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Abstract: In this paper, we provide a model to handle multiple replenishment cycles and the cross-
selling of multiple major items with one minor item, while allowing partial late delivery. The
optimization analytic expression of the model is finally obtained by utilizing the convexity of cost
function for F and using the first-order conditions in optimization theory. Numerical examples
and sensitivity analysis demonstrate the effectiveness of the model and algorithm, which offers a
competent solution for practical applications.
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1. Introduction

Demand independence is one of the fundamental assumptions in classical economic or-
der quantity (EOQ) models and joint replenishment problem (JRP) models [1-3]. However,
in practice, managing products with independent demand often falls short of achieving
the desired level of customer satisfaction [4]. Therefore, studies have long proposed that
dependent demand should be considered in inventory management and production plan-
ning decisions. Stock-dependent demand [5], and demand for substitute products [6,7]
are common non-independent demands in research. In recent years, there has been a
significant increase in research on non-independent demands, leading to the development
of a broad category of inventory and production planning models and decision-making
methods for such demands [8,9].

Cross-selling implies that the demand for or sale of a major item will lead to an
additional demand for its minor items, making it another significant factor in causing non-
independent demand. Agrawal et al. [10] introduced the concept of “itemset” in the context
of cross-selling, which generalized the description of cross-selling effects and expanded
its application domain. Some scholars have addressed the issue of product selection in
inventory by using association rules to reflect the impact of cross-selling effects [11-13].
Recently, the attention of scholars has focused on cross-selling in omnichannel strategies,
cross-selling in recommender systems, and the usage of data mining methods in cross-
selling. Liu et al. [14] have focused on omnichannel retailing with different order fulfillment
and return options and found that the cross-selling benefit and the offline search cost have
a significant impact on the retailer’s optimal omnichannel strategy. Yang and Ji [15]
discussed the impact of cross-selling on managing consumer returns in omnichannel
operations. Ghoshal et al. [16] have studied recommendations and cross-selling pricing
strategies when personalizing firms’ cross-sell. Mokhtari [17] has addressed an economic
order quantity (EOQ) model to determine the joint ordering policy for two products under
completion and substitution conditions. Scholars have also used data mining methods to
study multiproduct newsvendors with cross-selling and narrow-bracketing behavior [18].
Although these studies have given us many new insights, it is still order strategies that are
most closely related to cross-selling.

In the field of inventory management, there have been some advancements in order
policies that have considered cross-selling effects [19]. Zhang [20] provided a partial back-
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ordering EQO model to handle correlated demands caused by cross-selling in the context
of the joint replenishment of multiple minor items. This led to the proposal of a series of
JRP models that consider correlated demand caused by cross-selling, and a set of heuristics
and exact solution algorithms have been generated around these models [21-23]. However,
existing studies have only examined the management problem for one major item and
one minor item [24] or the joint replenishment problem (JRP) for one major item and
multiple minor item [21]. The many-to-one cross-selling JRP problem still needs to be
studied further.

To address the gaps in existing research, this paper sets a more universal application
scenario where multiple major products correspond to one minor product for the joint
replenishment problem with cross-selling effects. Specifically, in the analysis of correlated
demand caused by cross-selling, we divide the relationship of products into major items
and minor items. One shared minor item can be applied to multiple major items. For
example, a laptop computer may require multiple complementary products such as mice,
keyboards, memory sticks, CPUs, and so on, while one of the minor product (e.g., mice,
keyboards, memory sticks) can also be used in multiple electronic products such as laptops,
desktop computers, and tablets. By proposing the JRP under this scenario and designing
corresponding algorithms to solve the optimization problem, we believe that our research
can solve the replenishment problem with the partial delayed delivery and related demand
determinism caused by many-to-one cross-selling, which extends current relevant research.

The rest of this paper is organized as follows. Section 2 describes the model construc-
tion, that is, a joint replenishment problem with cross-selling effects considering one shared
minor item. Section 3 addresses the analytical optimization algorithm for our proposed
model, including objective function transformation, analytical process, and optimization
strategy. Section 4 provides a numerical example for illustration. A detailed sensitivity
analysis is performed in Section 5 around the numerical example to observe our model
under various parameters. The paper concludes in Section 6.

2. Modeling Analysis
2.1. Model Assumptions

Previous research on deterministic EOQ often limited one major item to be associated
with one minor item [20,25]. In our work, this limitation is removed, making the model
applicable to a wider range of problems. Assume that the demand for one shared minor
item is related to the demand of N major items whose delivery can be partially delayed.
Due to cross-selling, the sale of the major item may lead to additional demand for the
shared minor item, which can be sold either separately or jointly with the major item. The
inventory of the associated minor item will be reduced when the major item is shipped out.

For the other parts of the assumptions, we follow classic practices from the past around
deterministic EOQ [24-26]. In other words, even though new work exists that improves
the underlying model in various directions to bring it closer to reality, considering the
complexity of the solving, we only extend the original classical models, keeping their
assumptions intact. This paper mainly assumes that the major item has different cycles and
the cycle of the minor item has no multiple relationship with the cycle of major item. At
the same time, the following assumptions related to the model are given:

1.  Replenishment is instantaneous;

2. Delivery time is zero;

3.  The major item can be partially delayed, while the minor item should not be kept
in stock;

4. The unit loss of the major item will reduce the demand for the minor item at a
constant rate;

5. The demand and cost of each major item are independent of each other.

In real life, the replenishment cycle of various products cannot be exactly the same,
especially for large manufacturers. For upstream manufacturers, similar to the retail
sector, they need to adjust their production schedules for various products based on
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demand and source the required raw materials from downstream manufacturers. The same
replenishment cycle will lead to excessive transportation pressure and cause problems such
as capital turnover, so for different major products the replenishment cycle of each product
is not the same. For example, laptop manufacturers produce computers with different
functions, including game books, office books, and so on. If the replenishment cycle is the
same, it is not only unrealistic in terms of customer demand but it is also unable to have a
large inventory to store too many products for replenishment at one time.

2.2. Meaning of Variables in the Model

The meanings of the variables (exogenous variables and decision variables) to be used
in this section are shown in Tables 1 and 2 below.

Table 1. Variable Definition.

D; Demand per unit of time for major item i per unit of time, in pieces/year
A; Fixed order cost of major item i, in $/order
Coi Opportunity cost of lost sales of major item 7, in $/unit

Chi Holding cost per unit of time per unit of major item i, in $/piece/year

Cpi Cost per backorder of major item i per unit of time, in $/unit/year

Bi Backorder rate of major item i
Dj/ Demand per unit time of associated minor item j per unit time, in piece/year
Al Fixed order cost of minor item, in $/order

Co' Opportunity cost of lost sales per unit of minor item per order cycle time, in $/piece
G’ Holding cost per unit of minor item per unit of time, in $/piece/year

A Proportion of sales loss of minor items caused by sales loss of major item i
T Order cycle

Q; Order volume

F; Inventory/actual demand

Table 2. Table of interpretation of decision variables.

To Order cycle time of related products
T Order cycle time of major items, i.e., basic order cycle, in years
F Demand satisfaction rate of major items

2.3. Model Description

According to the basic deterministic EOQ model [25], which allows for stock-outs, the
ordering cost per unit of time for major item i can be shown by Equation (1).

T; 2

A; Cy,;D;T;.F? .Cp,D;(1 — F)?
Ly GDBE | PGDZEY copa-pya-R) )

E ( Ti ’ F i ) =

There has been some work introducing cross-selling into the inventory management

problem [19], and we use the same approach to construct our model. Similarly, the cost per
unit of time function for the minor item can be given by Equation (2).

A X
I'(To, F) = T +3
im1

)\izqq C, (D' — AD))T; )

D TiF? 4+ A;CoDi(1— B) (1 — F;) + 5

The final objective function is to minimize the ordering cost of the items, i.e., the sum
of the unit time cost of all major items plus the unit time cost of the minor item, and then
the total ordering cost of the manufacturer per unit time can be obtained, as shown in
Equation (3).

N
minl (T, To,F) = Y Ii(T;, F;) + T'(To, F;) (3)
i=1
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3. Model Solving
3.1. Objective Function Transformation

The analytical solution method is chosen in this section to derive the results of the
model optimization problem established in Section 2. Compared with the computer simu-
lation solution, the analytical solution does not require complex programming algorithms
or simulation calculations, and the results obtained by mathematical derivation are more
theoretical and more accurate than the numerical simulation results.

First of all, the objective function is written for the above optimization problem as
shown in Equation (4), i.e., the expansion form of Equation (3).

N C /\C .C:D; (1 — E)2
I'(T, Ty, F) = Z% Z<hl+z )DTP2+ ﬁ wDi(1 -~ F)
i=1 i

2
+g (Coi+)\iC(;)Di<1_.Bi>(l -F) (4)

2 To

As assumed in the model in Section 2.1, the demand and cost of each major item
are independent of each other, so the total optimization cost and the cost of each major
item are equivalent to the cost generated by the major item and the optimization of the
addition term can be converted into the optimization solution of each term. By collapsing
the total cost with respect to the cost of each major item and the cost due to the major item

as I';(T;, F;), Equation (4) can be written as:

N o A/
TT, (T, F) 5
0 12 11 TO ()
CpiD C, (D' — A;D;
G pre PGP Ry (e + acDi - g1 - By + HE AR

For ease of readmg, i(T;, F;) is abbreviated as F in the derivation and calculation
section later in this section. In addition, in order to facilitate the solution and enhance
the readable lines of the solution step, the non-decision variables in (6) are organized into
the form of simplified coefficients, which are, respectively, Gi;, Goi, Gs;, G4;, as shown in
Equations (7)—=(10). According to the definition of each variable, it can be seen that they are
positive real numbers greater than zero.

Gy = MD 0 7)

Gy = PCHDi 5 g ®)

Gsi = (Coi + AiCo) Di(1— B;) > 0 )
Gy = M >0 (10)

Substituting G1;, Gy;, Gs;, G4; into Equation (6), a concise representation of I'; can be
obtained, as shown in Equation (11).

~

A.
Ii=+ GuTiF? + Gai(1 — F;)* + G3i(1 = ;) + GyT; (11)
1
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At this time, the total cost, I'(T, Ty, F), is a function only related to T, F, Tp, and
this function can roughly separate T and F, so that the two have only one multiplying
term, which is a very good optimization function and can bring a significant amount of
convenience in the derivation.

3.2. Model Solving Procedure
Having simplified this equation, we can find the analytic solution of this function by tak-

ing the derivative of I';. According to the following derivation result, Equations (12) and (13),
it can be seen that this is a binary quadratic equation.

dr;

i — AT+ G;F? + Gy (12)

ar;
Tﬁ = 2GyiTiF; — 2Gyi + 2GoiF; — Gs; (13)
1
According to the first-order condition, the following optimization solution steps can
be made. First, set Equation (12) to 0, i.e., —Al-sz + G1;F? 4 G4 = 0, and the expression
of T;* can be calculated, as shown in Equation (14).

T = 7‘241' (14)
G1iFi” + Gy

Similarly, if Equation (14) is set to O, i.e., 2Gy;TiF; — 2Gp; + 2Gy;F; — G3; = 0, the
expression of optimal F;* regarding T; can be calculated, as shown in Equation (15).

«_ 2Goi+ Gg;

— g ot 1
! 2G11‘T1’ +2G21‘ ( 5)

Since T;* is included in the expression of E?, the expression of F* (the square of
Equation (15)) can be substituted into Equation (14) to facilitate the solution of the expres-
sion of F; without T;". The square of Equation (15) is shown in Equation (16).

4Gy” +4G2iGsi + G _p2 (16)
4G1iTi2 + 8G1;Go; T; + 4G2i2 '

Substituting the result of Equation (16) into Equation (14), an equation containing only
one decision variable, T;, can be obtained, as shown in Equation (17).

G1i(2Gy;i + Gg;)? _Ai— Gy T
(2Gy;T; 4 2Gy)? T2

(17)

It is easy to see that Equation (17) is a function only related to T, so it is inevitable
that an analytical solution of T is obtained. The form of Equation (17) is rewritten into a
polynomial form, as shown in Equation (18).

4Gy G Ti* + 4G1;Gi G T + G5 ° T/
= 4A;Gy; T 4 8A;G1;Gy T; + 4A;Gy* — 4Gy, Gy T (18)
—8G1;GpiGy Ty — 4G2.Gy T
After combining similar terms, the simplified form of Equation (18) can be obtained as
Equation (19).
4G1iGyTi* + 8G1iGriGai T, + [G1i(2Gyi + G3i)* — 4A,Gy; + 4G3,Gyi] T}

5 (19)
—8A;G1iGy; T; + 4A,‘G2i =0



Systems 2024, 12, 6 6 0of 16

According as Equation (19), this is a quartic equation of T, and the optimal solution of
T* is the solution of this quartic equation.

3.3. The Optimization Strategy of the Model

In order to facilitate the representation and calculation in the process of model opti-
mization and enhance the simplicity of the operation process, Equation (6) was re-simplified
and written in the following form as Equation (20),

~

A.
Li(T;, F) = Tl + Tiu(F) + v(E), (20)
1

where u(F;) and v(F;) in Equation (20) are two functions of F;, as shown in Equations (21) and (22).
u(F;) = GyFf + Gy (21)

0(F) = Gyi(1 - E)* + G3(1 — F) (22)

Therefore, Equation (14) can be written as Equation (23) in the following form:

* O Ai
T/ (F) = u(F) (23)
Substituting Equation (23) into Equation (20), the form of Equation (24) can be obtained
as follows:
L(E) = —2i_ L u(F) +o(F)
1 1 Al u (FZ) 1 1
u(F)

-u(F) +o(F) @)

= AZ[u(E)]} + AR[u(E))} + o(F)
=2/ Au(F;) +o(F)

It is easy to show that the function I;(F;) is continuous on an interval of F € [0, 1], so
the optimal solution can be obtained by taking the derivative.

Firstly, the first and second derivatives of functions u(F;) and v(F;) are given, as shown
in Equations (25)—(28).

w' (F) = 2GyF (25)
u" (F) = 2Gy; (26)
V' (F;) = 2GyiF; — 2Gy; — Gg; (27)
v" (F;) = 2Gy; (28)

Then, the first and second derivatives of I;(F;) can be calculated, as shown in
Equations (29) and (30).

or; "(F 2Gy;F;
o5 = VA ) +0 (F) = VAL +2GyF; — 2Gyi — G (29)

oF; Vu(E) u(F)
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T, VA Rw (F)u(F) — (w(F)?*
2r. 3 +0 (Fi)
O°F; 2[u(F;)]z (30)
_V A (SGi‘Fi — ?Gin‘z) 1 2Gy;

2[u(F))2

According to Equations (7)—(9) and (21) and the definition of satisfying rate F;, the
following conditions can be easily obtained:

G1;>0,0<F <1, 2Gy >0, M(F,') >0
Therefore, it is easy to draw the inequality, as in Equation (31).

8G},F; —4G3F? > 0 (31)
2T
1
02F;
the second-order condition of convex function, it is obvious that I';(F;) is convex on the
domain of F;.
Since F; € [0, 1], three cases are discussed below.
Casel: F,=0

As the inequality relation of Equation (31), it is easy to deduce

> 0. According to

or;
As shown in Figure 1, when F; = 0, a—Fl = —2Gy; — Gz; < 0 can be calculated. It
dE
follows from the first-order property that I;(F;) is monotonically decreasing near F; = 0,
which means that the optimal solution can never be taken at F = 0.

LL(F)

[}
v
e

Figure 1. The situation of I';(F;) when F; = 0.

Therefore, the following conclusion can be drawn: the objective function cannot obtain
the optimal value when F; = 0.

Case2: FF=1

If F; = 1, Equation (32) can be calculated.

@ . \/Ai . 2G11‘
JF |Fi=1 V Gy + Gy

Since Equation (32) depends on parameter values, its positive and negative values are
difficult to determine, so it needs to be discussed by case.

As shown in Figure 2, similar to the case of a major item with one minor item, the
optimal solution F;* € (0,1) when Equation (32) > 0, i.e., the optimal solution, T;*, is the
positive real root of the quartic equation of one variable, Equation (19), and then the optimal
solution, F;*, is obtained by Equation (15).

+ 2Gy; — 2Gy; — Gg; (32)
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L(F)
‘1 > F;
Figure 2. The situation of I';(F;) when F; = 1.
In this case, we can take the derivative of I}, Equation (33).
or; VA;
o=—2 L Gy >0 (33)

9F;|F /Gy + Gy
By simplifying Equations (5) and (33), we can obtain:
VA
VGii + Gy

Substituting the original value of Gy;, Gs;, G4; into Equation (34), a critical value of the
out-of-stock rate can be obtained as follows:

—G3 >0

A.
\/% — (Coi + AiCo")D; + (Coi + AiCo' )Di B > 0
1 1
A.
(Coi +AiCo" ) DiB; > (Coi + 1iCo' ) D; — \/% (34)
1

(Coi +AiCo' )Di/ Gy + Gy
1 A;
i >1— 4/ !
i (Coi + AiCo")D; Gy + Gy

Since the optimal solution to T'is T* = , / ﬁ, Equation (34) can be rewritten as
Equation (35), as follows:

1
; U [ L
Bi > B, CorAcy (35)

where a B is determined by Equation (35); it is the lower threshold of the out-of-stock rate.
Therefore, the process of the optimal strategy is as follows:

1. For each majoritem, a B is determined to judge the relationship between the shortage
rate and the critical value.

2. When the shortage rate is far less than the critical value, the optimal solution of F;" is 0
or 1 and the corresponding value of T} is calculated according to Equation (14), then
the value of the objective function is calculated. A group of F; and T;* that makes the
objective function smaller is selected as the optimal solution.

3. When the shortage rate is greater than the critical value, the optimal T is a positive
real root of the quadratic equation in Equation (19) and the corresponding F is
calculated according to Equation (15).
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4.  The strategy of one major item and one minor item is used to determine the T}, F;* of
each major item.

5. Tpis determined by assuming that Ty is the largest period of all T;.

6.  All the cost items are totaled to find the final total cost.

4. Numerical Computations

A numerical example is used to validate the algorithm in this section, which includes
different cases where the shortage rate is greater than or less than the critical value. To
ensure that this numerical example is appropriate for the context of our study, i.e., the
demand for one minor item is related to the demand for N major items, we introduce a
scenario that is close to reality: Consider the minor item as one type of mouse of a certain
brand, and the major items as three different models of laptop computers. Product 1 repre-
sents the laptop with a long life cycle and a general market demand. Product 2 represents
the emerging laptop with a short life cycle and high market interest. Product 3 represents
the laptop with a long life cycle and relatively low market demand for a specific group of
people. According to practical experience, one kind of mouse is generally applicable to
many models of laptops, and the demand for the mouse tends to increase after the sale of
laptops. Different models of laptops are applicable to different groups of people, and there
is usually a 10-fold or more difference in the demands. Specific parameters are shown in
Tables 3-5:

Major items:

Table 3. Major item Dataset.

Requirement D  Fixed Ordering Cost A Cost of Sales Losses C, Holding Cost Cj, D.e livery Allov:vable
Product (Pieces/Year) ($/Time) ($/Piece) ($/Piece/Year) Delaying Cost C, Delivery
($/per/Year) Delaying Rate
i=1 400 200 5 2 10 0.7
i=2 800 600 15 30 8 0.2
i=3 10 400 2 1 5 0.96
Minor item:
Table 4. Minor item Dataset.
Product Requirement D Fixed Ordering Cost A Cost of Sales Losses C, Holding Cost Cj,
(Pieces/Year) ($/Time) ($/Piece) ($/Piece/Year)
Mouse 400 200 5 1

The proportion of related product sales loss caused by the shortage of a major item:

Table 5. The proportion of related product sales loss caused by the shortage of major item i.

i = 1 1 = 2 1 = 3
A; 0.1 05 0.3

The critical value of 3 of each major item can be calculated as Table 6:

Table 6. The critical value of § of each major item.

i = 1 ‘l = 2 l = 3
Bi 0.9995 0.9998 0.9595

According to the algorithm, the optimal T and F of each major item can be calculated
as Table 7:
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Table 7. The optimal T and F of each major item.
Optimal Solution Ma]f)r Item Ma].or Item Ma].or Item
i=1 i=2 i=3
T; 1.0541 2.4759 1.4173
F; 1 1 0.0541

The higher the cycle Ty of the minor item is, the lower the total costis. Set Ty = maxT; =
2.4759. Substituting all the T;, F;, Ty obtained into the original objective function, the total
cost of the optimal solution of this example can be obtained as minT’;(T;, F;, To) = 1370.83.

5. Model Sensitivity Analysis
5.1. Sensitivity Analysis of Model Optimal Cost to Ordering Cost

The numerical example in the numerical calculation experiment in the previous section
will continued to be used in this section. The ordering cost A of the minor item and the
ordering cost A; of the major item i are respectively generated, and 10 different examples
are calculated according to the range [100, 10,000] to obtain the optimal solution by keeping
other parameters in the numerical example unchanged, as shown in Figures 3 and 4.

3500 1

3000 -

2500 -

Optim Cost

2000 1

1500 1

2000 4000 6000 8000 10,000
A

Figure 3. Optimal total cost curve varying with ordering cost of minor items.

5000 -

4500 -

Optim Cost
N w w P
[$)] (=] [32] [=]
o o o o
o o o o

2000 4000 6000 8000 10,000
Al

Figure 4. Optimal total cost curve varying with ordering cost of major items.

As can be seen from Figures 3 and 4, the optimal result calculated by the model is
greatly influenced by it (reflected in the high rate of change in the figure) when the ordering
cost of minor item A is within the interval of [100, 2000]. At the same time, the optimal
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result calculated by the model is influenced very little by ordering cost, A;, of the major
item i, which is close to linear influence.

5.2. Sensitivity Analysis of Model Optimal Cost to Demand Rate

By keeping other parameters in the numerical example unchanged, the demand rate,
D, of the minor item and the ordering cost, D;, of major item i are respectively calculated
for 10 different examples in accordance with the ranges [400, 2200] and [200, 2000] to obtain
the optimal solution, as shown in Figures 5 and 6.

3500 A

w
o
[=]
o

2500 1

Optim Cost

2000 1

1500 1

400 600 800 1000 1200 1400 1600 1800 2000 2200
D

Figure 5. Optimal total cost curve varying with the demand rate of minor item.

1280

1300 |

1320 A

1340 |

Optim Cost

1360

1380
200 400 600 800 1000 1200 1400 1600 1800 2000
D1

Figure 6. Optimal total cost curve varying with the ordering cost of major item.

As can be seen from the two figures above, when the demand rate, D, of the minor
item is within the range of [400, 800], the optimal result obtained by the model calcu-
lation is greatly affected by it. At the same time, the optimal result calculated by the
model is influenced very little by the ordering cost, D;, of major item i, which is close to
linear influence.

5.3. Sensitivity Analysis of Model Optimal Cost to Order Backlog Cost

By keeping other parameters in the numerical example unchanged, 10 different exam-
ples of order backlog cost, Cp;, of major item i are generated in accordance with the range
[1, 30] and the optimal solution is obtained, as shown in Figure 7.

As can be seen from the figure above, the optimal cost calculated by the model
proposed in this section will not be affected by the order backlog cost, Cy;, of major item i.
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1420

1400 1

Optim Cost

1340 1

1320

5 10 15 20 25 30
Cb

Figure 7. Optimal total cost curve varying with the ordering cost of major item.

5.4. Sensitivity Analysis of Model Optimal Cost to Inventory Carrying Cost

By keeping other parameters in the numerical examples unchanged, 10 different
examples are respectively generated for the inventory holding cost, C,, of the minor item

and the inventory holding cost, Cj,;, of major item 7 in accordance with the range [1, 10] to
obtain the optimal solution, as shown in Figures 8 and 9.

4000 -

3500

w
o
o
o

Optim Cost

2000 -

1500

i 2 3 4 5 6 7 8 9 10
Ch

Figure 8. Optimal total cost curve varying with the ordering cost of major item.

1375

1374

N
w

~

w
s

Optim Cost
)
N

1371

1 2 3 4 5 6 7 8 9 10
Chl

Figure 9. Optimal total cost curve changing with inventory carrying cost of the major item.
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As can be seen from the two curves above, the optimal result obtained by this model is
influenced by the inventory holding cost, Cj,, and the inventory holding cost, C,;, of major
item 7, which is very small and close to linear.

5.5. Sensitivity Analysis of Model Optimal Cost to Opportunity Cost

By keeping other parameters in the numerical examples unchanged, 10 different
examples are respectively generated for the inventory holding cost, Cj, of related products
and the inventory holding cost, Cy,;, of major item i in accordance with the range [1, 10] to
obtain the optimal solution, as shown in Figures 10 and 11.
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Figure 10. Optimal total cost curve changing with the opportunity cost of minor item.
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Figure 11. Optimal total cost curve changing with inventory carrying cost of major item.

As can be seen from the two figures above, the optimal result calculated by this model
is influenced very little by the opportunity cost of the minor item, C,, and the inventory
carrying cost, C,;, of major item i and only fluctuates within a very small range.

5.6. Sensitivity Analysis of Model Optimal Cost to Order Backlog Rate

By keeping other parameters in the numerical examples unchanged, 10 different exam-
ples are respectively generated for the order backlog rate ; of major item i in accordance
with the range [0.1, 0.95] to obtain the optimal solution, as shown in Figure 12.
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Figure 12. Optimal total cost curve with the change of order backlog rate ; of major item i.

As can be seen from the two figures above, the optimal result calculated by this model
is influenced very little by the opportunity cost of the minor item, C,, and the inventory
carrying cost, Cp;, of major item i and only fluctuates within a very small range. The
optimal cost calculated by the model presented in this section will not be affected by the
order backlog rate, §;, of major item i. Through the analysis of the solution steps, it can be
seen that once the 3; exceeds the critical value, it will not affect the solution process, and
then will not affect the optimal solution obtained by the model calculation.

5.7. Sensitivity Analysis of Model Optimal Cost to Sales Loss Rate

By keeping other parameters in the numerical examples unchanged, 10 different
examples are respectively generated for the loss ratio, A;, of major item 7 to minor item
sales in accordance with the range [0.1, 0.95] to obtain the optimal solution, as shown in
Figure 13.
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Figure 13. Optimal total cost curve changing with the loss rate of sales of major item to minor item.

As can be seen from the figure above, the optimal cost calculated by the model pro-
posed in this section has a great influence on the optimal cost in the interval A; € [0.8, 0.95],
and it is close to linear influence in other intervals.
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6. Conclusions

In this paper, we consider solving the many-to-one cross-selling JRP problem, which
leads to the certainty of partial late delivery and related demand. We extend the proposed
similar model to make it capable of handling multiple replenishment cycles and the cross-
selling of multiple major items with one minor item, allowing partial late delivery. In this
paper, various possibilities are discussed under the condition of the demand satisfaction
rate of major items’ F. The optimization analytic expression of the model is finally obtained
by utilizing the convexity of cost function for F and using the first-order conditions in
optimization theory.

The proposed method has been validated in numerical examples of the model, and the
acquisition of accurate solutions provides strong evidence for the effectiveness of the proposed
approach. The model and approach offer a competent solution for practical applications.

Additionally, if the replenishment cycle of major items is assumed to be consistent in
real life, the decision space will often be reduced. Therefore, the relaxation of the conditions
of an inconsistent replenishment cycle can also effectively increase the decision space and
give the model proposed in this chapter a certain application prospect.

We also considered a widespread scenario in reality, that is, multiple major items
versus one shared minor item under the cross-selling effect. From the perspective of
practice, our paper may be able to provide some value to enterprises under appropriate
conditions. Based on the numerical experiments in Section 5, we can see that some metrics
of the minor items can significantly affect total ordering cost when compared to the major
items. Specifically, for the ordering cost, demand rate, and inventory carrying cost, under
certain conditions (being in a certain interval, controlling for other metrics) total ordering
cost is strongly influenced by the minor items and weakly influenced by major items. The
insight from this is that if an enterprise wants to reduce its total costs in a more efficient
way, under similar conditions, it should focus more on adopting a means of controlling
the indicators for minor items. To avoid sudden losses, the enterprise should prepare in
advance to prevent large fluctuations caused by minor item suppliers.
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