the
decision-making process. In fact, VGI data with poor quality. that are obsolete or incomplete, could, if
integrated into a spatial DSS, lead to inappropriate analysis results. This paper presents an approach
that aims to enhance spatial DSS analysis and exploitation by integrating high quality VGI data that
are appropriate to the user requirements, and that have a good indicator completeness and time
relevance. The approach introduces a conceptual framework that evaluates VGI data quality and
integrates only high quality VGI data into spatial DSS. The proposed approach is experimented on a
road maintenance project in Grand-Tunis. We develop the Map-Report prototype, and we evaluate the
efficiency of our approach in enhancing data analysis and exploitation in spatial DSS by reducing the
error rate and providing accurate and precise analysis results.

Keywords: decision support system; datacube; data integration; VGI; data quality

1. Introduction

The advances of data acquisition technologies (e.g., sensor networks and satellites)
have led to the availability of large amounts of data in many domains, such as Earth
observation, telecommunication, and navigation. Decision support systems (DSS) have
been among the notable advancements [1–6]. They play a pivotal role in assisting decision-
makers such as analysts, executives, and managers in tackling intricate strategic problems.
Data warehouses are a fundamental component of these DSS, acting as a substantial
repository of subject-oriented, integrated, time varying, non-volatile collection of data [7,8].
In a data warehouse, data are typically extracted from different data sources, transformed to
meet the strategic needs, and finally integrated and loaded into a unified database [4]. Data
warehouses provide decision makers with historical and aggregated data based on using
various functions (e.g., sum, count, and average) according to different levels of details.
This data plays a crucial role in equipping decision-makers with valuable insights, enabling
them to analyze phenomena and arrive at well-informed strategic choices. Data warehouses
are commonly organized following a multidimensional structure known as datacubes [9].
These datacubes allow decision-makers to explore aggregated and summarized data based
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on various dimensions and their corresponding levels. Moreover, datacubes help strategic
decision-makers in accessing diverse perspectives of the data through various tools like
Online Analytical Processing (OLAP) tools [7]. OLAP tool allows for analyzing datacube’s
measures, such as ‘agricultural production values’, based on different dimensions, such as
‘type of agricultural production’. A measure is calculated and aggregated according to one
or several dimensions. Each dimension may contain one or more levels.

Volunteered Geographic Information (VGI) can serve as input data for spatial dat-
acubes. VGI is a social and technological phenomenon that originates outside the realm of
authoritative mechanism of spatial data acquisition [10,11]. VGI pertains to utilizing the
internet to access, gather, and distribute spatial data contributed voluntarily by individual
contributors [12–16]. It empowers individuals without specialized spatial skills or training
to actively engage in acquiring spatial data. Recent advancements in spatial technology
have further enriched the potential of VGI. Its application spans across various domains,
including forestry, healthcare, disaster management, and road maintenance [17].

Recently, there have been some studies that combined Volunteered Geographic Infor-
mation (VGI) and spatial DSS [18–20]. These studies showed that combining VGI and DSS
is a valuable enhancement for decision making.

However, VGI data may be of poor quality which may—if integrated into a spatial
datacube—result in a negative effect on decision-making. For example, integrating VGI
data that are obsolete (e.g., a pothole in the street that has been repaired) or incomplete
(e.g., a pothole wrongly located on the map due to a missing reference system) will lead to
inaccurate decision-making, and produce inappropriate analysis results. Despite the risk of
inappropriateness, it is still interesting to integrate VGI data into DSS [18–20]. However,
we should pay attention to integrate only data with high quality to allow an appropriate
decision-making analysis.

While several works showed promising results in integrating VGI data into a spatial
datacube [18–20], to the best of our knowledge, there has been no research study that
focuses on assessing the quality of VGI data with regard to user requirements prior to its
integration. In fact, VGI data that are obsolete or incomplete could not be appropriate to
the decision-making process and to the user requirements.

In this paper, we propose to enhance spatial DSS integrating VGI data with high
quality; the data, which are appropriate for the requirements of a particular decision-
making task, and that have a high quality indicator regarding completeness and time
relevance. Hence, we focus on VGI quality assessment by proposing and evaluating a VGI
quality based on set of indicators. The proposed approach is implemented and tested on a
road maintenance project in Grand-Tunis, Tunisia. The implementation aims to support
users in their decision-making about road maintenance, and to enhance spatial DSS analysis
and exploitation. The proposal is described theoretically and validated by experiments.

The paper is organized as follows: Section 2 presents some related works that com-
bined VGI and DSS. Section 3 introduces the approach for enhancing spatial DSS capabilities
by integrating high quality VGI data. Section 4 describes a prototype we developed to
implement our approach. Section 5 presents the experimental evaluation and the obtained
results, and Section 6 concludes the paper and presents some perspectives for future work.

2. Related Works

Spatial DSS may include, besides authoritative spatial data, VGI data collected by
people having little or no spatial knowledge [17]. Integrating VGI data into spatial DSS
has been demonstrated in various domain applications, such as health care, transportation,
managing events, and urban space management [20–22].

Sadeghi-Niarak [20] incorporated VGI into a decision support system, harnessing
citizen-contributed data to efficiently manage waste pollution. They proceeded to create a
web-based prototype of this decision support system, effectively showcasing its practical
feasibility and relevance in conducting pollution-related decision analyses.
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Omidipoor et al. [23] integrated VGI into a spatial DSS to enhance urban management.
They developed a spatial DSS that combines VGI with multi-criteria decision analysis to
facilitate participatory renewal procedures in urban-blighted areas.

Horita et al. [19] used interoperable standards of the Open Geospatial Consortium
(OGC) to integrate VGI into a spatial DSS. The developed DSS is implemented to improve
flood risk management in the town of São Carlos, Brazil. The implementation results
showed that interoperable standards can support the integration of VGI data in spatial DSS.
Horita et al. [24] developed a framework that combines VGI data and conventional data in
the spatial DSS in order to enhance decision making in disaster management.

Rajabifard et al. [25] integrated VGI and geospatial data from distributed sources in
the Intelligent Disaster Decision Support System (IDDSS). The developed IDDSS proved its
efficiency in managing floods and fires in Melbourne, Australia.

While the aforementioned studies have shown the importance of integrating VGI data
into DSS datacubes, to our knowledge, there has been no research study that focuses on
assessing the quality of VGI data with regard to user requirements prior to the integration.
Assessing VGI data is needed as VGI with potentially poor quality may—if integrated into
a spatial datacube—result in a negative effect on decision-making process. In fact, VGI
data which are obsolete or incomplete are not relevant to the user requirements and the
decision-making needs, and may lead to produce inappropriate analysis results.

In this work, we propose an approach to enhance spatial DSS exploitation by inte-
grating high VGI quality data that are adapted to the user needs and requirements and
having a high quality indicator regarding its completeness and time relevance. That is,
before integrating VGI data into spatial datacubes, we first evaluate its quality with regard
to the requirements of a particular decision-making. The proposed approach is described
theoretically and evaluated by experiments using a prototype we implemented called
Map-Report.

The next section introduces the proposed approach for enhancing spatial DSS by
integrating high quality VGI data into spatial datacubes. The approach involves a frame-
work for integrating only high quality VGI data into DSS datacube, and an algorithm
for recommending the integration or not of VGI data. In order to define high quality
data, the proposed framework includes the evaluation of VGI quality with regard to the
requirements of a particular decision-making task.

3. Integrating VGI Data in SDSS

In Spatial Decision Support Systems, spatial datacubes are broadly deployed as com-
mon repositories where data sources are integrated and stored. In order to integrate data
into a spatial datacube, a complex Extract-Load-Transform (ETL) process is typically used.
ETL process consists of cleaning and unifying data extracted from multiple sources. Then,
spatial data are stored and managed mainly according to a multidimensional structure
(i.e., datacube). Eventually, the data is used by different tools (e.g., spatial OLAP tools and
mining tools) that allow decision-making analysis and reporting [8,11]. Figure 1 shows the
typical architecture of a spatial DSS, which includes three major parts that consist of ETL
process for extracting transforming and loading data into the datacube, organize data in a
multidimensional structure, and exploiting data to generate interactive dashboards and
analysis reports.

3.1. Conceptual Framework for Integrating VGI Data into Datacubes

In order to enhance spatial DSS exploitation, we propose a framework for integrating
high quality VGI data. In fact, besides conventional data sources, we integrate VGI data
into DSS datacubes. However, before integrating VGI data, we assess its quality with
regard to (1) its completeness, and (2) its time relevance. Only VGI data that respect these
criteria and that have a high-quality indicator will be integrated in the DSS.

Figure 2 illustrates the proposed framework which consists of three main layers: VGI
data collection Layer, VGI quality Assessment Layer, and VGI integration Layer. The first
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layer includes receiving VGI data from contributors using a VGI platform, and cleaning
and transforming VGI data to make it into an effective and consistent form. Cleaning and
transforming operations can be achieved automatically or manually.

Systems 2023, 11, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 1. Typical architecture of a Spatial DSS. 

3.1. Conceptual Framework for Integrating VGI Data into Datacubes 
In order to enhance spatial DSS exploitation, we propose a framework for integrating 

high quality VGI data. In fact, besides conventional data sources, we integrate VGI data 
into DSS datacubes. However, before integrating VGI data, we assess its quality with re-
gard to (1) its completeness, and (2) its time relevance. Only VGI data that respect these 
criteria and that have a high-quality indicator will be integrated in the DSS. 

Figure 2 illustrates the proposed framework which consists of three main layers: VGI 
data collection Layer, VGI quality Assessment Layer, and VGI integration Layer. The first 
layer includes receiving VGI data from contributors using a VGI platform, and cleaning 
and transforming VGI data to make it into an effective and consistent form. Cleaning and 
transforming operations can be achieved automatically or manually.  

Figure 1. Typical architecture of a Spatial DSS.

Systems 2023, 11, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 2. Framework for assessing VGI quality and integrating high quality VGI data into DSS 
datacube. 

The second layer, ‘VGI quality Assessment’, allows for assessing the quality of VGI 
data based on two indictors, ‘completeness’ and ‘time relevance’. The proposed indicators 
perform a key role in the proposed framework, specifically, these indicators have two 
principal aims: First, to make users aware of the quality of the data they are dealing with. 
Second, to enhance spatial DSS by integrating only high quality VGI data, which are 
adapted to the user requirements, and to the decision-making needs. All details about the 
proposed VGI quality indicator are presented in Section 3.2.  

The third layer ‘VGI integration’ aims to integrate only VGI data that is high quality 
to the DSS’s datacube. For that, in this layer, we test if the result of VGI quality assessment 
is satisfactory with regard to user requirements, and have a sufficient value of time rele-
vance and completeness. If it is the case, VGI data is validated as a data source to be inte-
grated into the DSS’s datacube. Otherwise, if the quality is not satisfactory with regard to 
the system requirements, VGI data is normally rejected. 

In order to assess the quality of VGI data, we define a set of quality indicators, and 
we propose a quantitative approach to evaluate the quality based on these quality indica-
tors.  

Figure 2. Framework for assessing VGI quality and integrating high quality VGI data into DSS datacube.



Systems 2023, 11, 393 5 of 17

The second layer, ‘VGI quality Assessment’, allows for assessing the quality of VGI
data based on two indictors, ‘completeness’ and ‘time relevance’. The proposed indicators
perform a key role in the proposed framework, specifically, these indicators have two
principal aims: First, to make users aware of the quality of the data they are dealing
with. Second, to enhance spatial DSS by integrating only high quality VGI data, which are
adapted to the user requirements, and to the decision-making needs. All details about the
proposed VGI quality indicator are presented in Section 3.2.

The third layer ‘VGI integration’ aims to integrate only VGI data that is high quality to
the DSS’s datacube. For that, in this layer, we test if the result of VGI quality assessment is
satisfactory with regard to user requirements, and have a sufficient value of time relevance
and completeness. If it is the case, VGI data is validated as a data source to be integrated
into the DSS’s datacube. Otherwise, if the quality is not satisfactory with regard to the
system requirements, VGI data is normally rejected.

In order to assess the quality of VGI data, we define a set of quality indicators, and we
propose a quantitative approach to evaluate the quality based on these quality indicators.

3.2. Indicators for Assessing VGI Data Quality

VGI data quality can be described by guidelines (e.g., ISO 19157 [26]) and indicators
(e.g., accuracy, consistency, and completeness) [27,28]. Quality indicators for VGI aim to
provide a valuable support for weighting and selecting relevant VGI data to be integrated
into spatial datacube. That is, based on quality indicators, one could decide what VGI
data should be integrated into a spatial datacube. We propose two indicators, which are
completeness and time relevance. These indicators are among the most widely used data
quality indictors [29–33]. Measuring the completeness of VGI data is key for VGI to fit a
particular usage [16,34,35]. Time relevance is critical to ensure that VGI data collected by
contributors matches temporal requirements of decision makers [36].

The assessment of VGI data quality is based on the values of indicators, which range
from 0 to 1, where 1 indicates perfect quality of VGI data with regard to decision-making
needs, and 0 indicates the poorest quality. It is important to note that our goal is not to
define an exhaustive list of indicators, but to create awareness about the quality of VGI data
with regard to decision-making. A limited set of quality indicators can provide synthetic
information about spatial data quality. Typical decision-making processes are based on a
small number of indicators [34,37,38].

We illustrate the indicator-based assessment of VGI data quality with the following
example: a VGI contributor provides information about a damage on the road in a given
location (Ben Arous, Grand-Tunis), as shown in Figure 3. This VGI contributor sent infor-
mation about a broken manhole on a road with no information about the type of the road
where the damage was reported (i.e., incomplete VGI data). Due to the lack of information,
users may misinterpret the VGI data, which may affect the decision-making process. That
is, without more complete information, the quality of VGI may be insufficient and hence
not appropriate to make a strategic decision. The proposed approach in this paper aims to
make users aware of the quality of VGI data to be integrated into a spatial datacube.

3.2.1. Completeness

The completeness indicator illustrates the number of VGI data elements relevant
to the specific requirements of a decision-making process. A data element is defined as
{element nature, element type, element value}, where ‘element nature’ signifies whether
it pertains to data or metadata, and ‘element type’ indicates whether the data represents
a feature, an attribute, or a relationship. The ‘element value’ corresponds to the actual
representation of the element. For instance, the data ‘broken manhole on a road’ has a
value that comprises both text and an image. An example of a metadata element related to
the data ‘broken manhole on a road’ is the reference system related to spatial coordinates.
A missing information about the reference system leads to an incomplete VGI data, which
may affect data analysis and exploitation.
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We measure the completeness with regard to (1) the datacube’s measures (i.e., subjects
of analysis), and to (2) the datacube’s dimensions (i.e., axes of analysis).

The completeness with regard to the dimensions Cd is calculated as follows:

Cd =

{
1 ; if Nmed ≥ Nmrd and Nsed ≥ Nsrd
(wm ∗Nmed/Nmrd + ws ∗Nsed/Nsrd)/2; otherwise

(1)

where Nmed and Nsed are the numbers of thematic and spatial data elements related to
a dimension provided by VGI contributor. Nmrd (Nsrd) is the number of thematic and
spatial, respectively, elements required for a particular decision-making. wm and ws are
predefined weights for thematic and spatial, respectively, elements. These weights indicate
the importance of each type in a particular decision-making. When the number of available
thematic and spatial data elements equals or surpasses the required number of elements,
the VGI dimension is considered complete, and its value is assigned as 1. In cases where
the existing elements are fewer than the required elements, the ratio of available elements
to the required elements represents the degree of completeness for each dimension of the
datacube.

The quality of all dimensions Ctd is calculated according the ratio of the sum of the
dimensions’ quality of a given datacube to the number of dimensions nd (as shown in
Formula (2))

Ctd = ∑ Cdi/nd (2)

The completeness with regard to the measure Cm is calculated as follows:

Cm =

{
1 ; if Nme ≥ Nmr and Nse ≥ Nsr
(wm ∗Nme/Nmr + ws ∗Nse/Nsr)/2 ∗ ∑ Cdj; otherwise (3)

where Nme and Nse are the numbers of thematic and spatial measure data elements
provided by the VGI contributor. Nmr (Nsr) is the number of thematic (spatial and
temporal) measure data elements required for a particular decision-making. wm and ws
are predefined weights for thematic and spatial data elements. If the number of available
elements is equal to or greater than the required number of elements, the measure data is
complete, and its value is set to 1. Otherwise, the completeness of each measure is evaluated
as a product of (1) the ratio of the VGI elements to the required elements, and (2) the quality
of the dimensions related to that measure (i.e., its axe of analysis). The above Equation (3)
indicates that the quality of each measure depends not only on its elements, but also on the
quality of the dimensions’ elements used as an axe of analysis for that measure. The quality
of VGI measure increases and decreases with the increase and decrease in the quality of VGI
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dimensions. The equation reflects that the measure is calculated and aggregated according
to a set of dimensions.

The quality of all measures Ctm is calculated according the ratio of the sum of the mea-
sures’ quality of a given datacube to the number of measures nm (as shown in Formula (4)).

Ctm = ∑ Cmi/nm (4)

The number of elements and the weights (wm and ws) can be predefined by VGI
analysts in collaboration with users. We should note that VGI analysts and users may
choose not to define these weights. In this case, the value of each weight is set to 1 to
indicate that thematic and spatial elements have the same importance, otherwise the value
of each of these weights should be between 0 and 1.

In the example presented in Figure 3, VGI data is about road maintenance measure.
This measure is defined according to the following dimensions: ‘type of road’, ‘type of
damage’, ‘time’, and ‘geo-location’. In this case, decision-makers require, besides available
data elements (time and location), another element specifying the reference system related
to the location coordinates. With regard to dimensions, all elements required are provided
by the VGI contributor. Thus, if we suppose that the weight of completeness is 1, then
Cm = (3/4 × 3/3) = 0.75.

3.2.2. Time Relevance
This quality indicator shows the degree of temporal relevance of VGI measure with

regard to the decision-making requirements. The value of time relevance is evaluated based
on the period of time needed for VGI data aggregation in a particular decision-making.
The time relevance of the VGI data is evaluated as follows:

Tm =

{
1 ; if Taggrb ≤ Tdef ≤ Taggre
1− (min(|Taggrb− Tdef|, |Taggre− Tdef|)/(Taggre− Taggrb)); otherwise

(5)

where Tdef is the time of definition of VGI data, and Taggrb and Taggre are the beginning
and the end, respectively, of the period needed for data aggregation. The subtraction
operation Taggre−Taggrb is the period needed for aggregation.

If the time of definition is within the period of aggregation, the time relevance of VGI
measure Tm is perfect, and its value is set to 1. Otherwise, Tm is measured as a ratio of
(1) the minimum distance to the required period of aggregation, and (2) the period of time
needed for aggregation in a particular decision-making.

The overall time of relevance quality for all datacube measures Ttm is calculated
as follows:

Ttm = ∑ Tmi/n f (6)

The value of the times relevance decreases as the distance of its definition time to
the aggregation period increases. A low value of time relevance of VGI data may have
a negative impact on the quality of decision-making process. In the example presented
in Figure 3, VGI data was defined in January 2017, the beginning (and the end) of period
needed for data aggregation is January 2019 (and December 2021, respectively). Then,
Tm = 1− (24/36) = 0.33.

The overall quality Q is calculated as follows:

Q =∑ Wi∗Qi/Nq (7)

where Qi is the ith quality indicator of the VGI data. where Wi is the ith predefined weight
of the ith indicator. Where Nq is the total number of indicators. We should notice that the
value of the weight is predefined by analysts or users and should be between 0 and 1. If
analysts and users choose not to be involved in the quality assessment process, the value of
each weight is set to 1 (i.e., the indicators are given the same importance).
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The threshold of the weight value depends on user’s needs and preferences with
regard to the level of completeness and time relevance. Users in collaboration with VGI
analysts are in the best position to define the most appropriate threshold.

Consequently, if we assume that the weight of each indicator is 1, the overall quality
Q = (0.75 + 0.33)/2 = 0.54.

We should remember that the defined indicators do not aim at being complete, but
rather at helping users to make a decision about integrating—or not integrating—VGI data
into spatial DSS.

In the next section, we propose an algorithm to help decisions makers to make appro-
priate decisions about integrating—or not—VGI data into spatial datacube.

3.3. Algorithm for Recommending VGI Data Integration

Based on the aforementioned indicator-based assessment of VGI data quality, we
propose an algorithm that aims to recommend the integration—or not—of VGI data into
spatial datacube.

The algorithm verifies the VGI quality for both measures and dimensions. Based on
this quality, VGI analysts will be advised to:

- Integrate VGI, if VGI data that has high quality with regard to analytical requirements.
High-quality VGI data have an overall quality value above a threshold that is defined
by users in collaboration with VGI analysts (e.g., an overall quality value greater than
or equal to a threshold of 0.75).

- Not to integrate VGI data that does not have high quality (e.g., less than a threshold
of 0.75).

The proposed indicators perform a key role in the proposed algorithm. They increased
awareness of the quality of VGI data, and allow to make appropriate decision about
integrating—or not—VGI data into datacube.

Algorithm 1 VGI Quality for Spatial DSS

1: Input:
2: Nq: number of quality indicators
3: thr: threshold of acceptable data quality
4: Output: Rec: recommendation to the user
5: Begin
6: Rec← “”
7: SQ← 0
8: For i← 1 to Nq do
9: determine qi
10: determine wi
11: SQ← SQ + wi ∗ qi
12: End
13: Q← SQ/Nq
14: if (Q ≥ thr) then
15: Rec← Recommending integrating VGI data into spatial datacube
16: else
17: Rec← Recommending not to integrate VGI data into spatial datacube
18: End

4. The Map-Report Prototype

We developed a prototype, called Map-Report (MR), which allows to collect data from
VGI contributors, and to assess VGI data quality with regard to a particular decision-making
(as shown in Figure 4).

The prototype implements three main functionalities: (1) the VGI data collection
from contributors, (2) the assessment of VGI data quality based on the measurement of
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indicators, and (3) the display of warnings to help users intuitively understand the value of
data quality.
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The quality of the VGI data is assessed by our system (as detailed in Section 3), and
a quality indicator value is shown in order to decide to include—or not—VGI data in the
DSS datacube. Moreover, based on the quality value, a symbol is shown to the users to
make them aware of the VGI quality. Figure 4 shows a VGI data provided by a pedestrian
presenting a debris around a broken manhole. The diameter of the debris is observed to be
2 m. The data is collected in Ben Arous region located in El Mourouj city in Grand-Tunis.
As shown in Figure 4, the quality of the VGI data is below 0.75, thus an attention symbol is
shown to the users to make them aware of relatively bad quality of VGI data. We evaluate
VGI data to be integrated in a road maintenance datacube. The project uses VGI data and
other data resources to locate and manage road damage in Grand-Tunis. We used a set of
georeferenced data sent by contributors as reports through the Map-Report prototype.

5. Experiments and Results

We used a set of VGI reports sent by 20 contributors. The reports contain images and
textual information that are used to describe present manholes, potholes, bad roads, and
other road deterioration aspects located in different areas of Tunisia. Using our Map-Report
prototype, we evaluate the quality of each report. The evaluation process selects a set of
reports based on the sample-building methodology of Miller and Charles [39]. Specifically,
the evaluation involves 30 reports, divided into three categories: 10 reports with high-
quality levels (0.75 < Q ≤ 1), 10 reports with a medium-quality levels (0.5 < Q ≤ 0.75), and
10 reports with a lower-quality levels (Q < 0.5); The quality assessment is carried out using
our Map-Report prototype.

On the other hand, we asked 10 road maintenance experts to visit the roads where the
VGI contributors reported damages using the Map-Report prototype, then to attribute to
each VGI data a quality value that reflects its suitability to the requirements of the road
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maintenance project. The value of the quality indicator attributed by experts to each VGI
data should be between 0 and 1.

In order to evaluate our VGI quality assessment proposal, we employed the com-
monly used Spearman correlation method, designed to gauge the strength and direction
of a relationship between two ranked variables [40]. In our evaluation, we assessed the
correlation between two assessments: (1) the VGI quality assessment from the Map-Report
prototype and (2) the quality assessment by road maintenance experts. The correlation
analysis results are depicted in Figure 5, indicating a Spearman’s coefficient value of 0.76.
This value signifies a strong positive correlation between the quality evaluations conducted
by the experts and our VGI quality assessment, which demonstrates the efficiency of our
approach in presenting good VGI quality assessment.
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road maintenance experts.

In order to evaluate the impact of integrating high VGI data quality in DSS, we
implement a spatial datacube that integrates VGI data for a road maintenance project in
Tunisia. The next section presents the implemented datacube and the integration process.

5.1. Integrating Assessed VGI Data into DSS Datacube

Based on the quality assessment of VGI data, we suggest integrating only high quality
VGI data into DSS datacubes to enhance data analysis and exploitation.

5.1.1. The Spatial Datacube

In order to demonstrate the utility of our approach, we created a spatial datacube with
which we intend to integrate only VGI data that is high quality. This datacube aims to
enhance decision-making based on the number of damaged roads and number of accidents.
The datacube stores the number of damaged roads according to the following dimensions:
type of damage, location, time, and type of road. Spatial dimension ‘geo-location’ contains
the governorate-region hierarchy; a governorate can contain one or more regions. The
spatial datacube is modeled based on Malinowski and Zimányi’s conceptualization of
spatial data warehouses conceptualization of geospatial data warehouses [41]. Figure 6
shows the multidimensional schema of the developed datacube. This schema allows for the
storing and analyzing of data regarding damaged roads in different areas of Grand-Tunis,
for different type of roads (e.g., primary, secondary, and residential), and during different
periods of time.

The datacube allows for exploring information about road maintenance, and allows
answering queries, such as: “What is the total number of damaged roads in Grand-Tunis in
2020?”, or “What is the total number of damaged secondary roads in Grand-Tunis in the
first semester of 2020?”



Systems 2023, 11, 393 11 of 17

Systems 2023, 11, x FOR PEER REVIEW 12 of 18 
 

 

in 2020?”, or “What is the total number of damaged secondary roads in Grand-Tunis in 
the first semester of 2020?” 

 
Figure 6. The damaged road datacube schema. 

5.1.2. Integrating VGI into Spatial Datacube 
After being assessed, high quality VGI data are manually extracted and stored in 

shape files and csv files. Then, these VGI data files are integrated into the road mainte-
nance datacube using the Pentaho data integration (PDI) tool. Figure 7 shows the ETL 
process to integrate VGI data into the datacube. In this process, selected high quality VGI 
data are read and compared to data from other sources, before being loaded into the 
datacube. 

 
Figure 7. ETL integration of VGI data into road maintenance datacube. 

In order to exploit datacube, we used MDX (Multi-Dimensional Expression) lan-
guage to define queries which are used to select desired data from datacubes. The queries’ 
extracted data is used to perform analytical analysis regarding the maintenance of dam-
aged roads in Grand-Tunis, and to create reports, such as diagrams, pie graphs, map vis-
ualization, and so on. Figure 8 shows a bar chart displaying the total number of damaged 
roads and accidents from 2017 to 2020 in Grand-Tunis. 

Figure 6. The damaged road datacube schema.

5.1.2. Integrating VGI into Spatial Datacube

After being assessed, high quality VGI data are manually extracted and stored in
shape files and csv files. Then, these VGI data files are integrated into the road maintenance
datacube using the Pentaho data integration (PDI) tool. Figure 7 shows the ETL process to
integrate VGI data into the datacube. In this process, selected high quality VGI data are
read and compared to data from other sources, before being loaded into the datacube.
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In order to exploit datacube, we used MDX (Multi-Dimensional Expression) language
to define queries which are used to select desired data from datacubes. The queries’
extracted data is used to perform analytical analysis regarding the maintenance of damaged
roads in Grand-Tunis, and to create reports, such as diagrams, pie graphs, map visualization,
and so on. Figure 8 shows a bar chart displaying the total number of damaged roads and
accidents from 2017 to 2020 in Grand-Tunis.

5.2. Experiments and Results

The adopted methodology for proposal evaluation is based on a comparative study
between the relevance of the experimental results in two situations: (1) when the quality
assessment approach is not applied, and (2) when the quality assessment approach is used.
Accordingly, we create two datacubes: The first datacube (datacube 1) integrates VGI data
without quality assessment. The second datacube integrates only high-quality VGI data
(datacube 2).
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The relevance of the experimental results is evaluated using the mean absolute error
(MAE), the mean quadratic error (MQE), and the root mean square error (RFSE). These
indicators are computed based on the comparison of query results obtained from the
two datacubes (datacube 1 and datacube 2) with real values presenting the answers to these
queries. All these indicators are used in many domains to quantify the error generated by
the system and in assessing system performance [42–45].

We ran 25 queries on the two datacubes (datacube 1 and datacube 2). For each query,
we obtained different results for the two datacubes. For example, Figure 9 presents the
obtained results for the query “What is the number of damaged secondary roads in the
governorate of Ben Arous?“ Figure 9a presents the results using VGI data without quality
assessment (datacube 1), and Figure 9b presents results for the same query for the datacube
that contains only high-quality VGI data (datacube 2). Likewise, Figure 10 presents the
obtained results to the following query “What is the number of damaged roads and the
number of accidents from 2017 to 2020 in Grand-Tunis?” Figure 10a presents results to
this query on the datacube 1, and Figure 10b presents results to the same query on the
datacube 2.

After identifying the real values presenting the answers to these queries, we calculate
the mean absolute error (MAE), the mean quadratic error (MQE), and the root mean square
error (RFSE). These error measures are compared with regard to the real expected values
presenting the true answers to those queries and are computed in the two situations:
(1) responses to queries without VGI data quality assessment (i.e., datacube integrating all
VGI data into DSS datacube), and (2) responses to queries with VGI quality assessment (i.e.,
datacube integrating only high-quality VGI data). We use the error measures to evaluate
which datacube allows for producing more accurate and precise query results with lower
error rates. The lower are the error measures, the more efficient the system is.
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Having:
n: the number of queries launched on the DSS; n = 25
Ri: the real expected value of the result of query i
Si: the value presenting the response to query i on datacube 1 (the DSS does not take VGI
quality assessment into consideration)
S’i: the value presenting the response to query i on datacube 2 (the DSS integrates VGI quality
assessment)
Ti: the absolute error relating to the query i without quality assessment
T’i: the absolute error relating to query i with quality assessment
Ti and T’i are obtained as follows
Ti = |Si− Ri|
T′i = |S′i− Ri|
MAEcube1: the mean absolute error without VGI quality assessment
MAEcube2: the mean absolute error with VGI quality assessment
MAEcube1 = ∑n

i=1 Ti/n
MAE’cube2 = ∑n

i=1 T′i/n
MQEcube1: The mean quadratic error without VGI quality assessment
MQEcube2: The mean quadratic error with VGI quality assessment
MQE cube1 = ∑n

i=0(Si− Ri)2/n,
MQEcube2 = ∑n

i=0(S
′i− Ri)2/n

RMAEcube 1 = the root mean squared error without VGI quality assessment
RMAEcube2= the root mean squared error with VGI quality assessment

RMAE=
√

∑n
i=0(Si− Ri)2/n

RMAE’=
√

∑n
i=0(S

′i− Ri)2/n

Table 1 presents the obtained results for MAE, MQE and RFSE relative to the analysis
of query results.

Table 1. The obtained values of MAE, MQE, and RFSE relative to the results query analysis.

Datacube 1 Datacube 2

MAE 78.545 17.818

MQE 12,085.181 663.473

RFSE 109.932 25.757
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The obtained results show that all the error measures: the MAE, the MQE, and the
RFSE are much lower when integrating only high quality VGI data into the DSS datacube.
The DSS is more efficient and provides more accurate analysis results when it integrates
only high-quality VGI data based on the proposed quality assessment. Thus, integrating
VGI quality assessment in the DSS allows to considerably reduce the error rate.

The results show the ability of our system to enhance spatial DSS exploitation by
providing more precise and accurate analysis results, and eliminating VGI data that are
irrelevant, inappropriate, or even obsolete which, if integrated into the datacube, they may
distort the query results.

However, we should notice that despite the VGI quality assessment, the error is not
completely eliminated. In fact, our approach does not aim to completely eliminate the error
related to the integration of VGI data into DSS, but rather, to reduce the error rate and to
obtain query results and reports which are more accurate and closer to the reality.

6. Conclusions

Decision support systems and VGI are among the fields that have seen major advances.
Integrating VGI data into DSS datacubes could enhance decision-making, as demonstrated
by previous works. However, VGI data may be of poor quality, and may—if integrated into
a spatial datacube—result in a negative effect on decision-making. For example, integrating
VGI data that are obsolete or not adapted to the analytical requirements of end-users will
lead to inaccurate decision-making results.

In this work, we presented an approach for enhancing spatial DSS by identifying
high quality VGI data and integrating it into DSS datacube. The paper proposes a VGI
quality assessment approach that evaluates VGI data regarding its completeness and its
time relevance. Only high quality VGI data are integrated in DSS system. We also proposed
an algorithm that presents a systematic process to increase awareness of the quality of
VGI data and allows the appropriate decision about integrating—or not—VGI data into a
spatial datacube to be made. The proposed approach was implemented and tested on a
road maintenance project in Grand-Tunis, Tunisia: we developed the Map-Report prototype,
we evaluated the proposed VGI quality indicator to assess VGI quality, and we evaluated
the impact of integrating high VGI quality into DSS on data analysis and exploitation.
The experimentation of our approach demonstrated that integrating VGI data into spatial
datacubes taking into account VGI quality assessment allows to reduce considerably the
error rate, and to obtain more relevant and reliable query results.
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We should remember that the defined indicators do not aim at being complete, but
rather making users aware of poor quality that may affects the analytical decision-making.
It is recommended to consider other quality indicators, such as consistency, to enhance the
assessment of VGI data quality.

Although the implementation of the proposed approach shows that selecting good
VGI data based on its quality assessment is an important asset to strategic decision-making,
there are still some limitations.

First, VGI quality assessment and ETL process are handled separately by two different
systems, Map-Report and ETL system. Additionally, once assessed, VGI data are manually
extracted before being loaded into datacubes. This may lead to error, and may affect the
efficiency of the integrating process.

Second, decision-making requirements are manually predefined by VGI analysts in
collaboration with users. However, there is neither uniformity, nor a standard way for
representing these requirements. This may lead to the information heterogeneity which
requires an additional time-consuming process of homogenization before being considered
in the assessment.

Further research is required to combine both VGI quality assessment and ETL process
within the same framework to further facilitate the integration of good VGI data into
spatial datacubes. In addition, for future work, it is recommended to consider a uniform
way of representing the requirements of decision-making. In order to have a uniform
way of requirements representation, it is suggested to adopt spatial data representation
standards, such as ISO 19109 (Rules for application schema) and 19110 (Methodology for
feature cataloguing).
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