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Abstract

:

Natural gas is playing an important role in the reconstruction of the energy system of China. Natural gas supply and consumption indicators forecasting is an important decision-making support for the government and energy companies, which has attracted considerable interest from researchers in recent years. In order to deal with the more complex features of the natural gas datasets in China, a Grey Wavelet Support Vector Regressor is proposed in this work. This model integrates the primary framework of the grey system model with the kernel representation employed in the support vector regression model. Through a series of mathematical transformations, the parameter optimization problem can be solved using the sequential minimal optimization algorithm. The Grey Wolf Optimizer is used to optimize its hyperparameters with the nested cross-validation scheme, and a complete computational algorithm is built. The case studies are conducted with real-world datasets from 2003–2020 in China using the proposed model and 15 other models. The results show that the proposed model presents a significantly higher performance in out-of-sample forecasting than all the other models, indicating the high potential of the proposed model in forecasting the natural gas supply and consumption in China.
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1. Introduction


Energy forecasting is of great significance for understanding and anticipating the future dynamics of the global energy landscape. As a versatile and abundant primary energy, natural gas plays a vital role in meeting the energy demands of various sectors, including power generation, heating, industrial processes, and transportation. Accurate forecasting of natural gas is crucial for policymakers to develop effective energy strategies and make informed decisions about energy infrastructure, environmental regulations, and energy security. However, as countries strive to reduce their reliance on fossil fuels and transition towards cleaner energy alternatives, the demand for natural gas may undergo fluctuations. Additionally, geopolitical factors, such as regional conflicts or trade agreements, can influence natural gas consumption patterns by affecting supply routes and prices. In a word, the time series of natural gas is influenced by multiple factors and exhibits typical complex and irregular characteristics. Traditional forecasting models face challenges in accurately forecasting such patterns. The popular energy forecasting methods include statistical (or empirical) models, machine learning models, and grey system models at present.



The time series models are one of the most used statistical models, which consist of the autoregressive integrated moving average (ARIMA) model, the autoregressive moving average (ARMA) model, and the seasonal autoregressive integrated moving average model [1]. However, the linear structure of time series models often makes them fail to forecast the nonlinear time series accurately. Machine learning models have unique advantages in handling nonlinear time series. Machine learning models mainly include neural network models [2,3,4], models based on kernel [5,6], and ensemble models [7]. Although machine learning models excel in handling nonlinear system problems, they require a significant amount of training data and impose certain hardware requirements. Furthermore, machine learning models possess intricate nonlinear parameters, which may lead to overfitting. Given the limitations of the aforementioned approaches, grey system models have gained wide applicability due to their ability to model with limited data and accommodate both linear and nonlinear problems.



Since Professor Deng [8] proposed the grey system theory, many researchers have made contributions to the development of the grey system in different fields. Examples include nuclear energy consumption [9,10,11,12], wind energy [13,14], electricity consumption [15,16], and oil production [17,18]. Currently, mainstream grey models can be broadly categorized into linear models and nonlinear models. The GM(1,1) model is the most classical linear grey model, while it has inherent issues in modeling mechanisms. Therefore, many scholars have proposed other linear grey models based on the GM(1,1) model. For example, Chen et al. [19] improved the background value of the grey model using Gaussian–Legendre integration. Xie et al. [20] first proposed the idea of grey discrete modeling and established the discrete grey model. Xu et al. [21] firstly demonstrated that grey inputs can vary with time and possess dynamic variability. Then, Cui et al. [22] employed a linear function of time as the grey input instead of the original constant grey input. However, the forecasting of natural gas is a complex nonlinear problem, and linear grey models have significant limitations when facing such a problem.



Nonlinear grey models can better capture the nonlinear relationships in raw data. In recent years, an increasing number of studies have focused on nonlinear grey system models. For instance, Zhou et al. [23] proposed a novel discrete grey model considering nonlinearity and fluctuations. Chen et al. [24] proposed the fractional Hausdorff derivative grey model based on fractional order calculation. Qian et al. [25] proposed a grey model with time power and demonstrated its feasibility. Zeng et al. [26] presented a grey model that incorporates lagged dependent variables, linear correction terms, and stochastic disturbance terms. Liu et al. [27] proposed a grey neural network and input–output combined forecasting model for forecasting the primary energy consumption in Spanish economic sectors. Ma et al. [28] proposed a novel wavelet kernel-based grey system model by combining the grey system modeling and wavelet kernel-based machine learning and applied it to the urban natural gas consumption forecasting in Kunming, China, which takes advantage of the nonlinearity and periodicity ability of the wavelet kernel. However, existing nonlinear grey system models are often constructed using specific functions, resulting in relatively fixed structures of these models, making them less adaptable to handle more general nonlinear characteristics.



The hyperparameters optimization of nonlinear grey models has also emerged as a popular research topic in recent years. Intelligent optimization algorithms are a class of algorithms based on heuristic search strategies, which are capable of finding solutions that are close to the global optimum within a limited number of iterations. This characteristic makes them particularly effective in handling highly nonlinear, multimodal, and complex optimization problems, leading to their widespread application in recent years. At present, the most popular algorithms are Grey Wolf Optimization (GWO) [29], Particle Swarm Optimization (PSO) [30], and the Genetic Algorithm (GA) [31]. For instance, Cai et al. [32] introduced GWO for tuning the hyperparameters of long short-term memory networks. Heydari et al. [33] employed GWO to optimize the Generalized Regression Neural Network. Sebayang et al. [34] used GWO to tune the hyperparameters of an Artificial Neural Network. Barman et al. [35] compared the performance of GWO, PSO, and GA, showing that GWO outperformed other algorithms.



In summary, nonlinear grey models can better fit complex data patterns, effectively handle outliers and noisy data, and improve the accuracy of predictions. In previous work, researchers employed specific functions as the grey input to construct nonlinear grey models. In order to address the broader spectrum of nonlinear characteristics, the kernel trick based on the support vector regression with wavelet kernel is employed to build a novel Grey Wavelet Support Vector Regressor. The  ε -insensitive loss function is used to build the optimization problem for training the model, which is transformed to a convex quadratic programming and then solved by the sequential minimal optimization algorithm. The GWO is incorporated to optimize the hyperparameters of the suggested model, thereby finalizing the training and forecasting process of the model.



The subsequent sections of this paper are organized as follows: Section 2 presents the proposed Grey Wavelet Support Vector Regressor, including all the modeling procedures and algorithms; Section 3 presents the hyperparameter optimization by the grey wolf optimizer; Section 4 demonstrates the case studies conducted to forecast China’s total natural gas supply (available for consumption) and total natural gas consumption using the proposed model. A comparison with other grey system models is provided, and the findings are summarized in Section 5.




2. The Proposed Grey Wavelet Support Vector Regressor


In this section, the proposed Grey Wavelet Support Vector Regressor (GWSVR) is presented, which uses the main formulation of grey system models and the loss function of the support vector regression.



2.1. Grey System Model with Nonlinear Mapping and Its Solution


A general formulation of the grey system model with nonlinear effect by time can be represented by:


    d  y  ( 1 )    ( t )    d t   + b  y  ( 1 )    ( t )  = g  ( t )  ,  



(1)




where   g ( t )   is a nonlinear function of time t, and    y  ( 1 )    ( t )  =  ∑  τ = 1  t   y  ( 0 )    ( τ )    is the first order accumulation, which is often abbreviated as 1-AGO. In previous work, researchers used some specific functions such as a linear function and an exponential function to build specific grey system models. In order to deal with more general nonlinear features, a nonlinear mapping is used in this work, which is defined as follows:


  ϕ : R → F ,  



(2)




where  R  is the 1-D set of real numbers, and  F  is the feature space, which is generally high-dimensional linear space. Within this nonlinear mapping, the nonlinear function can be linearly expressed in the feature space as


  g  ( t )  =  ω T  ϕ  ( t )  + u ,  



(3)




where the vector   ω ∈ F   is the weight, and u is a bias. Then, (1) of the grey system model can be re-written as


    d  y  ( 1 )    ( t )    d t   + b  y  ( 1 )    ( t )  =  ω T  ϕ  ( t )  + u .  



(4)







The whitening Equation (4) is a typical ordinary differential equation, of which the general solution is


   y  ( 1 )    ( t )  =  y  ( 0 )    ( 1 )   e  − b ( t − 1 )   +  ∫ 1 t   e  − b ( t − τ )   ·   ω T  ϕ  ( τ )  + u  d τ .  



(5)








2.2. The  ε -Insensitive Loss for the Proposed Model


In order to estimate the parameters and the nonlinear function of the grey system model presented above, we need to first derive its discrete formulation. In previous work, a general way has been to integrate the whitening Equation (4) in a small interval (e.g.,   [ k − 1 , k ]  ). In this work, we make a tiny variation, which averages the time t of the nonlinear mapping instead of averaging the nonlinear function to make the model simpler without loss of effectiveness. The discrete formulation can be written as


   y  ( 0 )    ( k )  + b  s  ( 1 )    ( k )  =  ω T  ϕ  ( k −  1 2  )  + u ,  



(6)




where    s  ( 1 )    ( k )  =  1 2    y  ( 1 )    ( k )  +  y  ( 1 )    ( k − 1 )   ,  k = 2 , … , n   are called the background values.



Then, the  ε -insensitive loss used in this work can be given by


        min  a , ω     1 2     ∥ b ∥  2  +   ∥ ω ∥  2   + C   ∑  i = 1  N     ς i  +  ς i ∗           s . t .         y  ( 0 )    ( k )  + b  s  ( 1 )    ( k )  −  ω T  ϕ  ( k −  1 2  )  − u ≤ ε +  ς i         ω T  ϕ  ( k −  1 2  )  − b  s  ( 1 )    ( k )  + u −  y  ( 0 )    ( k )  ≤ ε +  ς i ∗         ς i  ,  ς i ∗  ≥ 0          .  



(7)







The term C is often called the regularization parameter, which controls the fitting error and scale of the parameters b and  ω . The  ε  is a threshold, which limits the fitting errors of the model, and the    ς i  ,  ς i ∗    are the slack variables that make the regularization problem more feasible. This formulation is different to the commonly used least squares method, which not only minimizes the training errors of the model but also reduces the scale of the parameters b and  ω , and this way, the model has higher generality in the real-world cases.



However, the Formulation (7) is not computable at present, as the nonlinear mapping is still unknown. To make it easier to solve, an extended nonlinear mapping is introduced as


  φ : R × R → R × F ,  



(8)




which maps the vector    −  s  ( 1 )    ( k )  , k −  1 2   T   to    −  s  ( 1 )    ( k )  , ϕ  ( k −  1 2  )   T  . Let the weighted vector be   ω =   b , ω  T   , we have


  − b  s  ( 1 )    ( k )  +  ω T  ϕ  ( k −  1 2  )  =  ω T  φ  ( k )  ,  



(9)




and then we can re-write Equation (7) as


        min  a , ω     1 2    ∥ ω ∥  2  + C   ∑  i = 1  N     ς i  +  ς i ∗           s . t .         y  ( 0 )    ( i )  −  ω T  φ  ( i )  − u ≤ ε +  ς i         ω T  φ  ( k )  + u −  y  ( 0 )    ( i )  ≤ ε +  ς i ∗         ς i  ,  ς i ∗  ≥ 0          .  



(10)







And now Equation (10) is essentially equivalent to the primal problem of the support vector regression introduced in [36]. Within this formulation, the corresponding Lagrangian function can be constructed as


      L : =      1 2    ∥ ω ∥  2  + C   ∑  i = 2  n     ς i  +  ς i ∗   −   ∑  i = 2  n     η i   ς i  +  η i ∗   ς i ∗            −   ∑  i = 2  n    ι i   ε +  ς i  −  y  ( 0 )    ( i )  +  ω T  φ  ( i )  + u           −   ∑  i = 2  n    ι i ∗   ε +  ς i ∗  −  ω T  φ  ( i )  − u +  y  ( 0 )    ( i )       ,  



(11)




where    ι i  ,  ι i ∗    ( i = 2 , … , n )    are the Lagrangian multipliers, which are nonnegative and satisfy    ι i  ·  ι i ∗  ≠ 0  . By setting the partial derivatives     ∂ L   ∂ b   ,   ∂ L   ∂ ω   ,   ∂ L   ∂  ς  ( ∗ )       to be zeros, we can obtain some very important equalities as:


        ∑  i = 2  n    ι i  −  ι i ∗       = 0      ω    =   ∑  i = 2  n     ι i  −  ι i ∗   φ  ( i )        ι i  ( ∗ )      = C −  η i  ( ∗ )        .  



(12)







According to Mercer’s condition, a Mercer kernel can be used as the inner product of the feature space, i.e.,   K  ( ℓ , k )  =  ϕ T   ( ℓ )  ϕ  ( k )   . Within this theorem, we can deduce the following equality


      ω T  φ  ( k )      =   ∑  i = 2  n     ι i  −  ι i ∗    φ T   ( i )  φ  ( k )              =   ∑  i = 2  n     ι i  −  ι i ∗    −  s  ( 1 )    ( i )  ,  ϕ T   ( i −  1 2  )        −  s  ( 1 )    ( k )        ϕ ( k −  1 2  )             =   ∑  i = 2  n     ι i  −  ι i ∗     s  ( 1 )    ( i )   s  ( 1 )    ( k )  +  ϕ T   ( i −  1 2  )  ϕ  ( k −  1 2  )            =   ∑  i = 2  n     ι i  −  ι i ∗     s  ( 1 )    ( i )   s  ( 1 )    ( k )  + K  ( i −  1 2  , k −  1 2  )   .     



(13)







By substituting the equalities in (12) and (13) within a Mercer’s kernel, we obtain the dual formulation of the primal (10) as


        max  ι ,  ι ∗     −  1 2    ∑  i , j = 2  n     ι i  −  ι i ∗     ι j  −  ι j ∗     s  ( 1 )    ( i )   s  ( 1 )    ( j )  + K  ( i −  1 2  , j −  1 2  )         − ε   ∑  i = 2  n     ι i  +  ι i ∗   +   ∑  i = 2  n    y  ( 0 )    ( i )    ι i  −  ι i ∗          s .    t .     ∑  i = 2  n     ι i  −  ι i ∗   = 0  and   ι i  ,  ι i ∗  ∈  [ 0 , C ]      .  



(14)







It can be seen that the dual formulation is only involved in the computation of the Lagrangian multipliers, and it is now computationally feasible to solve.




2.3. The Kernel Representation and the Wavelet Kernel


Within the above results, the nonlinear function can now be explicitly written as


  g  ( t )  =  ω T  ϕ  ( t )  + u =   ∑  i = 2  n     ι i  −  ι i ∗   K  ( i −  1 2  , t )  + u .  



(15)







The wavelet kernel function is used to represent the nonlinear function, which is defined as


  K  ( ℓ , k )  = exp  −    ∥ ℓ − k ∥  2   2  ν 2     · cos  1.75   ( ℓ − k )  ν   ,  



(16)




where  ν  is the kernel parameter, which governs the degree of nonlinearity and periodicity exhibited by the wavelet kernel. The cosine term of the wavelet kernel function reflects the degree of periodicity of the samples, and the exponential part reflects the nonlinearity of the samples. It is very interesting to see that the exponential part is mathematically equivalent to the Gaussian kernel, which has high performance in dealing with nonlinearities. Considering the structure of the wavelet kernel, it is often more flexible to deal with different spectrums of the datasets, which can be expected to make the forecasting model perform better in nonlinear time series.




2.4. Training Algorithm for the GWSVR


In order to make the model computationally feasible, we should solve the dual problem (14) to obtain the optimal values of the Lagrangian multipliers   ι ,  ι ∗   . It can be seen that this formulation is mathematically equivalent to the dual problem of the standard support vector regression model introduced in [36]; thus, it can also be solved by the sequential minimal optimization (SMO) algorithm, of which the key points are presented in this subsection.



For convenience, the following notation is used


   q  i , j   =  s  ( 1 )    ( i )   s  ( 1 )    ( j )  + K  ( i −  1 2  , j −  1 2  )  .  



(17)







The main idea of the SMO is to minimize the objective function in a “pair-by-pair” way, which minimizes only two variables during each iteration. For the regression problem, two subscripts are selected, and the corresponding variables are optimized at this iteration. Noticing that the multipliers with same subscripts cannot be nonnegative at the same time, only two variables with different subscripts are updated during each iteration.



Let the selected two subscripts be    ℓ 1  ,  ℓ 2   , and the subproblem of the dual problem (14) can be written as


   max   ι   ℓ 1    ( ∗ )   ,  ι   ℓ 2    ( ∗ )          −  1 2      ι  ℓ 1   −  ι  ℓ 1  ∗   2   q   ℓ 1  ,  ℓ 1    +    ι  ℓ 2   −  ι  ℓ 2  ∗   2   q   ℓ 2  ,  ℓ 2    + 2   ι  ℓ 1   −  ι  ℓ 1  ∗     ι  ℓ 2   −  ι  ℓ 2  ∗    q   ℓ 1  ,  ℓ 2           − ε   ι  ℓ 1   +  ι  ℓ 1  ∗  +  ι  ℓ 2   +  ι  ℓ 2  ∗   +  y  ( 0 )    (  ℓ 1  )    ι  ℓ 1   −  ι  ℓ 1  ∗   +  y  ( 0 )    (  ℓ 1  )    ι  ℓ 1   −  ι  ℓ 1  ∗         + r (  ι  ℓ −   )     ,   



(18)




where   ι  ℓ −    is the vector of other multipliers, and   r (  ι  ℓ −   )   is the sum of the rest of the terms, which are independent of the variables    ι   ℓ 1    ( ∗ )   ,  ι   ℓ 2    ( ∗ )    , and it is regarded as constant during each iteration.



Noticing that the multipliers should satisfy the first equation in (12), the subproblem is essentially a constrained programming. The SMO updates the two variables in the following way


   ι   ℓ 1    ( ∗ )   =  ι   ℓ 1    ( ∗ )   − t ,  ι   ℓ 2    ( ∗ )   =  ι   ℓ 2    ( ∗ )   + t .  



(19)







Within this updating rule, the multipliers can always satisfy the constraints during the iterations. By substituting (19) into the subproblem (18), the objective function is only with respect to t, and the subproblem turns to be a univariate optimization problem, which can be solved analytically.



The bias u can be computed when the optimal multipliers are obtained, which can be approximated by the average value of the partial derivatives of the objective function in (14) with respect to every multiplier.



By comparing Equations (13) and (9), it is easy to obtain the explicit estimation of the parameter b, which can be written as


  b =   ∑  i = 2  n     ι i ∗  −  ι i    s  ( 1 )    ( i )  .  



(20)







Above all, all the parameters can be obtained by using the SMO algorithm and the formulae presented above. The implementation of the SMO is based on the work of Lin et al. [37], which is one of the most stable versions at present.




2.5. Response Function and the Predicted Values


In order to make predictions, the continuous formulation of the general solution of the whitening Equation (4) should be discretized. In this work, we average the time point to reach an approximation of the convolutional integral of the solution (5); then, its discrete formulation can be obtained as


        y ^   ( 1 )    ( k )      =  y  ( 0 )    ( 1 )   e  − b ( k − 1 )   +   ∑  τ = 2  k    e  b ( k − τ +  1 2  )   g  ( τ −  1 2  )           =  y  ( 0 )    ( 1 )   e  − b ( k − 1 )   +   ∑  τ = 2  k    e  b ( k − τ +  1 2  )      ∑  i = 2  n     ι i  −  ι i ∗   K  ( i −  1 2  , τ −  1 2  )  + u      .  



(21)




This formulation is different to the previous work but is much easier to implement. Then, the predicted values can be obtained by first order differencing as


    y ^   ( 0 )    ( k )  =   y ^   ( 1 )    ( k )  −   y ^   ( 1 )    ( k − 1 )  , k = 2 , 3 , … , n ,  



(22)




and     y ^   ( 0 )    ( 1 )  =  y  ( 0 )    ( 1 )   .




2.6. The Complete Overal Computational Algorithm


For application’s sake, a complete algorithm of the proposed GWSVR (Algorithm 1) is presented in this subsection as a piece of pseudo code.   



	Algorithm 1: Overall computation algorithm of GWSVR
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Within the above computational steps, one can obtain the values predicted by the GWSVR model from the initial point to the   n + p   point.





3. Hyperparameter Optimization by the Grey Wolf Optimizer


Within the high performance of the kernel representation, the model can be easily trapped in the overfitting status. Hence, selecting the appropriate hyperparameters is crucial to enhance the model’s performance when applied to out-of-sample datasets.



3.1. Construction of the Hyperparameter Optimization Scheme


In this study, the hold-out scheme is employed, which can be regarded as a modified version of nested cross validation specifically designed for time series forecasting models. The criterion used for model selection is to minimize the mean absolute percentage error (MAPE) on the validation set. The model is trained using the preceding series to evaluate its performance on the validation set. The objective function is constructed based on the aforementioned considerations as


   min  C , ν    1  n valid     ∑  i =  n train  + 1    n train  +  n valid          y ^   ( 0 )    ( i )  −  y  ( 0 )    ( i )     y  ( 0 )    ( i )     × 100 % .  



(23)







The corresponding constraints can be presented as follows:


        y ^   ( 0 )    ( 1 )  =  y  ( 0 )    ( 1 )         ι i  ( ∗ )   , b , u   obtained   by   Algorithm   1           y ^   ( 1 )    ( k )  =  y  ( 0 )    ( 1 )   e  − b ( k − 1 )   +   ∑  τ = 2  k    e  b ( k − τ +  1 2  )      ∑  i = 2  n     ι i  −  ι i ∗   K  ( i −  1 2  , τ −  1 2  )  + u          y ^   ( 0 )    ( k )  =   y ^   ( 1 )    ( k )  −   y ^   ( 1 )    ( k − 1 )  , k = 2 , 3 , … , n     .  



(24)







The optimization problem for selecting the hyperparameters is essentially a nonlinear programming with equality constraints, which can not be solved by traditional numerical optimization algorithms. Thus, an intelligent optimizer is used in this work.




3.2. The Grey Wolf Optimizer


The Grey Wolf Optimizer (GWO) is a metaheuristic algorithm introduced by Mirjalili et al. in 2014, inspired by the hunting behavior of grey wolves in nature [29]. This optimization method has gained significant attention due to its efficient handling of complex optimization problems. The GWO algorithm employs mathematical formulas to emulate the social hierarchy and hunting strategies of grey wolves.



The grey wolf optimizer categorizes the wolves into four levels:  ι ,  β ,  δ , and  ω . These designations represent the wolves’ fitness levels, ranked in descending order. The  ι  wolf denotes the best solution, while the  ω  wolf represents the poorest solution. The primary operation of the GWO algorithm involves updating the positions of the wolves, also referred to as agents, based on the current positions of the  ι ,  β , and  δ  wolves. Initially, the distance  D  between the wolves is mathematically defined as follows:


     D =  2 ·  r 2  ·  X p   ( t )  − X  ( t )   ,     



(25)




where  X  represents the position of a grey wolf, t indicates the current iteration, and   X p   denotes the vector of the prey’s position.



Then, the position-updating behavior is defined as


     X  ( t + 1 )  =  X p  −  2 a ·  r 1  − a  · D ,     



(26)




where   r 1  ,   r 2   are random vectors in   0 , 1  , and the components of  a  are linearly decreased from 2 to 0 at each process of iteration.



Based on the social hierarchy and encircling prey processes, the hunting process of the GWO algorithm employs four primary equations to update the positions of the wolves iteratively based on Equation (25). By taking the mean value of each update, the best position   X ( t + 1 )   is represented as:


  X  ( t + 1 )  =    X 1  +  X 2  +  X 3   3  .  



(27)







The integral computational algorithm for hyperparameter tuning based on the GWO algorithm is outlined in Algorithm 2.   



	Algorithm 2: Algorithm for solving the optimization problem by GWO
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4. Applications


4.1. Data Collection and Preprocessing


For this study, annual data on the Total Natural Gas Available for Consumption (measured in 100 million cubic meters, abbreviated as 100 million cu.m) and the Total Natural Gas Consumption (100 million cu.m) were collected from the National Bureau of Statistics of China (NBS) (https://data.stats.gov.cn/english/easyquery.htm?cn=C01 (accessed on 27 June 2023)). The data spans from 2003 to 2020, with the years 2003 to 2014 designated as the in-sample set. Among the in-sample data, the years 2003 to 2012 were used for model fitting, while the years 2013 to 2014 served as a validation set for hyperparameter tuning. The data from 2015 to 2020 remained reserved exclusively as the testing dataset, allowing for the evaluation of the model’s predictive capabilities on unseen data. This approach provides a reliable measure of the model’s performance in real-world scenarios. In addition, the data were subjected to normalization using MinMax scaling before conducting the experiments, which transformed the data into an interval   0 , 1  , facilitating fair comparisons and preventing any undue influence from variables with different scales or units. Another process is that the time t in the proposed model was accumulated in order to make the feature smoother.




4.2. Benchmarked Models for Comparisons and Evaluation Metrics


To assess the performance of the proposed grey wavelet support vector regressor (GWSVR) model, fifteen regular benchmark grey system models were utilized for model performance comparison, along with ten evaluation metrics. These benchmark models included the conventional grey model (GM) [8], nonhomogeneous grey model (NGM) [22], discrete grey model (DGM) [38], nonhomogenous discrete grey forecasting model (NDGM) [38], nonhomogeneous grey Bernoulli model (NGBM) [39], fractional-order grey model (FGM) [40], fractional-order nonhomogeneous grey model (FNGM) [41], fractional-order discrete grey model (FDGM) [42], fractional-order nonhomogeneous discrete grey model (FNDGM) [43], new information priority grey model (NIPGM) [44], new information priority nonhomogeneous grey model (NIPNGM) [45], new information priority discrete grey model (NIPDGM) [46], new information priority nonhomogeneous discrete grey model (NIPNDGM) [47], nonlinear grey Bernoulli model with fractional order accumulation (FNGBM) [48], and the new information priority nonlinear grey Bernoulli model (NIPNGBM). For fair comparisons, the benchmark models with hyperparameters were also optimized based on the GWO algorithm. In addition, a comprehensive set of evaluation metrics (as shown in Table 1) was employed to quantitatively measure and analyze various aspects of the model performance.




4.3. Forecasting Results and Analysis


4.3.1. Case I: Forecast of the Total Natural Gas Available for Consumption in China


Figure 1 displays all the predicted values for the forecast of the total natural gas available for consumption. Additionally, the selected optimal hyperparameters and training time of all models are listed in Table 2, and Table 3 presents the evaluation metrics for the out-of-sample analysis. Notably, the GWSVR model demonstrates superior performance in out-of-sample forecasting, as evidenced by Figure 1. Conversely, the linear grey system models (GM and DGM) exhibit poor forecasting accuracy, with predicted values deviating significantly from the actual data. This discrepancy can be attributed to overfitting issues within these models. Additionally, the NGBM fails to capture the correct trend and exhibits an inaccurate predictive decay tendency. Furthermore, the other grey system models display a common limitation of poor out-of-sample prediction performance compared to their in-sample prediction performance, particularly struggling to accurately predict values near inflection points. In contrast, the GWSVR model effectively captures these inflection points, as evidenced by the close alignment of its predicted values with the original data.



Upon examining the out-of-sample performance evaluation metrics depicted in Table 3, it becomes apparent that the GWSVR model consistently surpasses other benchmarked grey system models. The MAPE values achieved by the GWSVR model range from 6.645278% to 66.479172%, indicating its superior performance across the evaluated scenarios. Notably, the   R 2   values for the other grey system models are relatively small, with the NGBM model exhibiting a particularly low   R 2   value of −18.7624. Additionally, none of the other grey system models achieve an   R 2   value exceeding 0.9. Conversely, the GWSVR model achieves an   R 2   value of 0.974704, providing compelling evidence of its proficiency in out-of-sample forecasting tasks. The comprehensive out-of-sample forecasting results of all the models are presented in Table 4; it is interesting to see that the maximum error of the GWSVR model is still less than the minimum error of the benchmarked models except for the NIPNGBM model, demonstrating the superior capability of the GWSVR model. Furthermore, the median error of the GWSVR model is at least sevenfold lower compared to the other models, and most of the errors of the GWSVR model are the smallest.




4.3.2. Case II: Forecast of the Total Natural Gas Consumption in China


In the case of the total natural gas consumption forecasting, all the predicted values are shown in Figure 2, the selected optimal hyperparameters and training time of all models in Case II are listed in Table 5, and the out-of-sample metrics are listed in Table 6. Overall, the GWSVR (Grey Wolf Support Vector Regression) model demonstrates superior performance, with predicted values closely aligned with the raw data and outperforming the other benchmarked models. Notably, only the GWSVR model successfully captures the fluctuations observed from 2014, whereas the other models exhibit limitations in handling these fluctuations. Additionally, the GWSVR model excels in following the overall trend and exhibits minimal difficulty in out-of-sample forecasting, in contrast to the other models where the predicted values deviate significantly from the out-of-sample raw data. Notably, most other models exhibit poor performance, indicating overfitting issues. Conversely, the GWSVR model demonstrates enhanced capability in addressing inflection points when compared to the other models.



Based on the aforementioned discussion, the out-of-sample evaluation metrics presented in Table 6 provide empirical evidence supporting the superior performance of the GWSVR model compared to the other benchmarked grey system models in the natural gas time series forecasting. Specifically, the GWSVR model exhibits a significantly smaller MAPE compared to the benchmark models, with reductions ranging from 6.316363% to 63.820175%. Furthermore, the GWSVR model achieves a   R 2   value of 0.974481, which stands in stark contrast to most other models that yield negative   R 2   values. And the out-of-sample predictive capability of the other models is notably inferior, as evidenced by MAPE values exceeding 9%. In summary, the GWSVR model consistently demonstrates superior forecasting performance when compared to the other grey system models. The comprehensive out-of-sample forecasting results of all the models are presented in Table 7. The median error of the GWSVR model is lower from 197.28353% to 1912.94653% compared to other benchmarked models. Additionally, it is interesting to see that the maximum error of the GWSVR is three times less than the minimum error of the NGBM model. The NGBM model presents the worst performance in this case, as it is underfitting. In summary, the GWSVR model consistently demonstrates superior forecasting performance when compared to the other grey system models.





4.4. Discussion


For further discussion, it is evident that the GWSVR model consistently outperforms all other models in terms of having the most accurate out-of-sample predictions that closely align with the original data, as well as superior evaluation metrics compared to the benchmarked grey system models. More detailed analyses of the model’s predictive ability and application performance are provided below.



4.4.1. Comparisons of the GWSVR Model and Linear Grey System Models


In comparison to the linear grey system models, the GWSVR model exhibits notable superiority in this study. The MAPE of the GWSVR model is ten times smaller than that of the GM and DGM models in both cases. This contrast clearly highlights the limitations of linear models, which fail to capture the correct out-of-sample trends. Additionally, linear models struggle to handle inflection points, often producing predicted values that deviate from the raw data. In contrast, the GWSVR model demonstrates remarkable adaptability in addressing these challenges and consistently delivers stable performance across all cases. Its strength lies in effectively extracting temporal features while simultaneously processing time series characteristics.




4.4.2. Comparisons of the GWSVR Model and Nonlinear Grey System Models


In this work, the nonlinear grey system models have consistently gained the advantage over the linear grey system models in terms of natural gas consumption forecasting, and the forecasting comparisons and findings are consistent with the existing work in that the nonlinear grey system models always yield better forecasting performance than the linear grey system models. In comparison with the nonlinear grey system models, the NIPNGBM and FNGBM offer the smallest MAPEs of 9.316916% and 9.073488% in the benchmarked models, respectively, while the GWSVR provides MAPEs of 2.671638% and 2.757125%, respectively. On the other hand, the GWSVR model is more capable of reaching the inflection points and enhancing the predictive ability with predicted values tightly following the raw trend.






5. Conclusions


In this work, a Grey Wavelet Support Vector Regressor (GWSVR) was proposed, with detailed modeling procedures and computational algorithms presented. Two real-world case studies on forecasting the natural gas supply and consumption in China are carried out using GWSVR in comparison with 15 grey system models, including linear and nonlinear models. The results clearly indicate that most linear grey system models cannot perform well in these two cases, illustrating that the datasets are nonlinear. Although some existing nonlinear grey system models perform better than the linear models, their out-of-sample errors are significantly larger than those of GWSVR. Above all, the proposed model demonstrates higher performance than the other 15 existing grey system models, further indicating the eligibility of the proposed modeling method and algorithm for building accurate grey system models. Additionally, it can be observed that the MAPEs of GWSVR in both cases are smaller than 3%, indicating its high potential in forecasting the natural gas supply and demand in China based on recent historical datasets. The results of the applications suggest that the proposed GWSVR can serve as a reliable decision-making support tool in the future.
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Figure 1. Predicted values of all models in Case I. 
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Figure 2. Predicted values of all models in Case II. 
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Table 1. Model performance metrics.
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	Metrics
	Abbreviation
	Expression





	Mean Absolute Error
	MAE
	    1 n    ∑  k = 1  n      y  0    k  −    y ^    0    k      



	Mean Absolute Percentage Error
	MAPE
	    1 n    ∑  k = 1  n       y  0    k  −    y ^    0    k    y  k     × 100 %   



	Mean Square Error
	MSE
	    1 n    ∑  k = 1  n        y  0    k  −    y ^    0    k     2    



	Root Mean Square Error
	RMSE
	     1 n    ∑  k = 1  n        y  0    k  −    y ^    0    k     2     



	Theil U Statistic 1
	U1
	      1 n    ∑  k = 1  n        y  0    k  −    y ^    0    k     2        1 n    ∑  k = 1  n        y  0    k     2    +    1 n    ∑  k = 1  n          y ^    0    k     2       



	Theil U Statistic 2
	U2
	      1 n    ∑  k = 1  n        y  0    k  −    y ^    0    k     2        ∑  k = 1  n        y  0    k     2      



	Median Absolute Error
	MedAe
	    1 n    ∑  k = 1  n    arctan      y  0    k  −    y ^    0    k    y  k         



	Index of Agreement
	IA
	   1 −    ∑  k = 1  n     y  ( 0 )    ( k )  −   y ^   ( 0 )    ( k )   2     ∑  k = 1  n      y  ( 0 )    ( k )  −   y ¯   ( 0 )    +    y ^   ( 0 )    ( k )  −    y ^  ¯   ( 0 )     2      



	Coefficient of Determination
	R   2  
	   1 −     ∑  k = 1  n        y  0    k  −    y ^    0    k     2      ∑  k = 1  n        y  0    k  −    y ¯    0      2      



	Percent Bias
	Pibas
	      ∑  k = 1  n      y  0    k  −    y ^    0    k        ∑  k = 1  n       y ^    0    k      
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Table 2. Optimal hyperparameters and training times of the models in Case I.
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	Model
	Model Abbreviation  
	Optimal Hyperparameters   
	Training Time (s)  





	Grey Wavelet Support Vector Regressor
	GWSVR
	C = 279.8859,  ν  = 0.2920
	0.84743 s



	Nonhomogeneous Grey Bernoulli Model
	NGBM
	n = 5.8944
	0.03722 s



	Fractional-order Grey Model
	FGM
	r = 0.2582
	0.15140 s



	Fractional-order Nonhomogeneous Grey Model
	FNGM
	r = 1.3683
	0.09306 s



	Fractional-order Discrete Grey Model
	FDGM
	r = 0.2377
	0.10684 s



	Fractional-order Nonhomogeneous Discrete Grey Model
	FNDGM
	r = −1.0525
	0.61533 s



	New Information Priority Grey Model
	NIPGM
	r = 0.1218
	0.05067 s



	New Information Priority Nonhomogeneous Grey Model
	NIPNGM
	r = 0.1956
	0.05541 s



	New Information Priority Discrete Grey Model
	NIPDGM
	r = 0.8181
	0.04859 s



	New Information Priority Nonhomogeneous Discrete Grey Model
	NIPNDGM
	r = 0.7722
	0.19020 s



	Nonlinear Grey Bernoulli Model with Fractional-order Accumulation   
	FNGBM
	n = 2.0000, r = −0.0255
	0.78871 s



	New Information Priority Nonlinear Grey Bernoulli Model
	NIPNGBM
	n = 2.0000, r = 0.0000
	0.42991 s
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Table 3. Out-of-sample forecasting metrics of all models in Case I.
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	GWSVR
	GM
	NGM
	DGM
	NDGM
	NGBM
	FGM
	FNGM
	FDGM
	FNDGM
	NIPGM
	NIPNGM
	NIPDGM
	NIPNDGM
	FNGBM
	NIPNGBM





	MAE
	67.67645
	838.3097
	248.2112
	856.624
	353.4656
	1931.666
	681.2515
	634.3292
	671.4348
	375.5022
	720.9939
	1633.579
	573.2332
	1294.021
	294.8063
	213.4934



	MAPE
	2.671638
	30.90473
	9.520339
	31.5974
	13.63293
	69.15081
	25.57323
	23.52015
	25.24756
	14.80201
	27.01877
	60.17945
	21.68454
	47.20952
	12.29786
	9.316916



	MSE
	6210.548
	851,978.1
	71,475.37
	887,239.9
	136,967.9
	4,851,922
	530,154.6
	480,953.7
	512,394.5
	146,942.1
	596,039.9
	3,214,052
	368,567.4
	2,103,858
	93,267.14
	57,426.36



	RMSE
	78.80703
	923.0266
	267.3488
	941.9341
	370.0917
	2202.708
	728.1172
	693.5083
	715.8174
	383.3302
	772.0362
	1792.778
	607.0975
	1450.468
	305.3967
	239.638



	U1
	0.014978
	0.14954
	0.048349
	0.152132
	0.065671
	0.628413
	0.121569
	0.116579
	0.119747
	0.067848
	0.127981
	0.254925
	0.103404
	0.217042
	0.054986
	0.043823



	U2
	0.029889
	0.350072
	0.101396
	0.357243
	0.140363
	0.835411
	0.27615
	0.263024
	0.271485
	0.145384
	0.292807
	0.679939
	0.230251
	0.550112
	0.115826
	0.090886



	MedAe
	60.64835
	726.0962
	249.7691
	743.6731
	346.3844
	2072.833
	599.266
	545.3121
	591.2506
	381.9754
	636.0132
	1447.303
	502.216
	1114.763
	280.7869
	200.0508



	IA
	0.993118
	0.676358
	0.939349
	0.66958
	0.893418
	0.195224
	0.739185
	0.76097
	0.743286
	0.880073
	0.722582
	0.460159
	0.787813
	0.534152
	0.904416
	0.933144



	R2
	0.974704
	−2.47021
	0.708873
	−2.61383
	0.442114
	−18.7624
	−1.15938
	−0.95898
	−1.08704
	0.401488
	−1.42774
	−12.0912
	−0.50122
	−7.56926
	0.620112
	0.766096



	Pbias
	0.001949
	−0.24455
	−0.08746
	−0.24856
	−0.1201
	2.935512
	−0.20827
	−0.19675
	−0.20589
	−0.12664
	−0.21778
	−0.3868
	−0.18123
	−0.33319
	−0.1022
	−0.07616
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Table 4. Detailed results of the out-of-sample forecasting of all models in Case I.
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Year

	
Raw Data

	
GWSVR

	
Error

	
GM

	
Error

	
NGM

	
Error

	
DGM

	
Error

	
NDGM

	
Error

	
NGBM

	
Error

	
FGM

	
Error

	
FNGM

	
Error




	
2015

	
1925

	
1962.351

	
−37.3511

	
2286.432

	
−361.432

	
2069.711

	
−144.711

	
2297.588

	
−372.588

	
2155.033

	
−230.033

	
1468.653

	
456.3469

	
2281.862

	
−356.862

	
2209.65

	
−284.65




	
2016

	
2080.5

	
2177.216

	
−96.7159

	
2654.098

	
−573.598

	
2337.722

	
−257.222

	
2667.468

	
−586.968

	
2430.429

	
−349.929

	
1300.472

	
780.0278

	
2614.386

	
−533.886

	
2546.322

	
−465.822




	
2017

	
2390.7

	
2415.607

	
−24.9071

	
3080.887

	
−690.187

	
2633.016

	
−242.316

	
3096.894

	
−706.194

	
2733.54

	
−342.84

	
761.2975

	
1629.402

	
2989.801

	
−599.101

	
2929.592

	
−538.892




	
2018

	
2814.3

	
2680.101

	
134.1994

	
3576.305

	
−762.005

	
2958.369

	
−144.069

	
3595.452

	
−781.152

	
3067.156

	
−252.856

	
298.0357

	
2516.264

	
3413.731

	
−599.431

	
3366.033

	
−551.733




	
2019

	
3057.5

	
2973.554

	
83.94561

	
4151.389

	
−1093.89

	
3316.842

	
−259.342

	
4174.271

	
−1116.77

	
3434.346

	
−376.846

	
93.05441

	
2964.446

	
3892.534

	
−835.034

	
3863.137

	
−805.637




	
2020

	
3270.2

	
3299.14

	
−28.9395

	
4818.947

	
−1548.75

	
3711.806

	
−441.606

	
4846.271

	
−1576.07

	
3838.49

	
−568.29

	
26.6897

	
3243.51

	
4433.394

	
−1163.19

	
4429.442

	
−1159.24




	
Minimum Error

	

	
−24.9071

	

	
361.4315

	

	
144.0692

	

	
372.5879

	

	
230.0328

	

	
456.3469

	

	
356.862

	

	
284.6495




	
Maximum Error

	

	
134.1994

	

	
1548.747

	

	
441.6064

	

	
1576.071

	

	
568.29

	

	
3243.51

	

	
1163.194

	

	
1159.242




	
Median Error

	

	
−26.9233

	

	
−726.096

	

	
−249.769

	

	
−743.673

	

	
−346.384

	

	
2072.833

	

	
−599.266

	

	
−545.312




	
Year

	
Raw Data

	
FDGM

	
Error

	
FNDGM

	
Error

	
NIPGM

	
Error

	
NIPNGM

	
Error

	
NIPDGM

	
Error

	
NIPNDGM

	
Error

	
FNGBM

	
Error

	
NIPNGBM

	
Error




	
2015

	
1925

	
2283.078

	
−358.078

	
2213.542

	
−288.542

	
2296.67

	
−371.67

	
2658.937

	
−733.937

	
2246.545

	
−321.545

	
2434.458

	
−509.458

	
2241.281

	
−316.281

	
2206.928

	
−281.928




	
2016

	
2080.5

	
2612.751

	
−532.251

	
2489.094

	
−408.594

	
2636.458

	
−555.958

	
3135.378

	
−1054.88

	
2559.518

	
−479.018

	
2871.576

	
−791.076

	
2498.838

	
−418.338

	
2451.233

	
−370.733




	
2017

	
2390.7

	
2984.317

	
−593.617

	
2783.428

	
−392.728

	
3020.962

	
−630.262

	
3706.396

	
−1315.7

	
2909.279

	
−518.579

	
3398.486

	
−1007.79

	
2759.741

	
−369.041

	
2694.717

	
−304.017




	
2018

	
2814.3

	
3403.184

	
−588.884

	
3096.616

	
−282.316

	
3456.065

	
−641.765

	
4393.209

	
−1578.91

	
3300.153

	
−485.853

	
4036.041

	
−1221.74

	
3019.185

	
−204.885

	
2932.474

	
−118.174




	
2019

	
3057.5

	
3875.457

	
−817.957

	
3428.723

	
−371.223

	
3948.427

	
−890.927

	
5221.795

	
−2164.3

	
3736.97

	
−679.47

	
4809.935

	
−1752.44

	
3272.5

	
−215

	
3160.051

	
−102.551




	
2020

	
3270.2

	
4408.021

	
−1137.82

	
3779.811

	
−509.611

	
4505.582

	
−1235.38

	
6223.96

	
−2953.76

	
4225.133

	
−954.933

	
5751.83

	
−2481.63

	
3515.492

	
−245.292

	
3373.759

	
−103.559




	
Minimum Error

	

	
358.078

	

	
282.3156

	

	
371.6699

	

	
733.9373

	

	
321.5452

	

	
509.4581

	

	
204.8847

	

	
102.5506




	
Maximum Error

	

	
1137.821

	

	
509.6112

	

	
1235.382

	

	
2953.76

	

	
954.933

	

	
2481.63

	

	
418.3375

	

	
370.7326




	
Median Error

	

	
−591.251

	

	
−381.975

	

	
−636.013

	

	
−1447.3

	

	
−502.216

	

	
−1114.76

	

	
−280.787

	

	
−200.051
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Table 5. Optimal hyperparameters and training times of the models in Case II.
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	Model
	Model Abbreviation
	Optimal Hyperparameters
	Training Time (s)





	Grey Wavelet Support Vector Regressor
	GWSVR
	C = 48.9141,  ν  = 0.2907
	0.78489 s



	Nonhomogeneous Grey Bernoulli Model
	NGBM
	n = 4.2162
	0.03195 s



	Fractional-order Grey Model
	FGM
	r = 0.1505
	0.08470 s



	Fractional-order Nonhomogeneous Grey Model
	FNGM
	r = 1.0902
	0.08795 s



	Fractional-order Discrete Grey Model
	FDGM
	r = 0.1354
	0.08445 s



	Fractional-order Nonhomogeneous Discrete Grey Model
	FNDGM
	r = 0.7610
	0.22519 s



	New Information Priority Grey Model
	NIPGM
	r = 0.8493
	0.04955 s



	New Information Priority Nonhomogeneous Grey Model
	NIPNGM
	r = 0.9839
	0.05257 s



	New Information Priority Discrete Grey Model
	NIPDGM
	r = 0.8481
	0.04881 s



	New Information Priority Nonhomogeneous Discrete Grey Model
	NIPNDGM
	r = 0.9030
	0.18856 s



	Nonlinear Grey Bernoulli Model with Fractional-order Accumulation
	FNGBM
	n = 2.0000, r = −1.0985
	0.77943 s



	New Information Priority Nonlinear Grey Bernoulli Model
	NIPNGBM
	n = 2.0000, r = 0.0000
	0.42851 s
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Table 6. Out-of-sample forecasting metrics of all models in Case II.
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	GWSVR
	GM
	NGM
	DGM
	NDGM
	NGBM
	FGM
	FNGM
	FDGM
	FNDGM
	NIPGM
	NIPNGM
	NIPDGM
	NIPNDGM
	FNGBM
	NIPNGBM





	MAE
	70.73226
	819.5432
	257.3194
	837.7925
	360.0807
	1867.335
	715.0994
	829.0862
	693.1967
	1083.294
	625.0661
	933.0845
	626.1443
	992.5079
	245.9249
	212.6661



	MAPE
	2.757125
	30.10073
	9.851978
	30.78744
	13.84979
	66.5773
	26.7028
	30.57583
	25.96224
	39.7818
	23.46729
	34.39759
	23.52068
	36.61266
	9.073488
	9.362476



	MSE
	6665.947
	803908.8
	73997.96
	838135.1
	139421.4
	4511417
	579693.9
	809827.3
	540108.1
	1399142
	436994.9
	1025289
	437770.2
	1156709
	80026.38
	59962.91



	RMSE
	81.64525
	896.6096
	272.0257
	915.4972
	373.3918
	2124.01
	761.3763
	899.9041
	734.9205
	1182.853
	661.0559
	1012.566
	661.6421
	1075.504
	282.8893
	244.8732



	U1
	0.015469
	0.145006
	0.048833
	0.147606
	0.065807
	0.599254
	0.125689
	0.145397
	0.12183
	0.182914
	0.110927
	0.160705
	0.111012
	0.16901
	0.054837
	0.044542



	U2
	0.030774
	0.337951
	0.102532
	0.34507
	0.140739
	0.800584
	0.286979
	0.339193
	0.277007
	0.445842
	0.249166
	0.381657
	0.249387
	0.40538
	0.106627
	0.092298



	MedAe
	65.08349
	718.5948
	264.3201
	736.1083
	358.6198
	1922.922
	639.5297
	735.5087
	620.9857
	963.1634
	558.1595
	831.6983
	559.5865
	886.4476
	221.2416
	207.2592



	IA
	0.992839
	0.695052
	0.94051
	0.688252
	0.896817
	0.213942
	0.7358
	0.691661
	0.744624
	0.605304
	0.774006
	0.654143
	0.773404
	0.633879
	0.866851
	0.932628



	R2
	0.974481
	−2.07761
	0.716713
	−2.20864
	0.466251
	−16.2711
	−1.21925
	−2.10027
	−1.0677
	−4.35635
	−0.67295
	−2.92513
	−0.67592
	−3.42824
	0.693634
	0.770443



	Pbias
	0.00705
	−0.23943
	−0.08995
	−0.24346
	−0.12151
	2.536972
	−0.21549
	−0.24154
	−0.21028
	−0.29384
	−0.19361
	−0.26385
	−0.19388
	−0.27601
	0.044384
	−0.07552
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Table 7. Detailed results of the out-of-sample forecasting of all models in Case II.
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Year

	
Raw Data

	
GWSVR

	
Error

	
GM

	
Error

	
NGM

	
Error

	
DGM

	
Error

	
NDGM

	
Error

	
NGBM

	
Error

	
FGM

	
Error

	
FNGM

	
Error




	
2015

	
1931.8

	
1964.998

	
−33.1984

	
2284.76

	
−352.96

	
2078.055

	
−146.255

	
2295.869

	
−364.069

	
2161.222

	
−229.422

	
1445.775

	
486.0255

	
2298.388

	
−366.588

	
2304.295

	
−372.495




	
2016

	
2078.1

	
2179.253

	
−101.153

	
2651.476

	
−573.376

	
2349.998

	
−271.898

	
2664.793

	
−586.693

	
2440.45

	
−362.35

	
1266.439

	
811.6608

	
2639.455

	
−561.355

	
2673.058

	
−594.958




	
2017

	
2393.7

	
2416.87

	
−23.1698

	
3077.053

	
−683.353

	
2650.442

	
−256.742

	
3093

	
−699.3

	
2748.59

	
−354.89

	
876.4395

	
1517.261

	
3025.939

	
−632.239

	
3097.102

	
−703.402




	
2018

	
2817.1

	
2680.395

	
136.705

	
3570.937

	
−753.837

	
2982.374

	
−165.274

	
3590.016

	
−772.916

	
3088.635

	
−271.535

	
488.517

	
2328.583

	
3463.921

	
−646.821

	
3584.716

	
−767.616




	
2019

	
3059.7

	
2972.654

	
87.04622

	
4144.092

	
−1084.39

	
3349.095

	
−289.395

	
4166.898

	
−1107.2

	
3463.889

	
−404.189

	
234.8974

	
2824.803

	
3960.299

	
−900.599

	
4145.432

	
−1085.73




	
2020

	
3339.9

	
3296.779

	
43.12077

	
4809.242

	
−1469.34

	
3754.251

	
−414.351

	
4836.479

	
−1496.58

	
3877.998

	
−538.098

	
104.2238

	
3235.676

	
4522.894

	
−1182.99

	
4790.215

	
−1450.32




	
Minimum Error

	

	
−23.1698

	

	
−352.96

	

	
−146.255

	

	
−364.069

	

	
−229.422

	

	
486.0255

	

	
−366.588

	

	
−372.495




	
Maximum Error

	

	
136.705

	

	
−1469.34

	

	
−414.351

	

	
−1496.58

	

	
−538.098

	

	
3235.676

	

	
−1182.99

	

	
−1450.32




	
Median Error

	

	
9.975466

	

	
−718.595

	

	
−264.32

	

	
−736.108

	

	
−358.62

	

	
1922.922

	

	
−639.53

	

	
−735.509




	
Year

	
Raw Data

	
FDGM

	
Error

	
FNDGM

	
Error

	
NIPGM

	
Error

	
NIPNGM

	
Error

	
NIPDGM

	
Error

	
NIPNDGM

	
Error

	
FNGBM

	
Error

	
NIPNGBM

	
Error




	
2015

	
1931.8

	
2298.021

	
−366.221

	
2408.667

	
−476.867

	
2266.683

	
−334.883

	
2354.288

	
−422.488

	
2269.313

	
−337.513

	
2388.746

	
−456.946

	
2122.463

	
−190.663

	
2218.179

	
−286.379




	
2016

	
2078.1

	
2633.393

	
−555.293

	
2814.976

	
−736.876

	
2591.951

	
−513.851

	
2737.896

	
−659.796

	
2594.262

	
−516.162

	
2778.55

	
−700.45

	
2269.559

	
−191.459

	
2462.651

	
−384.551




	
2017

	
2393.7

	
3012.31

	
−618.61

	
3290.358

	
−896.658

	
2957.806

	
−564.106

	
3181.093

	
−787.393

	
2959.606

	
−565.906

	
3230.151

	
−836.451

	
2417.44

	
−23.7398

	
2706.616

	
−312.916




	
2018

	
2817.1

	
3440.461

	
−623.361

	
3846.769

	
−1029.67

	
3369.313

	
−552.213

	
3693.104

	
−876.004

	
3370.367

	
−553.267

	
3753.544

	
−936.444

	
2566.076

	
251.0242

	
2945.239

	
−128.139




	
2019

	
3059.7

	
3924.275

	
−864.575

	
4498.21

	
−1438.51

	
3832.167

	
−772.467

	
4284.585

	
−1224.88

	
3832.191

	
−772.491

	
4360.338

	
−1300.64

	
2715.438

	
344.262

	
3174.102

	
−114.402




	
2020

	
3339.9

	
4471.02

	
−1131.12

	
5261.082

	
−1921.18

	
4352.777

	
−1012.88

	
4967.842

	
−1627.94

	
4351.427

	
−1011.53

	
5064.019

	
−1724.12

	
2865.499

	
474.4009

	
3389.509

	
−49.6092




	
Minimum Error

	

	
−366.221

	

	
−476.867

	

	
−334.883

	

	
−422.488

	

	
−337.513

	

	
−456.946

	

	
−23.7398

	

	
−49.6092




	
Maximum Error

	

	
−1131.12

	

	
−1921.18

	

	
−1012.88

	

	
−1627.94

	

	
−1011.53

	

	
−1724.12

	

	
474.4009

	

	
−384.551




	
Median Error

	

	
−620.986

	

	
−963.163

	

	
−558.16

	

	
−831.698

	

	
−559.586

	

	
−886.448

	

	
113.6422

	

	
−207.259
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