o systems

Article

Scheduling Parallel Cranes for Unit-Load Automated Storage
and Retrieval Systems with Shared Storage

Rui Xu *, Yafang Tuo !, Huimin Chen ! and Jinxue Xu ?

check for
updates

Citation: Xu, R.; Tuo, Y.; Chen, H.;
Xu, J. Scheduling Parallel Cranes for
Unit-Load Automated Storage and
Retrieval Systems with Shared
Storage. Systems 2024, 12, 3. https://
doi.org/10.3390/systems12010003

Academic Editor: William T. Scherer

Received: 3 November 2023
Revised: 7 December 2023
Accepted: 16 December 2023
Published: 20 December 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Business School, Hohai University, Nanjing 211100, China; 201313030027@hhu.edu.cn (Y.T.);
211313030015@hhu.edu.cn (H.C.)

School of Computer Science and Technology, University of Science and Technology of China,
Hefei 230027, China; xujinxue@mail.ustc.edu.cn

* Correspondence: rxu@hhu.edu.cn

Abstract: Motivated by observing real-world instances of multi-aisle automated storage and retrieval
systems (AS/RSs) with shared storage, we introduced a new optimization problem called the parallel
crane scheduling (PCS) problem. Unlike the single crane scheduling (SCS) problem, the decisions of
the PCS problem include not only the request sequencing and storage/retrieval location selection,
but also assigning requests to cranes. The PCS problem better reflects the real-life situation, but
it is more complex, since these three decisions are interrelated and interact with one another. In
this study, since the empty location vacated by any retrieval operation is instantly available, we
introduced a new dynamic programming model combined with a mixed-integer linear programming
model to describe this complex problem. Considering the feature of location-dependent processing
time, we transformed the PCS problem into a variant of the unrelated parallel machine scheduling
problem. We developed an apparent tardiness cost-based construction heuristic and an ant colony
system algorithm with a problem-specific local optimization. Our experiments demonstrated that the
proposed algorithms provide excellent performance, along with the insight that globally scheduling
multiple aisles could be considered to reduce the total tardiness when designing an operation scheme
for multi-aisle AS/RSs.

Keywords: automated storage and retrieval systems; multiple aisles; parallel crane scheduling
problem; unrelated parallel machines; ant colony system

1. Introduction

In recent decades, the use of automatic storage and retrieval systems (AS/RSs) has
become more common in retail supply chains, such as cross-docks or distribution centers,
and other areas, such as libraries (Polten and Emde 2022) [1]. A typical AS/RS consists of
racks, cranes, conveyors, and input/output (I/O) stations. There are two ways for cranes
to execute storage and retrieval requests: single command (5C) cycle and dual command
(DC) cycle. In SC, the cranes perform only a storage or retrieval task in a cycle. In DC, the
cranes perform a storage task and then a retrieval task in the same operation. Compared
with SC, DC has an advantage in travel time (Graves, Hausman, and Schwarz 1977) [2].
Due to the physical limitations of AS/RS transfer systems, storage requests are generally
processed in a first-come-first-served (FCFS) manner, while the retrieval requests can be
resequenced since they are just messages in a computer list.

This research was motivated by an AS/RS that we encountered at a major Chinese
garment maker’s intelligent warehouse. The system is a unit-load single-depth AS/RS with
multiple aisles used to store the finished clothes obtained from the manufacturing system.
The schematic diagram of this unit-load single-depth AS/RS is shown in Figure 1. In this
AS/RS, each aisle has racks on the left and right sides of the aisle, served by one aisle-
captive crane. In this configuration, the number of aisles equals the number of cranes. The

Systems 2024, 12, 3. https:/ /doi.org/10.3390/systems12010003

https:/ /www.mdpi.com/journal/systems

https://doi.org/10.3390/systems12010003
https://doi.org/10.3390/systems12010003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://doi.org/10.3390/systems12010003
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems12010003?type=check_update&version=2

Systems 2024,12, 3

2 of 25

I/0 station is located at the front end of each aisle, and the cranes perform the requests in
DC mode, which can reduce the traveling time by pairing the storage and retrieval requests.
To ensure more flexible space utilization, this system applies a shared storage policy so
that the empty location vacated by a retrieval operation becomes instantly available, which
means that it can be reused by subsequent storage operations in another cycle. The shared
storage policy is sometimes referred to as the random storage policy, and the reason why
the storage policy is defined as a shared storage policy instead of a random storage policy in
this AS/RS is that the storage location can be determined arbitrarily rather than randomly
(Tanaka and Araki 2009) [3].

Figure 1. Schematic diagram of the AS/RS in this study.

Therefore, on the one hand, incoming items can be assigned arbitrarily to any empty
location in any aisle. On the other hand, there is a set of optional retrieval locations as-
sociated with the required items in each aisle. Moreover, in today’s just-in-time logistics
and distribution environment, another big challenge is ensuring that the items are deliv-
ered on time. Typically, only the retrieval requests have due dates, so the items should
be taken from the racks no later than the specified due date. Violation of the due date
may delay subsequent loading and distribution processes, resulting in unacceptable sat-
isfaction and high logistics costs (Scholz, Schubert, and Wascher 2017) [4]. According to
the classification of Boysen and Stephan (2016) [5], this problem corresponds to the tuple

F, para ’ 10?%, 0pen ‘ Y Tz} , where para denotes that we consider parallel cranes in the AS/RS.

Thus, three decisions are required to solve the parallel crane scheduling (PCS) problem in
this AS/RS to minimize the total tardiness of the requests: (1) how the retrieval requests
are assigned and (2) sequenced to the cranes (request assignment and sequencing), and
(3) which pair of storage and retrieval locations should be selected from multiple possible
locations (storage/retrieval location selection). The PCS problem is NP-hard, since the
problem of request sequencing and finding the best storage and retrieval location among
those available is NP-hard (Meneghetti, Dal Borgo, and Monti 2015) [6]. In this research, we
need not only to select the best storage/retrieval locations from multiple feasible locations,
but also to consider which crane the requests should be assigned to and the sequence of
the requests for each crane. We adopted the explicit-based approach by considering the
three decisions of request assignment, sequencing, and storage/retrieval location selection

Systems 2024,12, 3

30f25

simultaneously to enhance the algorithm’s efficiency. These three decisions are interrelated
and interact, making it a challenging problem to optimize them simultaneously to minimize
the total tardiness of the requests.

This problem is important because the efficiency of the entire supply chain is affected
by the performance of warehouse operations, especially the storage and retrieval of items
(Ballestin, Pérez, and Quintanilla 2020) [7]. Moreover, with the development of warehouse
automation, an increasing number of enterprises are using this type of AS/RS to improve
warehouse space utilization and operational efficiency. The decisions regarding request
assignment, sequencing, and storage/retrieval location selection are logically intercon-
nected. Only by considering these jointly can we achieve the overall optimization of system
operation and minimize the tardiness of customer requests. Joint consideration has the
potential to enhance customer satisfaction, reduce logistics costs, and improve the market
competitiveness of enterprises. Previous research has often assumed that a multi-aisle
AS/RS can be treated as several independent single-aisle AR/RSs, primarily investigating
the SCS problem. This perspective involves sequencing requests on a single crane and
potentially determining suitable storage locations (Gagliardi, Renaud, and Ruiz 2013; Nia,
Haleh, and Saghaei 2017) [8,9]. However, managing a multi-aisle system globally, instead
of independently handling multiple aisles, can significantly reduce the makespan of a set
of requests (Gagliardi, Renaud, and Ruiz 2015) [10]. In this paper, we are motivated by
real-world scenarios encountered at a major Chinese garment maker’s intelligent ware-
house. Taking into account the current environment of parallel cranes and recognizing
the advantages of globally managing a multi-aisle system, we adopt a global approach to
managing multiple aisles and consider a set of available storage/retrieval locations in a
unit-load AS/RS.

Our main contributions are as follows: First, we introduce a new complex and practical
problem in multi-aisle AS/RSs, called the parallel crane scheduling (PCS) problem. This is
the first time that the decisions of request assignment/sequencing and storage/retrieval
location selection have been considered simultaneously. Furthermore, we introduce a new
dynamic programming (DP) model combined with a mixed-integer linear programming
(MIP) model to provide insight into the PCS problem. Second, considering the feature
of location-dependent processing time, we transform this problem into a variant of the
unrelated parallel machine (UPM) scheduling problem that minimizes the total tardiness
of the requests. Meanwhile, a modified apparent tardiness cost (ATC) heuristic and an
ant colony system (ACS) algorithm that employs two problem-specific local optimization
operators are developed to solve this problem. Third, we generate new test instances and
conduct extensive computational experiments for the problem. The experimental results
verify that our algorithms provide excellent performance in PCS problem, and we also
evaluate the performance of our ACS algorithm in solving the SCS problem. In addition,
we can draw inspiration from the experiments that when designing operation schemes for
multi-aisle AS/RSs, especially in large-scale multi-aisle AS/RSs, the global scheduling of
multiple aisles should be considered to reduce the total tardiness.

The rest of this paper is organized as follows: In Section 2, we review the literature
regarding the SCS problem in AS/RSs and the problem of unrelated machine scheduling.
In Section 3, we define the PCS problem and give a numerical example to illustrate the
problem. Then, a new mathematical model is introduced, and finally, we analyze how to
transform the PCS problem into a variant of the UPM problem. In Section 4, a modified
ATC heuristic and an ACS algorithm with local optimization are developed to solve the
problem. In Section 5, computational experiments are conducted, and the experimental
results are analyzed and discussed. Finally, in Section 6, conclusions and future study
topics are introduced.

2. Literature Review

In past years, many scholars have reviewed the AS/RS literature from different per-
spectives (van den Berg and Gademann 1999; Roodbergen and Vis 2009; Gagliardi, Renaud,

Systems 2024,12, 3

4 of 25

and Ruiz 2012; Boysen and Stephan 2016; Azadeh, De Koster, and Roy 2019) [5,11-14]. In
a single-aisle AS/RS, the total throughput can be maximized by minimizing the crane’s
travel time, which depends on two operational decisions: (1) the assignment of incoming
items to storage locations, and (2) the sequencing decisions (Gagliardi, Renaud, and Ruiz
2013) [9]. Some of the literature studies a single decision in isolation (Lee and Kim 1995;
Lee and Schaefer 1997; Emde, Polten, and Gendreau 2020) [15-17], but now more of the
literature tends to optimize these two decisions simultaneously (Chen, Langevin, and
Riopel 2008; Hachemi, Sari, and Ghouali 2012; Gagliardi, Renaud, and Ruiz 2013; Nia,
Haleh, and Saghaei 2017) [8,9,18,19].

Thus, Section 2.1 reviews related work on unit-load AS/RSs from two perspectives: the
request sequencing problem without considering location assignment, and the sequencing
problem integrating location assignment.

2.1. The SCS Problem in AS/RSs

Sequencing problem without considering location assignment: The request sequencing
problem without considering location assignment is to determine how to pair the storage
and retrieval operations on the premise that the storage and retrieval locations are known.
Lee and Kim (1995) [15] investigated the problem of scheduling storage and retrieval
orders without considering location assignment under DC operations in a unit-load AS/RS.
The objective was to minimize the weighted sum of earliness and tardiness penalties with
respect to a common due date. Lee and Schaefer (1997) [16] studied the sequencing problem
with dedicated storage, in which the storage requests are assigned to predetermined storage
locations. Van den Berg and Gademann (1999) [11] addressed the request sequencing
problem in a single-aisle AS/RS with dedicated storage. The static block sequencing
method was used to minimize the travel time. Emde, Polten, and Gendreau (2020) [17]
studied the SCS problem in the just-in-time production environment and transformed the
request pairing and batch sequencing problem into a single batching machine scheduling
problem, with the objective of minimizing the maximum lateness. We were particularly
inspired by this study to regard our problem as a UPM problem.

Sequencing problem integrating location assignment: In a unit-load AS/RS, there are
usually multiple opening locations, and the storage requests have no fixed target position.
Given the list of retrieval requests and a set of items to store, the sequencing problem inte-
grating location assignment is to pair the empty locations (one for each storage item) with
the retrieval requests to minimize the total travel time. Han et al. (1987) [20] investigated
this problem and proposed two methods for sequencing storage and retrieval requests
in a dynamic situation. In the work of van den Berg and Gademann (2010) [21], these
two methods were referred to as “wave sequencing” and “dynamic sequencing”, respec-
tively. Lee and Schaefer (2007) [22] presented an algorithm that combines the Hungarian
method and the ranking algorithm for the assignment problem with tour-checking and
tour-breaking algorithms. Gagliardi, Renaud, and Ruiz (2013) [9] investigated the retrieval
request sequencing and storage location assignment problem simultaneously in a unit-load
AS/RS. They reviewed and adapted the most popular sequencing policies to dynamic
contexts, and then proposed a “sequencing mathematical model” to solve the problem.
Chen, Langevin, and Riopel (2008) [18] suggested that storage location assignment and the
interleaving problem (LAIP) are logically interrelated. They addressed both problems in an
AS/RS with a duration-of-stay-based shared storage policy. Hachemi, Sari, and Ghouali
(2012) [19] dealt with the sequencing problem where the retrieval and storage locations are
all not known in advance. An optimization method working step by step was developed. In
the work of Nia, Haleh, and Saghaei (2017) [8], the authors dealt with a DC cycle “dynamic
sequencing” problem in a unit-load, multiple-rack AS/RS. The objective was to minimize
the total cost of greenhouse gas efficiency in the AS/RS.

All of the above literature focuses on a single-aisle AS/RS; only Gagliardi, Renaud, and
Ruiz (2015) [9] investigated the request sequencing problem from the global perspective
of multiple aisles. They proposed two multi-aisle sequencing approaches, finding that

Systems 2024,12, 3

50f 25

globally sequencing an m-aisle system instead of independently sequencing m single-aisle
systems leads to important reductions in makespan. We review and summarize the above
literature in Table 1. Since the paper of van den Berg and Gademann (2010) [21] simulated
the effects of various storage assignment and request sequencing strategies, it is not listed
separately in the table. Other studies involve different types of AS/RS, such as multi-
shuttle AS/RSs, aisle-mobile crane AS/RSs, mini-load AS/RSs, and shuttle-based storage
and retrieval systems (Sarker et al., 2007; Tanaka and Araki 2006; Popovi¢, Vidovié, and
Bjeli¢ 2012; Yang et al., 2013; Yang et al., 2015; Wauters et al., 2016; Singbal and Adil 2021;
Marolt, Sinko, and Lerher 2022; Ekren and Arslan 2022; Ktgtikyasar, Y. Ekren, and Lerher
2020) [23-30].

Table 1. Summary of the related works.

Storage Retrieval
Reference Nun‘lber of R‘equest Reques.t Location Location Objective
Aisles Assignment Sequencing Selection Selection
Han et al. (1987) [20] Single aisle V4 Vv Minimize the mean transaction time
. . . Minimize the weighted sum of
Lee and Kim (1995) [15] Single aisle v v earliness and tardiness penalties
Lee and Schaefer (2007) [22] Single aisle Vv Vv Minimize the total travel time
Lee and Schaefer (1997) [16] Single aisle Vv Vv Minimize the total travel time
van den Berg and . . N .
Gademann (1999) [11] Single aisle Vv vV Minimize the total travel time
Chen et al. (2008) [18] Single aisle v Vv vV Minimize the total travel time
Hachemi et al. (2012) [19] Single aisle 4 vV 4 Minimize the total travel time
Gagliardi et al. (2013) [9] Single aisle v vV V4 Minimize the total travel time
Gagliardi et al. (2015) [10] ~ Multiple aisles Vv V4 Vv Minimize the total travel time
. . . Minimize the total cost of
Nia et al. (2017) [8] Single aisle 4 Vv 4 greenhouse gas efficiency
Emde et al. (2020) [17] Single aisle V4 Vv Minimize the maximum lateness.
Our Multiple aisles Vv V4 Vv Vv Minimize the total tardiness

In summary, we can conclude that that the literature investigating the problem of
PCS to minimize the total tardiness of the requests is almost nonexistent. Most previous
works studied the request sequencing problem of AS/RSs based only on a single aisle.
However, in reality, most AS/RSs have multiple aisles, and only Gagliardi, Renaud, and
Ruiz (2015) [9] investigated the problem of request assignment in this context. Considering
the literature on minimizing total tardiness in an AS/RS, Emde, Polten, and Gendreau
(2020) [17] suggested that the AS/RS literature focuses almost exclusively on the makespan
objective; time windows that are common in real-world just-in-time environments are
rarely considered in the literature. A few exceptions include Linn and Xie (2007), Lee and
Kim (1995), and Emde, Polten, and Gendreau (2020) [15,17,31].

2.2. Unrelated Machine Scheduling Problem

In this research, we consider the multi-aisle AS/RS, whose scheduling problem in-
cludes not only sequencing requests but also assigning them to multiple cranes, which
is similar to the parallel machine scheduling problem (Biskup, Herrmann, and Gupta
(2008) [32]). Moreover, the processing time of the requests is different on each machine, al-
lowing us to transform the PCS problem into a variant of the UPM problem (see Section 3.4
for details).

Thus, in this section, we review the related work of minimizing total (weighted)
tardiness in the UPM problem. Unrelated machines can process jobs at different rates so
that the jobs have different processing times on different machines (Yepes-Borrero et al.,
2020 [33]). The decision of the UPM problem is to determine how the jobs are assigned and
sequenced to the machines. Liaw et al. (2003) [34] used a branch-and-bound algorithm
to solve the UPM problem of minimizing the total weighted tardiness, in which the ATC
heuristic was used for the upper bound. Lin, Pfund, and Fowler (2011) [35] designed a
genetic algorithm to minimize regular performance measures, including makespan, total

Systems 2024,12, 3

6 of 25

weighted completion time, and total weighted tardiness. Lin, Lin, and Hsieh (2013) [36]
proposed an ACS algorithm to solve the problem of scheduling the UPM to minimize the
total weighted tardiness. Lin, Fowler, and Pfund (2013) [37] also developed heuristic and
genetic algorithms to find non-dominated solutions to multi-objective unrelated parallel
machine scheduling problems. Lin and Ying (2014) [38] proposed a multipoint simulated
annealing heuristic algorithm to solve the UPM problem by simultaneously minimizing
the makespan, total weighted completion time, and total weighted tardiness. Salazar-
Hornig et al. (2021) [39] proposed a hybrid heuristic combining variable neighborhood
search (VNS) with ant colony optimization (ACO) to solve the scheduling problem of
nonrelated parallel machines with sequence-dependent setup times in order to minimize
the makespan. Ulaga et al. (2022) [40] designed an iterative local search (ILS) method for
solving the problem of scheduling parallel unrelated machines, which combined various
improved local search operators and proved to be a simple but efficient method. Moreover,
Durasevi¢ et al. (2023) [41] provided a systematic and extensive literature review on the
application of heuristic and metaheuristic methods for solving the UPMSP and outlined
recent research trends and possible future directions.

3. Problem Description, Modeling, and Analysis

Here, we first describe the problem in Section 3.1 and give an example to illustrate the
problem in Section 3.2. Then, we present two related models of the problem in Section 3.3.
In Section 3.4, we show how to transform the PCS problem into a variant of the UPM
problem and analyze the difference between the two problems.

3.1. Problem Description

Let S be the set of storage requests and R be the set of retrieval requests. The number
of retrieval requests is equal to the number of storage requests (Hachemi, Sari, and Ghouali
2012) [19], and each retrieval request has a due date d,. Let r be the index of retrieval
requests in set R. Let M,, = {Mj, ..., M} be the set of cranes; it can also be said that there
are z aisles in total. We assume that the crane executes the task in DC mode, so the DC
time refers to the travel time of executing the dual command cycle of storage and retrieval
requests (Nia, Haleh, and Saghaei 2017) [8]. The PCS problem can be stated as follows:
Schedule a set R = {1, ...,n} of n requests on a set M, = {Mj,..., M} of z cranes, and
select the storage and retrieval locations for these requests. Therefore, a solution for this
problem consists of three parts: First, 71y denotes the optimal solution of retrieval requests’
sequence on each machine. Second, 7, denotes the optimal solution of corresponding
selected storage locations. Third, 7r3 denotes the optimal solution of corresponding selected
retrieval locations, so the complete solution of the problem is 7t = 7r; 4 712 + 713. Thus, the
tardiness of the retrieval request r can be calculated by T, = max{C, —d,,0}, where C,
denotes the completion time of retrieval request r. Finally, the objective is to minimize the
total tardiness of the requests: = Y ; T;. The following assumptions are used throughout
this paper:

e All of the storage requests are processed in an FCFS manner, and all of the retrieval
requests can be resequenced. The crane can carry only one unit load and executes
requests in DC mode, which starts from the IO station and returns to the IO station
after completing one storage task and then one retrieval task.

e Since we consider the shared storage strategy, items can be stored in any empty
location on any rack, and items to be retrieved can be located in multiple aisles and on
multiple positions of a rack. Therefore the locations-to-product ratio is LTPR > 1.

e Tobe able to execute a DC, the number of storage and retrieval tasks must be equal.
Without loss of generality, there are no items of the same type in the storage and
retrieval list. If it exists, it can be directly taken out.

e The initial state of the rack locations and the due date of each request are known
with certainty.

Systems 2024,12, 3

7 of 25

e The crane can move simultaneously both vertically and horizontally at constant
speeds. The travel time of the crane to reach any location in the rack is calculated by
the Chebyshev metric, and the pick-up and set-down times are ignored since they are
inconsequential for optimality.

3.2. Numerical Example

For the sake of better understanding, we give a numerical example to illustrate the
PCS problem. In this example, the unit-load AS/RS has cranes M, = {M;, M}, indicating
that there are two aisles in total, consisting of four racks: A, B,C,and D. Each rack is
5 x 5 with 25 locations, for a total of 100 locations. The initial state of each rack is shown
in Figure 2. We assume that the height and width of each location are both 1 m, and that
the horizontal and vertical traveling speeds of the crane are both 1 m/s. Six retrieval
requests R = {R1, R2,R5,R3,R1,R3} and six storage requests S = {54, 56, 54, 56, 56, 54}
are received. The due dates of the retrieval requests are 7, 9, 11, 8, 10, and 14, respectively,
and the storage requests are processed in an FCFS manner.

ARE
| Request sequence | | Request assign | ’ Location select ‘

T] e w

Retrieval requests

Cranel 7
1 f 6 3]s
O 6|2
” e g B

Conveyor T/O station Storage rack 5

5
3

513111 Rack A
5
4

D&wu
NEIE

o

wlon|w|;

Rack B

ame

w
wlr| k|~

Rack C

“‘... V e
| 5
. : L

B
4 2 3
Rack D
T o o s[3]1
--- [wo]s 211
Conveyor T/O station Storage rack

X

: 3
= [[[] et
""""""""""" [Fezs

6

a

3

5

2

Figure 2. An example of the PCS problem. Three decisions need to be made: request sequencing,
request assignment to cranes, and selection of storage and retrieval locations. Values of d indicate
the due date of each request. The number inside the rack is the type of item; empty locations have
no number. The solution of location selection is displayed on the rack. Note that the two locations
marked with the same shape in a rack are processed in the same DC, and the color of the label
indicates the order in which the DC is executed: the first DC is highlighted in red, the second is blue,

and the last is green.

The three decisions that we made for this example are shown in Figure 2. A feasible and
optimal solution for this example is as follows: 71y = [R1, R3, R3; R2, R1, R5]. o =[(B, 1, 3),
(A, 1,1),(B,2,2)(C272),(C1,1),([D,1,2)] m3=1[(B,22),(A, 272),(B21),(C,1,1),
(G, 2,3),(D,2,2)].

Table 2 shows the corresponding solution of the example. First, crane 1 stores an item
of type 4 to the initially empty location (B, 1, 3) and retrieves an item of type 1 from location
(B, 2,2). Second, crane 1 stores an item of type 6 in empty location (A, 1, 1) and retrieves
an item of type 3 from location (A, 2, 2). Third, crane 1 stores an item of type 4 in the
vacated empty location (B, 2, 2) and retrieves an item of type 3 from location (B, 2, 1). The
processing times of the three DCs are 6, 4, and 5, respectively, and the corresponding due
dates for each DC are 7, 8, and 14. Therefore, the tardiness on crane 1 is 3. The other three
storage requests and retrieval requests are handled by crane 2, whose processing times for
each DC are 4, 6, and 5, respectively. The corresponding due dates are 9, 10, and 11, so the
tardiness for crane 2 is 4. Finally, we can calculate the total tardiness 7 =3+4 = 7.

Systems 2024,12, 3

8 of 25

Table 2. Solution of the numerical example.

Storage Retrieval Type of DC Due .
Step Rack Location (x,y) Location (x,y) Retrieval Item Time Date Tardiness

1 B 1,3) (2,2) R1 6 7 0

Crane 1 2 A 1,1) 2,2) R3 4 8 2
3 B 2,2 21 R3 5 14 1

1 C (2,2) 11 R2 4 9 0

Crane 2 2 C 1,1 2,3) R1 6 10 0
3 D 1,2 2,2 R5 5 11 4

Total tardiness 7

3.3. Mathematical Models

Since the empty location generated by the retrieval operation is instantly available,
the rack state, used as an input parameter, changes with each location selection decision,
which makes it difficult to build a complete model by using an MIP model alone. Therefore,
referring to the works of Yang et al. (2013) and Hachemi, Sari, and Ghouali (2012) [19,26],
we introduce a DP model combined with an MIP model to describe the PCS problem.

The DP model is used to describe request assignment and sequencing decisions and to
depict the dynamic change in the location state. According to the total number of requests
n, the DP model is divided into n stages. In stage b, the DP model needs to arrange b + 1
requests, so that there are AJ*1 = n!/(n — b — 1)! permutations. In each permutation, an
MIP model is established to select the storage and retrieval locations under the current state
of rack locations, and then to calculate the processing time and tardiness of the request.
When the request is scheduled, the model should update the rack location state, and the
updated rack location state is used as the input state for the next stage.

3.3.1. Parameters

R Represents a collection of retrieval requests.

r Index of retrieval items, r = 1,...,n.

W, Index of i.tem t.yPe of retrieval requests by customers. W, = i means the item type of retrieval
request r in Ris i.

d, Indicates the due date for the rth retrieval request.

T, Tardiness of retrieval request R;.

h Rack hin aisle, h = 1,2.

k Horizontal location index, k =1, ...,K.

j Vertical location index, j = 1,...,].

Sp Horizontal travel velocity of crane.

Sp Vertical travel velocity of crane.

i Index of item type, i =1,...,4.

M, Crane m in M, where M is the set of cranes, m =1, ..., z.

Pmb Processing time of DC on crane m in stage b.

M A big positive integer.
Set of empty locations on the shelf that crane m is responsible for before stage b when the

Eyfnb scheduled request sequence is f. E), represents the initial set of empty storage locations on the
shelf that crane m is responsible for whenb =0and f =0.m=1,...,z,b=1,...,n — 1.
Set of locations on the shelf containing items of type i that crane m is responsible for before stage

£ b, when the scheduled request sequence is f. F), represents the initial set of storage locations on

im the shelf containing items of type i that crane m is responsible for when b = 0 and

f=0i=1...gm=1,...,zb=1,...,n—1.

Coup Completion time of DC on crane m in stage b.

o Decision variable equal to 1 if in stage b, the storage location k;j; on the hth row shelf responsible
mbhikijik2j2 for crane m and the storage location k»j, containing the rth retrieval item form a DC.
tkyjikaja Travel time between storage location k1 j; and retrieval location kpjp.
When the decision variable x] .. ., . is 1, it indicates that in stage b, the storage
1j1k2)2
location kjj; on the hth row shelf responsible for crane m and the storage location kjj

containing the rth retrieval item form a DC; fy, ; x,j, represents the travel time between

Systems 2024,12, 3

9 of 25

storage location k1 j; and retrieval location kyj, and its value is calculated by the Chebyshev
formula, as shown in Formula (1):

ki 7 ki —k . b i
tkljlkzjzzmax{lzh}—l—max{' 1=kl |h]2|}+max{2]2} o

s, sy s, Sy s, su

3.3.2. DP Model

e Stage: The stages in a DP model are divided according to the number of requests, i.e.,
n requests represent n stages.
State variables: E{,,b, Fl-{f , Cob-
. . oy
Decision variables: x7,,,, irkajn®
e State transition equation:

E[OH) — gfb {kljl’xrmbhkﬂlkz]'z =1,kij1 € El kojz € FIJZJ}

2)
. . b . b
koo Kty iy = L € BN Kajo € FlY)
b+1 b . . b . b
Ff0D _ pft {k2]2’x21bhkmk2j2 =1,kij1 € EfY kpja € Fl{ﬂ} 3)
Cun(or1) = Cobr if ey = 0m =1,2,...,2)

e Optimal value function:
f»(r, S) represents the minimum total tardiness when request r ranks one behind the
set S containing b requests. b =1,...,n — 1.
fo(r, @) is the boundary condition representing the total tardiness obtained by schedul-
ing each request when the set S = @.

The optimal value function is expressed as follows:

. . b b
foltr,S) = minges { fo-1(d,5\{d} + Obj, (EX E},. Co) | -
b=1,2,....,.n—1,r=12,...,n

fo(r, @) = min{Objrtd(E%,Flgn,Cmo/ = 0) }, m=1,2,...,z, vr=1,2..,n (6)

In each stage of the dynamic programming model, the IP model is solved to select

the storage and retrieval locations for the retrieval request r with the current state of rack
locations and then calculate the tardiness of the request. Obj, (E{nb, Fﬁ , Cmb) denotes the

tardiness of request r, which can be calculated using the following IP model. In the IP
model, the input states are E{nb, FZ.JZ , Cob-
3.3.3. Integer Programming Model

Minimize Obj, = T, (7)

z 2 K K J J ’ o
s.t. Zm:l thl Zklzl 2@:1 j1=1 Ljy=1 Xmblkyjikojp = 1 ®)

, . b , b .
x%bhkljlkzjz <1if (ki1 € E{n) and <k2]2 € Flj:n> and (i = W,);

9
m=12,...,z;, h=1,2 ©)

Xubhkyjikyjy < O (otherwise) (10)

Systems 2024,12, 3

10 of 25

P = brojkaia Xtk M = 12 mh =12k =1,2,..., K;j=1,2,...,] (1)

Cm(b+1) >Coup+ Py, m=1,2,...,z (12)
T,>0 13)

T > Cppy —dr = M (1= o), m=1,2,00,2 = 1,2;

(14)
k1,k2 - 1/2/”'7K; jl/jz - 1/2/"'/]

Objective (7) is to minimize the tardiness of request r. Constraint (8) ensures that only
one empty and one retrieval location, both on the same rack of a crane, are selected to
perform the DC cycle. Constraints (9) and (10) ensure that the storage items are stored in
empty locations and the retrieval location contains the item of request r. Constraint (11)
determines that the processing times of the retrieval request r on crane m equal the travel
time for the storage and retrieval locations (DC); it is calculated by the Chebyshev metric.
Constraint (12) represents the processing time of retrieval request r on crane m. Constraint
(13) represents the completion time of the retrieval request r on crane m.

From the DP model, we can observe that there are A’™! = n!/(n — b — 1)! permuta-
tions in stage b; therefore, the DP model needs to solve AY*1 = n!/(n — b — 1)! MIP models
in stage b, and a total of A} + A2 +...A~! MIP models must be solved in all stages. It can
be seen that the computational complexity of the DP algorithm is very high, and with an
increasing number of requests, the computational complexity greatly increases. Therefore,
we designed a constructive heuristic and ACS algorithm to solve the problem.

3.4. Reduction to UPM Problem

In the following section, we show how to transform the PCS problem into a variant
of the UPM problem. We can interpret the z cranes as z parallel machines, and we regard
a crane executing a DC as a machine processing a job. Thus, the travel time of the crane
to execute the DC becomes the processing time. Due to the different states of each shelf,
the processing time of each request on each crane is variable. Thus, we can transform the
problem into a variant of the UPM problem that minimizes total tardiness. However, the
location-dependent processing time makes our problem different from the UPM problem.

Location-dependent processing time: In the classic UPM problem, the processing time
of the job is known and constant, but in our case, the processing time of the requests depends
on the choice of storage and retrieval locations, which is calculated by the Chebyshev metric.
Since we consider the dynamic update of the rack state, the processing time of the request
changes dynamically with the update of the rack locations; that is, after one job is assigned
to the aisle, the rack state is updated. We need to reselect a pair of storage/retrieval locations
for the unscheduled requests under the new rack state and recalculate the processing time.

4. Solution Methodology

As mentioned above, the PCS problem is NP-hard, the computational complexity of
using an exact algorithm to solve this problem is very high, and the problem’s decisions are
interrelated and interact with one another, which implies that constructive algorithms are
suitable for solving this problem (Zhang, Jia, and Li 2020; Shao, Shao, and Pi 2021) [42,43].
The ACO algorithm, as a constructive metaheuristic, performs well in solving combinatorial
optimization problems, especially in machine scheduling problems (Xu, Chen, and Li 2012;
Engin and Giglii 2018; Li, Gajpal, and Bector 2018; Tavares Neto, Godinho Filho, and da
Silva 2013) [44—-47]. Thus, the current paper solves this problem efficiently by employing a
constructive solution framework. Considering the feature of location-dependent processing
time and the objective of minimizing the total tardiness time, a modified ATC (MATC)

Systems 2024,12, 3

11 0f 25

heuristic (Section 4.1) and an ACS algorithm with a problem-specific local optimization
(Section 4.2) are proposed.

4.1. A Modified ATC-1 Heuristic

In this study, we transformed the PCS problem into a variant of the UPM problem,
with the objective of minimizing the total tardiness. Thus, we adapted the ATC-I heuristic
to solve this problem, which is a state-of-art heuristic proposed by Lin, Pfund, and Fowler
(2011) [35]. The modified ATC-I (MATC) heuristic is described below.

Because the problem features location-dependent processing time, firstly, we have to
determine the processing time of each job on each crane; that is, we must select a pair of
storage and retrieval locations and calculate the DC time. We propose an effective strategy
for storage and retrieval location selection, called Algorithm 1. It first selects the retrieval
location that is closest to the I/O point and then selects a feasible empty location that can
minimize the DC time. Once a pair of locations is determined, the processing time can be
calculated. Algorithm 1 is defined as follows:

Algorithm 1 Local Search

Initialization: Let R be the set of retrieval requests, R, be retrieval request r in R, and # be the total number of
retrieval requests. Let M, be crane m in M, and the total number of cranes be z.
forr=1:ndo

form=1:zdo

Choose the retrieval location w, with minimum travel time between retrieval location w and I/O point
(min Timeg_,y). Then, select the feasible empty location s, with the minimum DC time
(min(Timeg_s + Time ,_, , + Time,,0)).-
Calculate and recode the processing time py;.
end for
end for
Output the processing time p;.

Secondly, we need to sequence the requests and select a priority request. In MATC,
we use the ATC rule to determine the order of the requests. The ATC rule is a well-known
heuristic for minimizing total weighted tardiness in the single machine scheduling problem.
Moreover, to verify the ATC performance, we compare the ATC with other important
and effective sequencing rules in computational experiments (see Section 5.3 for details).
Next, we need to assign the selected request to a crane. In this step, we manage multiple
aisles globally instead of managing each independently. The MATC heuristic considers
the rack state and the processing time of the request on each crane when assigning the
request to a crane. We also verify the performance of globally managed multiple aisles
in computational experiments (see Section 5.4 for details). Finally, we assign the priority
request to the selected crane and update the states of the corresponding storage and retrieval
locations. In the MATC heuristic, since the selection of the current request will change the
rack states, it will then influence the processing time of subsequent unscheduled requests.
Therefore, once the requests are assigned to cranes, the processing time of unscheduled
requests needs to be recalculated. The detailed steps of the MATC heuristic are as follows:

Step 0: Let R be the set of retrieval requests; let ¢, be the completion time of the request
that has been scheduled on crane m. Initially, sett,, =0, m =1, ...,z

Step 1: Select the storage and retrieval locations and calculate the processing time py,
for each retrieval request r on each crane m by Algorithm 1.

Step 2: Determine the first available crane m*, i.e., t;« = miny<p<ztm.

Step 3: Sequence the requests according to the ATC index and choose the retrie-
val request r* with the maximum ATC index (max,cglm+«r), where the ATC index

pnlm exp(—max(d’;(’%%’”*’o)) In the ATC index, K is a scaling parameter, and

Pm~ is the average processing time of the requests on crane m*.
Step 4: Assign request r* to crane. (1) If assigning request 7* to crane m would
not lead to a delay (t; = tm + pmrs < dy«), for request r* find crane m** with minimal

Im*r =

Systems 2024,12, 3

12 of 25

processing time (min(pms««r«)). (2) If the completion time is greater than the due date of
the request (t;; = ty + pur>d,+), for request r* find crane m** with minimal tardiness
(min(t,, + P — dr)).

Step 5: Schedule request r* to crane m**, update fy+ =ty + pyp, and set
R =R\{r}.

Step 6: Update the state of the rack, and recalculate the processing time p««, for
unscheduled retrieval request ¥ on crane m** using Algorithm 1.

Step 7: Repeat Steps 2-6 until all retrieval requests are scheduled.

4.2. Ant Colony System Algorithm for the PCS Problem

We modified the ACS algorithm proposed by Lin, Lin, and Hsieh (2013) [36] to our
problem. In addition, a problem-specific local optimization was designed to improve the
quality of the solution for location selection. The detailed steps of the ACS are as follows:

4.2.1. Solution Construction
Location Selection

Through Algorithm 1, as mentioned above, we can determine the processing time of
the request on each crane.

Initial Crane Selection

Initial crane selection means determining the first available crane mx, ie.,

tms = MiNy<y<ztm-

Priority Retrieval Request Selection

After the crane has been selected, each ant must select the next retrieval request under
the guidance of the heuristic information and pheromone trails, defined by Equation (15):

argmaX{T,ﬁ;*r'iyi*r}, re R ifqg <qo

rk = (15)
P, otherwise
B
Tf%*ra”/m*rﬁ ifreR
P = Lier Tt Tl (16)
0, otherwise

The definition of heuristic information is usually based on specific knowledge of
the problem. The ATC rule is a well-known heuristic for minimizing the total weighted
tardiness in the single machine scheduling problem, and it comprehensively considers
the WSPT (weighted shortest processing time) and MS (minimum slack) rules (Pinedo
2016) [48]. Therefore, the ATC rule is utilized in heuristic information in combination with
pheromone trails to determine the next request. Thus, for our problem, we define the

c e . . 1 max(dy —pumsr —tms,0)
heuristic information #,,+, as the ATC indeX, .+ = — exp(—# . The

pheromone trail 7+ represents the expectation of selecting a priority request r on crane m*.
Let g be a random number from the uniform distribution [0, 1], and let g be a user-specified
number such that 0 < g, < 1. When q < qo, each ant selects a priority request that maximizes

the value of {T,’j‘wn,él*,}. Otherwise, the ant randomly selects the priority request from the
probability distribution formed by the probabilities P, as given in Equation (16).

Crane Assignment

If assigning request r* to crane m would not lead to a delay (t; = ti + pmr«<dys), for
request r* find crane m % * with minimal processing time (i1 (Ppssr+))- If the completion
time is greater than the due date of the request (t,; = ty + Pmr«>drs), for request r* find
crane m** with minimal tardiness (min(t,, + p,,.,... — dr«)). Next, schedule request r* in
the first available sequencing position on crane m * * and update the retrieval request set

Systems 2024,12, 3

13 of 25

R = R\{r*}. Then, the ACS updates the state of the rack and recalculates the processing
time py««r of unscheduled retrieval request on crane m** using Algorithm 1. In the
ACS algorithm, each ant must consider the processing time when selecting the request
and assigning a request to a crane in each iteration, so it is necessary to recalculate the
processing time of unscheduled requests after updating the rack location states. Therefore,
the ACS algorithm is expected to require a high computational effort.

Update of Local Pheromone Trails

The update of pheromone trails includes pheromone trail deposition and pheromone
trail evaporation. The pheromone deposit guides later ants to build better solutions, and
pheromone evaporation can prevent all ants from quickly concentrating on a poor solution,
which helps ants to explore new solution spaces and find better solutions.

In this paper, the algorithm uses both local pheromone updates and global pheromone
updates. Updating the local pheromone makes the pheromone on the visited solution
component decrease every time an ant selects the priority request on the initial crane, which
reduces the probability of other ants selecting the component and increases exploration.
The local pheromone trail is updated as follows:

After crane reselection, the pheromone on the visited solution component is updated
by Equation (16). Here, ¢ represents the local pheromone evaporation rate of the pheromone
trails 0 < ¢ < 1; 70 is the initial pheromone trails, defined as 70 = Wm ; ANTS is
the number of ants; and Tpra7c is the total tardiness obtained by the MATC heuristic.

Typeeps (£) = (1= &) Typerps (1) + E-70 (17)

The pseudocode for the solution construction procedure is summarized below:

Step 1: Initially, let the retrieval requests set R = {1,2,...,n}, and let t,, be the
completion time of the request that has been scheduled on crane m, m = 1,2.. . z. Initialize
tm = 0.

Step 2: Initial crane selection.

Step 3: Priority retrieval request selection. Select a retrieval request based on the fol-
144

argmax{’rm*r~17£1*,},r € Rifg < qo
P, otherwise

1

Pmsr

, where sy = Iy =

lowing equation 7+ = {

a B

max (dr —pusr—tms,0) . o . . . o Tm*ﬂ: 71_1’17;‘ ifreR

exp (— Koms) and P is a probability distribution with P = Ez Tt T .
0, otherwise

Step 4: Crane assignment.

Step 5: Update of the rack state. Set R = R\{r*}. Reselect storage and retrieval
locations and recalculate the processing time for unscheduled requests on crane m** using
Algorithm 1.

Step 6: Update of local pheromone trails.

Step 7: Repeat Steps 2-6 until all requests are assigned.

4.2.2. Local Optimization

After the ant has constructed a solution, a local optimization method is used to improve
the quality of the solution. In this section, we first propose two problem-specific swap
operators for the local optimization. Due to the nature of the shared storage policy (i.e.,
the empty location generated by a retrieval operation is instantly available), the solution
obtained by the ACS algorithm has the priority relationship constraint. Therefore, we
introduced a priority relation of locations and defined the feasible regions of the two
operators to generate the feasible solution.

Two Swap Operators

The solution obtained by the ACS algorithm is composed of the retrieval requests
sequenced on each crane and the corresponding storage and retrieval locations. Therefore,

Systems 2024,12, 3

14 of 25

new solutions can be obtained by swapping the order of the storage or retrieval location
on the basis of the incumbent solution. Thus, we developed two swap operators. Figure 3
takes a solution as an example to show it.

(a) LO(SS-swap): Swap storage locations on one crane

M= -

(b) LO2(RR-swap): Swap retrieval locations on one crane
A : 1/O point O : storage location |:I : retrieval location

Figure 3. Two swap operators.

o LOj (SS-swap): Swap the storage location of two DCs on one crane. The sequence of
retrieval requests does not change, but the processing time will change. This swapping
can increase the exploration of solutions for storage location selection.

o LO; (RR-swap): Swap the retrieval location of two DCs on one crane. The sequence
and the processing times of the retrieval requests change. This swapping increases
not only the exploration of solutions for location selection but also the exploration of
solutions for request sequencing.

For each ant solution, the local optimization method selects one of the two operators
LOy, N € {1,2} in an adaptive way (Hemmelmayr, Schmid, and Blum 2012) [49]. The
counters cy are used to keep track of the performance of the two operators. All counters
are set to 1 initially. When the local optimization solution is better than the incumbent
solution, then the swap operator that was used in the corresponding local optimization step
is incremented. We set probabilities (N) = cN /Y nef1,2) €N, and an operator is determined
through the roulette wheel rule. After the operator is determined, the local optimization
method selects the best solution in the neighborhood.

Priority Relationship Constraint

Using the ACS algorithm, we can obtain the set of the storage location solution 71,
and the set of the retrieval location solution 773. Let SL; be the q'" storage location in set 775.
Let RL) be the p'" retrieval location in set 73. Since we apply a shared storage policy that
can reuse the empty location generated by the retrieval operation, the order of locations
in the solution obtained by the ACS algorithm has a priority relationship. We define the
following priority relationship:

Definition 1. Fixed priority relationship: If one empty location yielded after performing a retrieval
operation is used for the later storage operation, the relationship between two operations is called
a fixed priority relationship, which means the priority relationship cannot be changed. If the
priority relationship did change, it would lead to an infeasible solution. This priority relationship is
represented by a tuple (RLy, SLq) € A, which means the p'" retrieval operation must have fixed
precedence over the qthstomge operation.

To clarify these priority relationships, we introduce a priority relationship graph
G=(V,CI).

e Vs the set of nodes corresponding to DCs on one crane in a solution.

Systems 2024,12, 3

15 of 25

e Cis the set of directed connection arcs. There is a directional connection arc between
each pair of consecutive nodes, indicating the order of storage and retrieval locations
in the solution, as indicated by a solid arrow.

o [lis the set of directed fixed priority connection arcs; these priority relationships cannot be
changed. The retrieval operation at the end of the priority arc must be executed prior to
the storage operation at the beginning of the arc, which is represented by a dotted arrow.

Example 1. Assume that the storage and retrieval location solution of crane 1 obtained by the ACS is
m =1{(1,2,3),(1,2,4),(1,1,1),(1,3,2),(1,3,5)}, 13 = {(1,3,2), (1,3,5), (1,3,6),(1,4,2),
(1,1,5)}. The first retrieval location RLq is (1,3,2), which is used as the fourth storage location
SLy, and the second retrieval location RL; is (1,3,5), which is used as the fifth storage location
SLs. Thus, the fixed priority relationship is A = {(RLq,SLy4), (RLp, SL5)}. Figure 4 illustrates
the fixed priority relationships of the example.

-

- -
- T~
. ~
I 4 I
s
-
-
-

\
N
-~
~
-

fffff
= -

- -

Figure 4. Diagram of the fixed priority relationships in Example 1.

The Feasible Region of the Two Local Optimization Operators

In the local optimization, fixed priority relationships must be considered to ensure
that feasible solutions are produced. If local optimization is performed without considering
the fixed priority relationship, an infeasible solution will be generated, which will take a
long time to repair. Therefore, to improve the algorithm’s efficiency, we executed a local
optimization method only within the feasible regions of the operators. Next, we propose
two propositions to describe the feasible regions of the two operators.

Proposition 1: When executing the LO; (SS-swap) operator on crane m, assume that the p™ retrieval
location has a fixed priority over the q'"* storage location in the solution; that is, (RLy,SLy) € A,
and p < q. Then, the feasible region Z of LO1 (SS-swap) operator is as follows:
SL for SL
zz{ sy #a forSLy (18)
SLyly>p forSL,

The feasible region of SL, is shown in Figure 5a, and the feasible region of SL, is
shown in Figure 5b.

Z Z
SLg-1) ’ \
0 SLy SLy-- SLy-- SLy 5L(q+1)
(a). Feasible region of SLi,.
f
SL, | SLip+2))
0 SLl SLZMSL(IJ—I) 5L(p+1) ...SLq---

(b). Feasible region of SLi.

Figure 5. Feasible regions of LO; (SS-swap).

Systems 2024,12, 3

16 of 25

Proof: In the first case, if the p'’* storage location is swapped with the ¢! storage location,
the ¢ storage location and p'" retrieval location are in one DC. When performing this DC,
the storage location on the rack is occupied by an item. In the second case, if the g/ storage
location is swapped with the other storage location before the p'"* request, the g storage
location is executed first in order, but at this time the storage location on the rack is in the
state of being occupied by items. [

Proposition 2: When executing the LO; (RR-swap) operator, assume that the p'" retrieval location
has a fixed priority with the q'™ storage location in the solution; that is, (RLy,SLy) € A, and
p < q. Then, the feasible region of the LO, (RR-swap) operator is as follows:
_ RL,|y <q forRL, (19)

RL)|y #p forRL,

The feasible region of RL, is shown in Figure 6a. For RL;, the feasible region of this
operator is shown in Figure 6b. The proof is similar to that of Proposition 1.

Z
oo g By
0 RL, RLZ"'RLP"' RLg RLigery
(a). Feasible region of RL,,.
Z Z
/_k_\]
RLy ["RLyys) |
—9o 0o O o o -0 0-
0 RL, RL,RLpyy Rlgen o RLyg--

(b). Feasible region of RL,.
Figure 6. Feasible regions of LO, (RR-swap).

4.2.3. Update of Global Pheromone Trails

In the ACS algorithm, only the global best solution is used to update the pheromone
trails after each iteration. The update of 7, is defined as follows:

1
Tor(t+1) = (1= p) Tr (1) + AT (1), ATy (1) = =
where p represents the global pheromone evaporation rate of the pheromone trails (0 < p < 1),
and ATl (t) = %, where T is the best solution value found so far.
The pseudocode for our Algorithm 2 is summarized below:

(20)

Algorithm 2 ACS Algorithm

1: Initialize: Retrieval request R = {1,...,n}, t,, =0, form =1,...,z; T(xj,) denotes the total tardiness
of the solution in iter. The maximum number of iterations is Ty, the global evaporation rate is p, the
local evaporation rate is ¢, the relative importance of the pheromone trails is «, and that of the heuristic
information is .

2: Select storage and retrieval locations and calculate the processing time for each request on each crane
using Algorithm 1.

3: iter=1,c1=1,c=1.

4: for iter < Tj;0 do

5: for each ant do

6: Xjter <— Call the solution construction procedure to construct the solution.

7: *'iter < Use the roulette wheel rule to choose one operator LOy, N € {1,2} to execute the

local optimization.

Systems 2024,12, 3

17 of 25

Algorithm 2 Cont.
8: if T(x,iter) < T(xiter) then
9: cy =cn + 1.
10: end if
Xiter = x/iter
11: end for
12: Update the global pheromone by Equation (18).
13: Update the global best solution.
14: iter = iter +1
15: end for

16: Output the global best solution.

5. Computational Experiments

In this section, several computational experiments were conducted to assess the perfor-
mance of our proposed algorithms through algorithm comparisons. First, we generated our
benchmark according to related studies (Section 5.1). Second, a series of pilot experiments
determined the important parameter values that performed well in most ACS instances
(Section 5.2). Then, we evaluated the performance of the sequencing strategy (Section 5.3),
aiming to validate that considering the request assignment globally in a multi-aisle AS/RS
provides benefits in terms of the total tardiness of the requests (Section 5.4). We examine
the capability of the proposed Algorithm 2 in handling both small and large instances in
Section 5.5. In the last experiment, we explored the performance of the request sequencing
and location selection strategy of the ACS in addressing the SCS problem (Section 5.6). Our
algorithms were coded using MATLAB R2020a software. All tests were conducted on a
desktop PC with a 2.4 gigahertz Pentium processor and 4 gigabytes of RAM.

5.1. Instance Generation

Unfortunately, real-life example data are not available, and there are no benchmark
instances in the literature that consider the PCS problem, so we refer to similar AS/RS
papers to generate our own test instances. The details of our instance generator are
described below:

e Layout: For small instances, the AS/RS contains two aisles with four racks. The
number of rack locations (layer X tier) is set to 5 x 6 (30), 5 x 8 (40), and 5 x 10 (50)
(Yang et al., 2015; Hachemi, Sari, and Ghouali 2012) [19,27]. For large instances, the
AS/RS contains four aisles with eight racks. The number of rack locations (layer X tier)
is set to 10 x 10 (100), 10 x 20 (200), and 12 x 25 (300) (Yang et al., 2015; Nia, Haleh,
and Saghaei 2017) [8,27]. The crane moves horizontally and vertically at 1 m/s. The
initial state of each rack is randomly generated, with the utilization rate of each rack
being 80%, which means that 20% of the rack locations are vacant. There are 20 types
of items in the warehouse.

e Request: The number of small and large instance requests is set to 60 and 300, re-
spectively. The due dates are usually generated based on the processing time of
the requests. In this study, due dates were generated from a uniform distribution

u {P(l —-T+ %), ﬂ , where P represents the average processing time of requests

on cranes, expressed as P = Y Y 1 Prm/z, where p.y, is the processing time of
request r on crane m (Lin, Pfund, and Fowler 2011). In this section, we apply Algo-
rithm 1 to determine the processing times of requests and then calculate the average
processing time P. As can be seen, the tightness of the due dates depends on T and R.
T is the average tardiness factor, and R is the relative range of the due dates. T and
R are set to 0.4 and 0.8, respectively (Lin, Pfund, and Fowler 2011) [35], so there are
four combinations for due dates: [T, R] = [0.4, 0.8], [0.4, 0.4], [0.8, 0.8], and [0.8, 0.4].
Table 3 summarizes the problem parameters and their corresponding values. For each
parameter combination, 10 problem instances were generated and the results were
obtained from 10 runs for each test instance.

Systems 2024,12, 3

18 of 25

Table 3. Parameter settings for generated PCS problem instances.

Value
Parameter
Small Large
Number of rack locations {5x6,5x%x8,5x10} {10 x 10,10 x 20,12 x 25}
Number of aisles 2 4
Total number of storage and retrieval requests 60 300

Horizontal and vertical speed of crane Vi=1m/s,V, =1m/s

Rack utilization 80%
Number of item types in the rack 20
Due date of retrieval request u [ﬁ<1 — T+ %) ,F]

5.2. Parameter Settings

There are multiple parameters that will influence the search performance and the
convergence quality in the ACO algorithm. In the ACS, since a pseudorandom transfer
strategy is introduced and a = 1, the parameters that have the most important influence
on the algorithm’s performance are 3, p, and go. Therefore, in this section, we conducted
experiments to determine the main parameters in the ACS. The values of the other parame-
ters were as follows: number of ants m = 20, maximum number of iterations T, = 100,
and the K value of the ATC index in heuristic information was set to 0.6. We used the
approach mentioned by Miao et al. (2021) [50] to determine the values of the parame-
ters. We set the ranges of these parameters to f € {2,3,4,5}, p € {0.1,0.2,0.3,0.4}, and
g0 € {0.6,0.7,0.8,0.9}, and the default values of the groups of parameters were set to f = 3,
p = 0.1, and g9 = 0.9, respectively. Only one parameter could be changed in each group
experiment, and the other parameters were the defaults. We ran each group of parameters
ten times and then compared the averages. The experimental results shown in Table 4
reveal that when f = 2, p = 0.3, and g¢p = 0.9, the ACS can obtain the best solutions.

Table 4. Experimental results for Algorithm 2 parameters.

2 3 4 5
P 14,127.9 14,128 14,136.1 14,138.2
0.1 0.2 0.3 0.4
P 14,128 14,121.9 14,119.4 14,134.3
0.6 0.7 0.8 0.9
0 14,1419 14,130.1 14,143.8 14,128

5.3. Evaluation of the Performance of the Sequencing Rule

In this part of the study, we verified that sequencing requests can lead to significant
improvements with respect to the total tardiness, and that ATC-based sequencing rules
can obtain better solutions than other sequencing rules. We compared the ATC rule with
other existing sequencing rules (MDD (modified due date), EDD (earliest due date), and
FCFS), without considering the global assignment of requests. The EDD is a simple rule
that sequences the requests in increasing order of their due dates. The MDD rule sequences
the requests based on the earliest modified due date. FCFS sequences the requests in the
order in which they arrive. The reason we that chose these sequencing rules is that they are
important and effective rules for minimizing tardiness in machine scheduling problems,
and they can be modified to apply to our problem.

We first sequenced the requests according to the abovementioned rules, and then we
evenly assigned the sorted requests to cranes according to the sequence. The computing
time of any of the above sequencing rules takes less than one second, and that time can
be neglected. We compared the average relative percentage deviations (RPDs) from our
ACS according to the following expression: RPD = (T (rule) — T (ACS))/T (ACS), where

Systems 2024,12, 3

19 of 25

T (rule) is the total tardiness obtained by the above sequencing rules without considering
the global assignment of requests, while 7 (ACS) is the total tardiness obtained by our
Algorithm 2. Table 5 shows the results in small and large instances. We can see that ATC
deviated 74.24% from the ACS, MDD deviated 84.73% from the ACS, EDD deviated 135.45%
from the ACS, and FCFS deviated 196.12% from the ACS for small instances. Meanwhile,
ATC deviated 178% from the ACS, MDD deviated 182.09% from the ACS, EDD deviated
200.20% from the ACS, and FCFS deviated 227.41% from the ACS for large instances.

Table 5. Evaluation of the sequencing strategy for small and large instances.

Number of Rack Locations T-R ATC MDD EDD FCFS
04-0.8 0.7380 0.8492 1.3003 1.7634

e 0.4-0.4 0.6275 0.7056 0.9365 12618
0.8-0.8 0.3908 0.4032 0.7877 0.8847

0.8-0.4 0.3225 0.3864 0.6675 0.7813

04-0.8 1.2332 1.4024 2.0180 2.9404

0.4-0.4 0.6761 0.7723 1.3920 1.8907

5x8 0.8-0.8 0.5304 0.5821 0.8677 1.0880
0.8-0.4 0.3767 0.4693 0.8293 1.0059

04-0.8 1.8907 1.9934 3.3294 6.2850

5 10 0.4-0.4 0.9065 1.2277 1.9103 2.6523
0.8-0.8 0.6951 0.8190 1.3607 1.8822

0.8-0.4 0.5213 0.5574 0.8544 1.0993

Average 0.7424 0.8473 1.3545 1.9612
04-0.8 21148 2.1855 24912 3.1199

0.4-0.4 1.4212 1.4685 1.6231 1.8728

10 x 10 0.8-0.8 1.0733 11176 1.2475 1.3679
0.8-0.4 0.7694 0.8423 0.9678 0.9873

04-0.8 2.7189 29377 2.8174 3.6222

0.4-0.4 1.5654 1.7773 1.5945 2.0534

10 %20 0.8-0.8 1.1324 1.3033 1.1426 14144
0.8-0.4 0.8666 0.9730 0.8477 1.0190

04-0.8 47357 5.0947 47571 5.9301

. 0.4-0.4 23417 2.6160 24143 2.8788
0.8-0.8 1.5183 1.7454 1.5449 1.7628

0.8-0.4 11023 1.2477 1.1182 1.2601

Average 1.7800 1.8209 2.0020 22741

We can conclude from the table that the ATC-based sequencing rule outperforms
other rules, and MDD outperformed EDD, while EDD outperformed FCFS. Both ATC
and MDD consider the processing time of requests when sequencing requests. In our
testing, it can be seen that ATC was slightly better than MDD. Since EDD only considers
the due dates without taking the processing time into account, solutions obtained by
EDD-based algorithms are of very poor quality. The FCFS-based approach yielded the
worst-quality solutions.

5.4. Evaluation of the Performance of Globally Managing Multi-Aisle AS/RSs

In this study, we globally managed a multi-aisle AS/RS instead of managing the
multiple aisles independently. Thus, in this part of the study, we verify that in an AS/RS
with shared storage, managing multiple aisles globally rather than independently can
significantly reduce the overall tardiness of the requests.

By comparing the above request sequencing strategies, we can conclude that the
ATC-based rule is the best. Therefore, in this section, we first sort the requests according to
the ATC and then compare the quality of the solutions obtained by the global assignment
policy and the independent assignment policy.

Systems 2024,12, 3

20 of 25

e Global assignment policy: Managing multi-aisle AS/RSs globally means considering
the state of each rack when assigning requests to cranes and taking the processing
time of the requests on each crane into consideration. Sorting requests based on the
ATC rule and then assigning requests globally to cranes using the MATC heuristic.

e Independent assignment policy: Managing multi-aisle AS/RSs independently means
evenly allocating requests to cranes in the sorted order regardless of the rack states
and the processing time of requests for each crane.

Table 6 shows the RPD of the assignment policy in small and large instances. From
the table, we can observe that for small instances, the independent assignment policy
deviated 74.24% from the ACS, while the global assignment policy deviated 8.23%. For
large instances, the independent assignment policy deviated 178% from the ACS, while the
global assignment policy deviated 5.83%. We can conclude that assigning requests globally
can significantly improve the solution compared to assigning requests independently.

Table 6. Evaluation of the assignment strategy for small and large instances.

Number of Rack Locations T-R Independent Assignment Global Assignment
0.4-0.8 0.7380 0.0774
556 0.4-0.4 0.6275 0.0388
% 0.8-0.8 0.3908 0.0374
0.8-0.4 0.3225 0.0246
0.4-0.8 1.2332 0.0697
5% 8 0.4-0.4 0.6761 0.0783
% 0.8-0.8 0.5304 0.0720
0.8-0.4 0.3767 0.0459
0.4-0.8 1.8907 0.2602
5% 10 0.4-0.4 0.9065 0.1508
x 0.8-0.8 0.6951 0.0844
0.8-0.4 0.5213 0.0482
Average 0.7424 0.0823
0.4-0.8 2.1148 0.0850
0.4-0.4 1.4212 0.0509
1010 0.8-0.8 1.0733 0.0438
0.8-0.4 0.7694 0.0268
0.4-0.8 2.7189 0.0919
0.4-0.4 1.5654 0.0522
10725 0.8-0.8 1.1324 0.0388
0.8-0.4 0.8666 0.0260
0.4-0.8 4.7357 0.1332
0.4-0.4 2.3417 0.0755
1225 0.8-0.8 15183 0.0448
0.8-0.4 1.1023 0.0303
Average 1.7800 0.0583

From these two experiments, we receive the insight that when designing operation
schemes for multi-aisle AS/RSs, especially large-scale multi-aisle AS/RSs, global schedul-
ing of multiple aisles should be used to reduce the total tardiness of the requests.

5.5. Evaluation of the Performance of the Algorithm 2

In this section, we evaluate the quality of the solutions obtained by the ACS in small
and large instances. As mentioned above, the literature dealing with the PCS problem is
almost nonexistent. Therefore, to evaluate the performance of the Algorithm 2, we must
modify the state-of-the-art algorithm to use as a reference for our algorithm. We compared
our Algorithm 2 with the step-by-step program (SSP) proposed by Hachemi, Sari, and
Ghouali (2012) [19] and the genetic algorithm (GA) proposed by Lin, Pfund, and Fowler
(2011) [35].

Systems 2024,12, 3

21 of 25

The SSP is a nested algorithm designed to solve the problem of request sequencing and
storage/retrieval location selection in a single-aisle AS/RS. Its objective is to minimize the
total travel time of the crane. It can be seen that this problem is very similar to our problem,
with the difference being that this problem does not consider the request allocation. We
modified the SSP model, changing the objective of the model and then using Gurobi to
solve the model for our problem. Since we transformed the problem into a UPM problem,
we wanted to know how well other algorithms that solve UPM problems would perform
when solving our problem. Thus, we modified the GA proposed by Lin, Pfund, and
Fowler (2011) [35], who solved a UPM scheduling problem that minimizes total tardiness.
In our GA, the initial solution, crossover, and mutation operators are consistent with
those in the literature. The difference is that after the request allocation and sequencing
solutions are generated, we use Algorithm 1 to select the storage and retrieval locations
on the corresponding crane. The GA parameters used in this study duplicate those in
the literature.

In summary, we modified two previous algorithms to solve our problem. Because
Gurobi is very time-consuming on large instances, we only compared the results with the
GA algorithm in large instances, while in small instances we compared them against
both the SSP and GA. The RPD is computed according to the following expression:
RPD = (T (rAlgorithm) — T (ACS))/T (ACS). Here, T (Algorithm), is the total tardiness
obtained by the SSP or GA, and TT(ACS) is the total tardiness obtained by the ACS.

5.5.1. Comparison of Algorithms in Small Instances

For small instances, we compared our ACS with both the SSP and GA. Table 7 gives
the computational results and CPU times. The “time” columns show the average CPU times
in seconds, and “ACS_0" denotes the ACS without local optimization. We can observe
that ACS_0 deviated 4% from the ACS, which suggests that local optimization plays a role
in improving the solution quality. The SSP deviated 57% and the GA deviated 6.1% from
our proposed Algorithm 2, respectively. Our ACS is slightly better than the GA, while for
problem classes with a small number of rack locations (5 x 6) and loose due dates (T = 0.4,
R =0.8), the GA is better than the ACS (RPD = —0.014). We can conclude that the ACS
outperforms ACS_0, the SSP method, and the GA in terms of total tardiness.

Table 7. Comparison of the ACS with the GA and SSP for small instances.

ACS_0 (without Local

Number of Rack T-R ACS Optimization) GA SSP
Locations " - " -
Time RPD Time RPD Time RPD Time
0.4-0.8 76 0.047 63 -0.014 247 0.407 19,330
546 0.4-0.4 79 0.039 66 0.008 240 0.283 19,337
0.8-0.8 81 0.022 69 0.023 246 0.094 19,356
0.8-0.4 82 0.016 69 0.037 250 0.066 19,412
0.4-0.8 93 0.065 77 0.092 251 1.319 21,334
58 0.4-0.4 91 0.054 80 0.053 247 0.576 21,123
0.8-0.8 87 0.042 83 0.080 256 0.329 21,456
0.8-0.4 99 0.025 71 0.061 253 0.137 21,675
0.4-0.8 87 0.040 77 0.157 267 2.641 23,111
5% 10 0.4-0.4 98 0.060 87 0.095 286 0.591 23,124
0.8-0.8 101 0.043 88 0.082 270 0.304 23,456
0.8-0.4 96 0.026 79 0.059 285 0.097 23,467
Average 89.167 0.040 75.750 0.061 258.167 0.570 21,348

5.5.2. Comparison of Algorithms in Large Instances

The computational results and the average CPU times for large instances are presented
in Table 8. As shown in the table, the ACS without local optimization deviated 2.3% from
the ACS, the GA deviated 37.1%, and the ACS is much better than the GA. The quality

Systems 2024,12, 3

22 of 25

of the solution obtained by the GA is very poor in large-instance problems, and we can
observe that, whether in terms of tight or loose due dates, the ACS outperformed ACS_0
and the GA.

Table 8. Comparison of the ACS with the GA for large instances.

ACS_0 (without

Number of Rack T-R ACS Local Optimization) GA
Locations " " -
Time RPD Time RPD Time
0.4-0.8 1885 0.032 1775 0477 2040
10 x 10 0.4-04 1890 0.016 1686 0.291 1888
0.8-0.8 1710 0.014 1655 0.204 1720
0.8-0.4 1801 0.008 1732 0.150 2110
0.4-0.8 1899 0.045 1880 0.526 1976
10 x 20 04-0.4 1810 0.015 1745 0.300 1899
0.8-0.8 1701 0.017 1659 0.210 2199
0.8-0.4 1866 0.010 1698 0.150 2001
0.4-0.8 1828 0.058 1843 1.061 1989
12 % 25 0.4-0.4 1812 0.033 1754 0.535 1894
0.8-0.8 1920 0.016 1756 0.326 1999
0.8-0.4 1890 0.012 1834 0.229 2177
Average 1834.333 0.023 1751.417 0.371 1991

In addition to the quality of the solution obtained by the algorithm, the computation
time should also be considered when evaluating the algorithm. Tables 7 and 8 show that
the ACS computing times depend on the numbers of requests and total locations. When
the total location count increases, the number of locations containing retrieved items and
the number of empty locations also increase, so when determining a pair of storage and
retrieval locations, more possible DCs must be checked. For problem classes with small
instances, the average computing time using the ACS is 89.167 s, while that of the GA is
258.267 s and that of the SSP is 21,348 s. For problem classes with large instances, the ACS’s
average computing time is 1834.333 s, while the GA’s is 1991 s. We can conclude that our
Algorithm 2 is superior to the GA and SSP not only in the quality of the solution, but also
in terms of computing time.

5.6. Performance of ACS on Single Crane Scheduling Problem

In order to further evaluate the performance of the request sequencing and location
selection strategy in the ACS, we modified it to solve the SCS problem that sequences the
requests and selects the storage/retrieval locations. The modified ACS was compared with
the SSP algorithm, but since our problem’s objective is inconsistent with the SSP’s, we had
to modify the SSP. We used parameters consistent with those in the work of Hachemi, Sari,
and Ghouali (2012) [19], so in this part of the experiment we set the rack size to 5 x 10 (50)
and the number of requests to 60. We processed each instance ten times to obtain the
averages shown in Table 9. From the table, we can see that the ACS performs better than the
SSP. This experiment confirms that the performance of the request sequencing and location
selection strategy in the ACS is also good in solving the single crane scheduling problem.

Table 9. Comparison of the ACS and SPP on the single crane scheduling problem.

Number of Rack Locations T-R ACS SSpP
0.4-0.8 794.1 1663.6

5% 10 0.4-04 1383.5 1936
X 0.8-0.8 2023.5 2353.4
0.8-0.4 2702.9 2873.7

Average 1726 2206.675

Systems 2024,12, 3

23 of 25

References

6. Conclusions and Future Work

This paper introduced and investigated the parallel crane scheduling (PCS) problem in
a multi-aisle AS/RS with shared storage. The objective was to minimize the total tardiness
of the retrieval requests. We proposed a new dynamic programming model combined
with an integer programming model to illustrate the problem. Considering the features of
the problem, we transformed the problem into a variant of the unrelated parallel machine
scheduling problem. To solve the problem efficiently, a heuristic based on ATC sequencing
rules and an ACS algorithm with local optimization were proposed.

Through numerical experiments, we found that the global scheduling of aisles can
lead to significant improvements in total tardiness compared to considering aisles inde-
pendently. Therefore, globally scheduling aisles should be considered when designing an
operation scheme for multi-aisle AS/RSs. We verified that the ACS algorithm performs
better than the GA and SSP algorithms. We also demonstrated that the ACS sequencing
and location selection strategy is feasible and performs well in solving the single crane
scheduling problem.

The major limitation is that the algorithm is currently applicable to scenarios de-
signed for parallel crane configurations, and it cannot be directly applied to scenarios
involving heterogeneous parallel cranes or multi-shuttle AS/RSs, among other variations.
Furthermore, because the ACO algorithm belongs to the constructive-based metaheuristic
framework, its solution time is relatively longer. Nevertheless, it can still attain satisfactory
solutions within an acceptable and reasonable timeframe. Future research could focus on
designing more efficient algorithms to solve the PCS problem, such as simulation annealing
(SA) algorithms, greedy randomized adaptive search procedures (GRASPs), and particle
swarm optimization (PSO). Moreover, future research could explore the request assign-
ment and sequencing and the storage and retrieval location selection problem in other
AS/RS types, such as the multi-shuttle AS/RS, which is also an interesting, realistic, and
challenging problem.

Author Contributions: Conceptualization, R.X. and Y.T.; methodology, R.X. and H.C.; software,
R.X. and H.C.; validation, R.X. and H.C.; formal analysis, R.X. and Y.T.; investigation, R.X. and
H.C,; resources, R.X.; data curation, R.X. and J.X.; writing—original draft preparation, R.X. and Y.T.;
writing—review and editing, R.X. and H.C.; visualization, R.X. and J.X.; supervision, R.X.; project
administration, H.C.; funding acquisition, R.X. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 62106098; the Stable Support Plan Program of Shenzhen Natural Science Fund, grant number
20200925154942002; and Guangdong Provincial Key Laboratory, grant number 2020B121201001.

Data Availability Statement: The data that support the findings of this study are openly available at
https:/ / github.com/riven521/PCS.

Acknowledgments: We thank Xing Cheng from the Hohai University for his valuable suggestions
on the mathematical models.

Conflicts of Interest: The authors declare no conflicts of interest.

1. Polten, L.; Emde, S. Multi-shuttle crane scheduling in automated storage and retrieval systems. Eur. J. Oper. Res. 2022, 302,

892-908. [CrossRef]

2. Graves, S.C.; Hausman, W.H.; Schwarz, L.B. Storage-Retrieval Interleaving in Automatic Warehousing Systems. Manag. Sci. 1977,

23,935-945. [CrossRef]

3. Tanaka, S.; Araki, M. Routing problem under the shared storage policy for unit-load automated storage and retrieval systems
with separate input and output points. Int. . Prod. Res. 2009, 47, 2391-2408. [CrossRef]

4. Scholz, A.; Schubert, D.; Wischer, G. Order picking with multiple pickers and due dates—Simultaneous solution of Order
Batching, Batch Assignment and Sequencing, and Picker Routing Problems. Eur.]. Oper. Res. 2017, 263, 461-478. [CrossRef]

5. Boysen, N.; Stephan, K. A survey on single crane scheduling in automated storage/retrieval systems. Eur. J. Oper. Res. 2016, 254,

691-704. [CrossRef]

https://github.com/riven521/PCS
https://doi.org/10.1016/j.ejor.2022.01.043
https://doi.org/10.1287/mnsc.23.9.935
https://doi.org/10.1080/00207540701644177
https://doi.org/10.1016/j.ejor.2017.04.038
https://doi.org/10.1016/j.ejor.2016.04.008

Systems 2024, 12,3 24 of 25

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Meneghetti, A.; Borgo, E.D.; Monti, L. Rack shape and energy efficient operations in automated storage and retrieval systems. Int.
J. Prod. Res. 2015, 53, 7090-7103. [CrossRef]

Ballestin, F;; Pérez, A.; Quintanilla, M.S. A multistage heuristic for storage and retrieval problems in a warehouse with random
storage. Int. Trans. Oper. Res. 2020, 27, 1699-1728. [CrossRef]

Nia, A.R,; Haleh, H.; Saghaei, A. Dual command cycle dynamic sequencing method to consider GHG efficiency in unit-load
multiple-rack automated storage and retrieval systems. Comput. Ind. Eng. 2017, 111, 89-108.

Gagliardi, J.-P; Renaud, J.; Ruiz, A. On sequencing policies for unit-load automated storage and retrieval systems. Int. J. Prod. Res.
2013, 52, 1090-1099. [CrossRef]

Gagliardi, J.-P.; Renaud, J.; Ruiz, A. Sequencing approaches for multiple-aisle automated storage and retrieval systems. Int.]. Prod.
Res. 2015, 53, 5873-5883. [CrossRef]

van den Berg, J.P.; Gademann, A.J.R.M. Optimal routing in an automated storage/retrieval system with dedicated storage. IIE
Trans. 1999, 31, 407—415. [CrossRef]

Roodbergen, K.J.; Vis, LEA. A survey of literature on automated storage and retrieval systems. Eur. J. Oper. Res. 2009, 194,
343-362. [CrossRef]

Gagliardi, J.-P.; Renaud, J.; Ruiz, A. Models for automated storage and retrieval systems: A literature review. Int. |. Prod. Res.
2012, 50, 7110-7125. [CrossRef]

Azadeh, K,; De Koster, R.; Roy, D. Robotized and Automated Warehouse Systems: Review and Recent Developments. Transp. Sci.
2019, 53, 917-1212. [CrossRef]

Lee, M.K,; Kim, S.Y. Scheduling of storage/retrieval orders under a just-in-time environment. Int. |. Prod. Res. 1995, 33, 3331-3348.
[CrossRef]

Lee, H.E; Schaefer, S.K. Sequencing methods for automated storage and retrieval systems with dedicated storage. Comput. Ind.
Eng. 1997, 32, 351-362. [CrossRef]

Emde, S.; Polten, L.; Gendreau, M. Logic-based benders decomposition for scheduling a batching machine. Comput. Oper. Res.
2020, 113, 104777. [CrossRef]

Chen, L.; Langevin, A.; Riopel, D. The storage location assignment and interleaving problem in an automated storage/retrieval
system with shared storage. Int. . Prod. Res. 2008, 48, 991-1011. [CrossRef]

Hachemi, K.; Sari, Z.; Ghouali, N. A step-by-step dual cycle sequencing method for unit-load automated storage and retrieval
systems. Comput. Ind. Eng. 2012, 63, 980-984. [CrossRef]

Han, M.-H.; McGinnis, L.E; Shieh,].S.; White,].A. On Sequencing Retrievals In An Automated Storage/Retrieval System. IIE
Trans. 1987, 19, 56—66. [CrossRef]

van den Berg,].P.; Gademann, A.J.R. M. Simulation study of an automated storage/retrieval system. Int. J. Prod. Res. 2010, 38,
1339-1356. [CrossRef]

Lee, H.F,; Schaefer, S.K. Retrieval sequencing for unit-load automated storage and retrieval systems with multiple openings. Int.
J. Prod. Res. 2007, 34, 2943-2962. [CrossRef]

Sarker, B.R.; Sabapathy, A.; Lal, A.M.; Han, M.-H. Performance evaluation of a double shuttle automated storage and retrieval
system. Prod. Plan. Control. 2007, 2, 207-213. [CrossRef]

Tanaka, S.; Araki, M. An Exact Algorithm for the Input/Output Scheduling Problem in an End-of-Aisle Multi-Shuttle Automated
Storage/Retrieval System with Dedicated Storage. Trans. Soc. Instrum. Control. Eng. 2006, 42, 1058-1066. [CrossRef]

Popovi¢, D.; Vidovi¢, M.; Bjeli¢, N. Application of genetic algorithms for sequencing of AS/RS with a triple-shuttle module in
class-based storage. Flex. Serv. Manuf. J. 2012, 26, 432-453. [CrossRef]

Yang, P.; Miao, L.; Xue, Z.; Qin, L. An integrated optimization of location assignment and storage/retrieval scheduling in
multi-shuttle automated storage/retrieval systems. J. Intell. Manuf. 2013, 26, 1145-1159. [CrossRef]

Yang, P.; Miao, L.; Xue, Z.; Ye, B. Variable neighborhood search heuristic for storage location assignment and storage/retrieval
scheduling under shared storage in multi-shuttle automated storage/retrieval systems. Transp. Res. Part E Logist. Transp. Rev.
2015, 79, 164-177. [CrossRef]

Wauters, T.; Villa, E; Christiaens, J.; Alvarez-Valdes, R.; Berghe, G.V. A decomposition approach to dual shuttle automated storage
and retrieval systems. Comput. Ind. Eng. 2016, 101, 325-337. [CrossRef]

Singbal, V.; Adil, G.K. Designing an automated storage/retrieval system with a single aisle-mobile crane under three new
turnover based storage policies. Int. J. Comput. Integr. Manuf. 2021, 34, 212-226. [CrossRef]

Marolt, J.; Sinko, S.; Lerher, T. Model of a multiple-deep automated vehicles storage and retrieval system following the combination
of Depth-First storage and Depth-First relocation strategies. Int. |. Prod. Res. 2022, 61, 4991-5008. [CrossRef]

Linn, R]; Xie, X. A simulation analysis of sequencing rules for ASRS in a pull-based assembly facility. Int. J. Prod. Res. 2007, 31,
2355-2367. [CrossRef]

Biskup, D.; Herrmann, J.; Gupta,].N.D. Scheduling identical parallel machines to minimize total tardiness. Int.]. Prod. Econ. 2008,
115, 134-142. [CrossRef]

Yepes-Borrero,].C.; Villa, F.; Perea, F.; Caballero-Villalobos,].P. GRASP algorithm for the unrelated parallel machine scheduling
problem with setup times and additional resources. Expert Syst. Appl. 2020, 141, 112959. [CrossRef]

Liaw, C.-E; Lin, Y.-K.; Cheng, C.-Y.; Chen, M. Scheduling unrelated parallel machines to minimize total weighted tardiness.
Comput. Oper. Res. 2003, 30, 1777-1789. [CrossRef]

https://doi.org/10.1080/00207543.2015.1008107
https://doi.org/10.1111/itor.12454
https://doi.org/10.1080/00207543.2013.838331
https://doi.org/10.1080/00207543.2015.1012600
https://doi.org/10.1080/07408179908969844
https://doi.org/10.1016/j.ejor.2008.01.038
https://doi.org/10.1080/00207543.2011.633234
https://doi.org/10.1287/trsc.2018.0873
https://doi.org/10.1080/00207549508904877
https://doi.org/10.1016/S0360-8352(96)00298-7
https://doi.org/10.1016/j.cor.2019.104777
https://doi.org/10.1080/00207540802506218
https://doi.org/10.1016/j.cie.2012.06.009
https://doi.org/10.1080/07408178708975370
https://doi.org/10.1080/002075400188889
https://doi.org/10.1080/00207549608905067
https://doi.org/10.1080/09537289108919348
https://doi.org/10.9746/sicetr1965.42.1058
https://doi.org/10.1007/s10696-012-9139-2
https://doi.org/10.1007/s10845-013-0846-7
https://doi.org/10.1016/j.tre.2015.04.009
https://doi.org/10.1016/j.cie.2016.09.013
https://doi.org/10.1080/0951192X.2021.1872104
https://doi.org/10.1080/00207543.2022.2087568
https://doi.org/10.1080/00207549308956862
https://doi.org/10.1016/j.ijpe.2008.04.011
https://doi.org/10.1016/j.eswa.2019.112959
https://doi.org/10.1016/S0305-0548(02)00105-3

Systems 2024, 12,3 25 of 25

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

Lin, YK.; Pfund, M.E.; Fowler,].W. Heuristics for minimizing regular performance measures in unrelated parallel machine
scheduling problems. Comput. Oper. Res. 2011, 38, 901-916. [CrossRef]

Lin, C.W.,; Lin, Y.K.; Hsieh, H.T. Ant colony optimization for unrelated parallel machine scheduling. Int.]. Adv. Manuf. Technol.
2013, 67, 35-45. [CrossRef]

Lin, Y.-K,; Fowler,].W.; Pfund, M.E. Multiple-objective heuristics for scheduling unrelated parallel machines. Eur. |. Oper. Res.
2013, 227, 239-253. [CrossRef]

Lin, S.-W.; Ying, K.-C. A multi-point simulated annealing heuristic for solving multiple objective unrelated parallel machine
scheduling problems. Int. J. Prod. Res. 2014, 53, 1065-1076. [CrossRef]

Salazar-Hornig, E.J.; Gavilan, G.A.S. Makespan Minimization on Unrelated Parallel Machines Scheduling Problem with Sequence
Dependent Setup Times by a VNS/ACO Hybrid Algorithm. Rev. Ing. Univ. Medellin 2021, 20, 171-184. [CrossRef]

Ulaga, L.; Urasevi, M.; Jakobovi, D. Local Search Based Methods for Scheduling in the Unrelated Parallel Machines Environment.
Expert Syst. Appl. 2022, 199, 116909. [CrossRef]

Durasevi¢, M.; Jakobovi¢, D. Heuristic and Metaheuristic Methods for the Parallel Unrelated Machines Scheduling Problem:
A Survey. Artif. Intell. Rev. 2023, 56, 3181-3289. [CrossRef]

Zhang, H.; Jia, Z.-H.; Li, K. Ant colony optimization algorithm for total weighted completion time minimization on non-identical
batch machines. Comput. Oper. Res. 2020, 117, 104889. [CrossRef]

Shao, W.; Shao, Z.; Pi, D. Effective constructive heuristics for distributed no-wait flexible flow shop scheduling problem. Comput.
Oper. Res. 2021, 136, 105482. [CrossRef]

Xu, R.; Chen, H.; Li, X. Makespan minimization on single batch-processing machine via ant colony optimization. Comput. Oper.
Res. 2012, 39, 582-593. [CrossRef]

Engin, O.; Giiglii, A. A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems.
Appl. Soft Comput. 2018, 72, 166-176. [CrossRef]

Li, H.; Gajpal, Y.; Bector, C.R. Single machine scheduling with two-agent for total weighted completion time objectives. Appl. Soft
Comput. 2018, 70, 147-156. [CrossRef]

Tavares Neto, R.E,; Filho, M.G.; da Silva, EM. An ant colony optimization approach for the parallel machine scheduling problem
with outsourcing allowed. J. Intell. Manuf. 2013, 26, 527-538. [CrossRef]

Pinedo, M.L. Scheduling: Theory, Algorithms, and Systems; Springer: Cham, Switzerland, 2016.

Hemmelmayr, V.; Schmid, V.; Blum, C. Variable neighbourhood search for the variable sized bin packing problem. Comput. Oper.
Res. 2012, 39, 1097-1108. [CrossRef]

Miao, C.; Chen, G.; Yan, C.; Wu, Y. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm.
Comput. Ind. Eng. 2021, 156, 107230. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cor.2010.08.018
https://doi.org/10.1007/s00170-013-4766-7
https://doi.org/10.1016/j.ejor.2012.10.008
https://doi.org/10.1080/00207543.2014.942011
https://doi.org/10.22395/rium.v20n38a11
https://doi.org/10.1016/j.eswa.2022.116909
https://doi.org/10.1007/s10462-022-10247-9
https://doi.org/10.1016/j.cor.2020.104889
https://doi.org/10.1016/j.cor.2021.105482
https://doi.org/10.1016/j.cor.2011.05.011
https://doi.org/10.1016/j.asoc.2018.08.002
https://doi.org/10.1016/j.asoc.2018.05.027
https://doi.org/10.1007/s10845-013-0811-5
https://doi.org/10.1016/j.cor.2011.07.003
https://doi.org/10.1016/j.cie.2021.107230

	Introduction
	Literature Review
	The SCS Problem in AS/RSs
	Unrelated Machine Scheduling Problem

	Problem Description, Modeling, and Analysis
	Problem Description
	Numerical Example
	Mathematical Models
	Parameters
	DP Model
	Integer Programming Model

	Reduction to UPM Problem

	Solution Methodology
	A Modified ATC-I Heuristic
	Ant Colony System Algorithm for the PCS Problem
	Solution Construction
	Local Optimization
	Update of Global Pheromone Trails

	Computational Experiments
	Instance Generation
	Parameter Settings
	Evaluation of the Performance of the Sequencing Rule
	Evaluation of the Performance of Globally Managing Multi-Aisle AS/RSs
	Evaluation of the Performance of the Algorithm 2
	Comparison of Algorithms in Small Instances
	Comparison of Algorithms in Large Instances

	Performance of ACS on Single Crane Scheduling Problem

	Conclusions and Future Work
	References

