
Citation: Zhang, C.; Liu, W.; Yan, C.;

Ye, X.; Chen, J. Optimization Method

for Allocating Peak-Period Parking

Demand in Hub Parking Lot Clusters.

Systems 2024, 12, 404. https://

doi.org/10.3390/systems12100404

Academic Editor: Mahyar Amirgholy

Received: 3 September 2024

Revised: 26 September 2024

Accepted: 27 September 2024

Published: 29 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Optimization Method for Allocating Peak-Period Parking
Demand in Hub Parking Lot Clusters
Chu Zhang 1 , Weidong Liu 2, Chenyu Yan 3, Xiaofei Ye 4 and Jun Chen 1,*

1 Jiangsu Key Laboratory of Comprehensive Transportation Planning and Simulation, Southeast University,
Nanjing 211189, China; zhangchu0720@seu.edu.cn

2 School of Transportation, Southeast University, Nanjing 211189, China; welldone@seu.edu.cn
3 Department of Transportation, Subei Navigation Management Office, Huai’an 223002, China;

chenyuyan7301@foxmail.com
4 Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China; yexiaofei@nbu.edu.cn
* Correspondence: chenjun@seu.edu.cn

Abstract: With the expansion of urban scale and the popularization of multi-modal transportation,
transportation hubs, as the link of multi-modal travel, are becoming increasingly important in urban
development and residents’ lives. In situations of high parking demand, the increase in road traffic
volume and parking search delays exacerbates the service pressure on hub parking lots and the
traffic congestion on surrounding roads. Therefore, reasonable parking demand allocation is one
of the key solutions to this problem. Based on the analysis of the vehicle parking search process,
this paper constructs a model for estimating parking search delay on roads outside hub parking lots
and proposes an optimization model for parking demand allocation aimed at minimizing the total
parking search delay of vehicles. Finally, taking a major transportation hub in Nanjing as a case study,
data were obtained through field investigations and simulation experiments to identify peak parking
demand periods and calibrate the model parameters. The results show that the average vehicle delay
was reduced by 4.5%, with a total reduction of 13,860 s in vehicle delay for parking demands at the
hub within one hour. Therefore, by optimizing the allocation of parking demand, the average delay
for vehicles searching for parking can be reduced to a certain extent.

Keywords: hub parking cluster; peak parking demand periods; vehicle delay model; parking demand
allocation; VISSIM simulation

1. Introduction

Transportation hubs are major locations for transferring passengers and freight in
cities. They are also critical nodes in urban road networks, playing an essential role in
modern urban transportation systems. As gathering places for multimodal transport, these
hubs face significant pressure for traffic conversion. The influx of a large number of private
vehicles entering and exiting the hubs to drop off and pick up passengers poses severe
challenges to the operational efficiency of the hubs and the traffic conditions both inside
and around them.

Within large-scale transportation hubs, multiple parking facilities are often established,
forming a hub parking cluster. These clusters, interconnected by urban roads, have a
direct impact on the hubs’ capability to accommodate private vehicles. However, the
road resources around transportation hubs are limited. They need to accommodate both
vehicles with hub parking demands and those with non-hub parking demands. This
situation becomes particularly problematic during peak demand periods. The limited
parking resources at the hub conflict with the high volume of parking demand. As a result,
the service efficiency of the parking lots decreases, leading to congestion on the roads
surrounding the hub.
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Existing research on the parking demand of vehicles in a hub parking cluster mainly
focuses on the search process within parking lots. There is a lack of studies on the search
process for vehicles outside the parking lots on the urban roads. However, the off-street
parking search process is an important component of the overall parking search process
for vehicles in a hub parking cluster. During peak demand periods, the off-street parking
search process for vehicles is characterized by higher traffic volumes and complex road
structures compared to the on-street parking search process. Therefore, this paper studies
the parking demand allocation method for hub parking facilities during the peak demand
periods, aiming to effectively improve the parking efficiency and operational efficiency of
transportation hubs. Reasonably allocating parking choices for vehicles at the terminals can,
significantly, provide clear driving targets for vehicles, reduce delays caused by disordered
parking searches, and alleviate traffic pressure on transportation hubs.

2. Related Research

This paper primarily encompasses research from the following three angles: investi-
gation of driving characteristics under high traffic volume, analysis of parking demand
allocation, and calibration of traffic simulation parameters.

In the theoretical research on high-volume traffic, Reference [1] introduced bounded
rationality into the field of transportation, arguing that travelers cannot and do not always
choose the option with the highest utility when making decisions. Reference [2] started
with individual travelers and then expanded the model to heterogeneous travelers, thereby
achieving a Rationally Inattentive User Equilibrium (RIUE). Reference [3] assumed that the
inflow and outflow of road segments were equal, averaging the queueing delays across
all demand flows, and posited that all demand flows experience delays when traversing
the road network. After a detailed discussion of the characteristics of traffic flow in
complex networks, Reference [4] analyzed network congestion. To describe the dynamic
traffic flow characteristics of urban road networks, Reference [5] employed Morlet wavelet
analysis to analyze the traffic flow characteristics. Reference [6] conducted an in-depth
analysis of the traffic flow characteristics on King Fahad Road in the Al-Ahsa region of
Saudi Arabia, utilizing survey data to assess the various factors affecting traffic flow. The
study primarily focuses on key characteristics such as flow, density, and speed, aiming
to establish a relationship between flow and density. Reference [7] clustered the traffic
congestion patterns in Beijing under different flow conditions, revealing that these patterns
vary significantly during the morning and evening peak hours. Notably, Monday and
severely congested weekday morning peaks are particularly pronounced, while Friday and
regular weekdays exhibit more severe characteristics during the evening peak. Reference [8]
evaluated the traffic characteristics of the road network in Ramadi, Iraq, using sustainability
indicators to analyze road efficiency. Reference [9] focused on the highways connecting
urban agglomerations characterized by high traffic flow and density, establishing a dynamic
collision risk assessment model that effectively evaluates traffic safety risks in high-flow
vehicle environments.

In the study of parking demand allocation, Reference [10] considered the personalized
needs of parking users and the avoidance of traffic conflicts, proposing an automatic park-
ing allocation mechanism. They selected decision factors such as lane occupancy, travel
distance, walking distance, and the occupancy of adjacent parking spaces to establish an
optimal parking allocation model. Reference [11] investigated the problem of optimal
allocation of vehicles for parking. Reference [12] proposed a novel intelligent parking
system based on matching theory, which allocates parking spaces while simultaneously
considering the preferences of both drivers and parking managers. Reference [13] proposed
a Personalized Parking Guidance Service (PPGS) by constructing a bi-level programming
model to describe the relationship between the personalized parking guidance information
system and drivers. The simulation results show that under this model’s guidance, peak
congestion time is significantly reduced. Reference [14] introduced a distributed parking
space allocation framework based on an adaptive pricing algorithm and virtual voting,
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providing users with a fair, fast, and cost-optimal parking allocation method. Reference [15]
discussed parking demand, drivers’ parking choice behavior, and parking-related policies,
suggesting that factors such as accessibility, walking time, and parking fees should be given
more attention in planning and policymaking to improve the efficiency and resource uti-
lization of parking systems. Reference [16] proposed a parking space allocation model that
considers the transition between dynamic and static traffic, optimizing parking space allo-
cation by minimizing travelers’ total travel time, thereby alleviating the resource waste and
traffic congestion caused by the temporal and spatial concentration of parking demand. Ref-
erence [17] proposed a data-driven parking demand estimation framework, first dividing
parking areas through statistical information grids and multi-density clustering algorithms
and then estimating parking demand using support vector machines. Reference [18] pro-
posed an integrated optimization strategy for dynamic parking space allocation, aimed at
systematically optimizing the use of curbside parking spaces. Reference [19] proposed a
machine learning- and game theory-based approach for dynamic pricing and the allocation
of parking spaces in curbside parking scenarios. The problem is modeled as a Stackelberg
game and solved by finding its Nash equilibrium. Reference [20] developed a polynomial
logit model to study drivers’ parking choice behavior, based on data obtained from a
revealed preference survey on drivers’ parking type choices and related factors in urban
areas. Reference [21] established a rolling shared parking allocation model, optimizing
the supply–demand matching in parking-dense areas by maximizing platform revenue
and minimizing parking users’ travel costs. Reference [22] proposed a multi-agent deep
reinforcement learning framework to generate efficient online parking allocation strategies.
Reference [23] viewed urban parking management as an online localized resource allocation
problem and proposed a multi-agent system to address it. Reference [24] presented a frame-
work for shared parking allocation and guidance optimization for autonomous vehicles
and validated its effectiveness on the urban road network of Xi’an. Reference [25] designed
a two-stage network-level parking space allocation method, first assigning parking lots to
users using a polynomial logit model and then solving the constructed model using the
NSGA-II algorithm by collecting indicators such as the number of rejections, occupancy
rates, and profits of each parking lot to ensure the most favorable profits. Reference [26]
proposed two linear integer programming models, the first for assigning a parking space
to each driver and the second for assigning two parking spaces when no single space
was suitable, solving the models using genetic algorithms and tabu search algorithms.
Reference [27] designed a scalable dynamic parking allocation framework that effectively
improves the quality of parking space allocation. Reference [28] formulated the parking re-
source allocation optimization problem as an integer linear programming (ILP) problem to
minimize total costs and validated the feasibility and effectiveness of the proposed method
based on real data. Reference [29] studied the parking allocation problem for multiple
destinations and multiple parking lots, establishing and solving an equivalent mathemat-
ical programming model by analyzing the various factors influencing drivers’ parking
choices. Reference [30] addressed the issue of nighttime parking difficulties by proposing
an integer linear programming model for the nighttime sharing of large shopping mall
parking spaces. Reference [31] introduced an adaptive ant colony optimization algorithm
for solving the parking allocation problem, which shows better performance compared to
traditional algorithms. Reference [32] considered the impact of heterogeneity in temporary
parking demand on allocation decisions and optimized parking space allocation through
modeling to improve the utilization rate of parking resources. Reference [33] studied the
following two allocation models for shared parking spaces in residential areas: “real-time
allocation” and “fixed-time allocation”. The results showed that the real-time allocation
model exhibited user optimization advantages when supply exceeded demand, while
the fixed-time allocation model demonstrated a more balanced performance in terms of
resource utilization efficiency and system revenue. Reference [34] proposed a constrained
optimization model for dynamic parking space allocation based on user priorities, parking
lot organization structure, and shift scheduling to intelligently allocate parking spaces. Ref-
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erence [35] investigated the allocation of shared parking spaces in hospitals and proposed
an allocation model based on cumulative prospect theory to alleviate parking difficulties.
Reference [36] proposed a nonlinear mixed-integer programming model to achieve optimal
matching between parking supply and demand and solved the model, with the effective-
ness of the model being validated through a case study in Beijing. Reference [37] proposed
an optimization model based on the Nondominated Sorting Genetic Algorithm (NSGA-II)
with an elite strategy, aiming to enhance the planning efficiency of autonomous vehicle
parking facilities. Reference [38] uses the Technology Acceptance Model to analyze factors
affecting users’ adoption of shared autonomous vehicles (SAVs) and their parking choices,
with the goal of improving urban traffic efficiency and sustainability. Reference [39] applies
a Multinomial Logit Model (MNL) to examine users’ behavior and influencing factors
when choosing parking applications, providing practical guidance for the development of
smart parking solutions, particularly in Ningbo’s context.

In the area of traffic simulation parameter calibration, Reference [40] proposed the
following nine-step process for calibrating the parameters in microscopic traffic simula-
tion models: selecting evaluation indicators, collecting observational data, determining
the parameters to be calibrated, designing experimental schemes, conducting simulation
experiments, establishing intuitive functions, identifying alternative calibration parameters,
evaluating simulation results, and verifying model validity. Reference [41] focused on
the calibration of urban traffic microscopic simulation models, emphasizing the multivari-
ate distribution of traffic characteristics. Reference [42] reviewed research on calibration
methods for heterogeneous traffic conditions based on VISSIM and discussed the various
methods for identifying and optimizing calibration parameters in VISSIM microscopic sim-
ulation software. Reference [43] conducted a detailed analysis of the advantages of VISSIM
in microscopic traffic simulation and developed a collaborative simulation platform based
on it. Reference [44] used VISSIM to calibrate and validate the car-following model based
on peak-hour traffic flow and driving data from Medina, Saudi Arabia. Reference [45]
calibrated the model using traffic flow and accident data from highways in Florida and
simulated the conditions to obtain delay results. Reference [46] analyzed and compared
29 different traffic simulation software programs to evaluate their applicability to various
real-world traffic scenarios. Reference [47] demonstrated the consistency between VIS-
SIM simulation results and actual measured values through field data analysis of four
signalized intersections in Miami, showing the effectiveness of this data-driven calibra-
tion method. Reference [48] proposed a dynamic calibration method based on detection
data and validated the calibration of driving behavior parameters in a case model using
VISSIM software.

According to the existing research, most studies focus on scenarios such as residential
areas, commercial districts, and hospitals, while there is relatively little research on large
transportation hubs. As critical nodes in urban transportation networks, transportation
hubs are characterized by high parking demand and turnover rates. Additionally, the
current studies often focus on parking demand allocation at the level of individual parking
spaces or static parking optimization. However, parking lots at transportation hubs are
typically organized in clusters, with multiple parking lots simultaneously serving a large
number of vehicles and vehicles dynamically choosing between different lots. Therefore,
optimizing parking demand allocation among parking lot clusters from a more macro-
level perspective, rather than merely focusing on individual parking spaces, is essential
for effectively guiding vehicle flow and reducing the delays caused by chaotic parking
searches. This study aims to fill this research gap through the following methods:

1. Focusing on parking clusters at transportation hubs, our research analyzes the parking
search process of vehicles on the surrounding roads and develops a corresponding
delay calculation model.

2. With the goal of minimizing total vehicle delay, our research transforms the parking
demand allocation problem among parking lot clusters into an optimization problem.
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3. Materials and Methods

To address the problem of optimizing the distribution of parking demand in hub
parking lots during peak periods, the methodology of this study can be divided into the
following two parts: (1) analyzing the delays that occur from the moment a vehicle starts
searching for a parking space until it enters the lot to establish a model for vehicle parking
search delays on the external roads of hub parking lots; (2) transforming the parking
demand distribution problem into an optimization problem based on the structure of the
hub road network, with the goal of minimizing overall parking search delays.

3.1. Notation

The symbols involved in the text and their corresponding explanations are shown in
Table 1.

Table 1. Symbols and Explanations in the Model.

Symbol Detailed Definition

Dr vehicle travel delay (s)

Dsl vehicle delay at signalized intersections (s)

Dc vehicle delay due to lane changing (s)

Dqu vehicle queueing delay (s)

Dit
The delay experienced by vehicles entering the surrounding roads of the hub from intersection i to reach the target

parking lot t (s)

Drit
The travel delay experienced by vehicles entering the surrounding roads of the hub from intersection i to reach the

target parking lot t (s)

Dslij
The delay experienced by vehicles at traffic signals when entering the surrounding roads of the hub from intersection

i to reach the target parking lot t (s)

Dct The lane change delay experienced by vehicles at parking lot t (s)

Dqut The queuing delay experienced by vehicles at parking lot t (s)

i Intersection number

t The number of parking lots accessible from intersection i

L Length of the roadway (m)

Lit The travel distance from intersection i to parking area t (m)

v Vehicle travel speed (m/s)

vs Free-flow vehicle speed on the surrounding roads of the hub (m/s)

R Duration of red light within a single signal cycle (s)

Rk Duration of red light within a single signal cycle at traffic signal intersection k (s)

T Total duration within a single signal cycle (s)

Tk Total duration of a single signal cycle at traffic signal intersection k (s)

tc Acceptable minimum gap (s)

tct Acceptable minimum gap at parking lot t (s)

t f
Following time (s), which refers to the headway between vehicles when a lane-changing vehicle has the opportunity

to merge into the target lane

t f t Following time at parking lot t (s)

qp Traffic flow rate of the target lane (veh/s)

qpt Traffic flow rate of the target lane at parking lot t (veh/s)

qn Initial lane traffic flow rate (veh/s)
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Table 1. Cont.

Symbol Detailed Definition

qnt Initial lane traffic flow rate at parking lot t (veh/s)

Qi Number of vehicles with parking demand at intersection i
µ Service rate of the gate machine (veh/s)

µt Service rate of the gate machine at parking lot t (veh/s)

λ Vehicle arrival rate (veh/s)

λt Vehicle arrival rate at parking lot t (veh/s)

pit The proportion of vehicles at parking lot t to the total arrival traffic flow at intersection i

c Number of service counters

3.2. Optimization Methods for Parking Demand Allocation during Peak Demand Periods in Hub
Parking Lot Clusters

To ensure that the research focuses on the influencing factors of road traffic flow, this
study first makes the following assumptions regarding the calculation process of delays.

Assumption 1: Vehicles can pass through the downstream intersection smoothly without
affecting the operation of vehicles on the segment. The assumption is intended to prevent scenar-
ios where complete traffic congestion results in excessively large traffic delay values that are
incomputable. Therefore, this assumption does not apply to situations of full congestion.

Assumption 2: Vehicles can easily find parking spaces after passing through the parking lot
barrier gate. The assumption is made because this research focuses solely on the delays
experienced by vehicles between the parking lots in the cluster, without considering
scenarios inside the parking lots.

Assumption 3: Pedestrians will only use the sidewalks at the intersections. This assumption
is intended to prevent vehicle delays caused by pedestrians crossing the road in violation of
traffic rules, which are not considered in the model. Therefore, this assumption is applicable
to areas with minimal or regulated pedestrian crossing behavior.

Assumption 4: There will be no vehicle pick-up and drop-off activities within the segment, nor
will there be any bus stops. This assumption is intended to prevent delays on specific roads
caused by the frequent starts and stops of public buses in practical applications. Therefore,
this assumption applies to road segments without frequent pick-up/drop-off activities or
bus stops.

Assumption 5: Vehicles will arrive at the traffic signal uniformly, and there will be no scenario
where a large volume of traffic arrives at the traffic signal simultaneously to wait. This assumption
is made because, when calculating signal-induced delays, the extent to which vehicles
experience these delays is uneven. By assuming that vehicles arrive uniformly, we can
focus on estimating the average delay. Therefore, this assumption is applicable in scenarios
where traffic flow is relatively stable.

Assumption 6: The arriving traffic flow at each intersection is homogeneous, with parking
demands and driving characteristics that are identical to those of traffic at other intersections,
ensuring that vehicles will not exhibit parking preferences for any specific parking lots. This
assumption eliminates the differences in the individual driver’s parking selection behaviors,
allowing the model to better analyze the overall distribution of parking demand.

Based on the above assumptions, the analysis of the vehicle searching for parking
process on the roads outside the hub parking lot can be divided into the following two
parts: searching for parking on the surrounding roads and queuing at the parking lot
entrance. The delays for these two parts are shown in Figure 1.
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hub parking lot.

1. Searching for Parking in the Vicinity of Transportation Hubs

After vehicles enter the surrounding roads from non-hub roads, they need to drive
on the surrounding roads. When encountering traffic signal intersections, they must wait
or proceed according to the traffic signal. The process of searching for parking on the
surrounding roads ends when they arrive at the target parking lot. The delays during this
process can be divided into roadway travel delays and signal delays.

Travel delay refers to the delay experienced by vehicles while driving on the sur-
rounding roads of the hub due to high traffic volume, which prevents them from achieving
free-flow speeds. This portion of the delay is defined as the actual travel time of the vehicles
minus the time required for the vehicles to travel the same road under free-flow conditions.
The calculation formula is shown in Equation (1):

Dr =
L
v
− L

vs
(1)

Traffic signal delay refers to the delay that vehicles experience while waiting at traffic
lights when traveling to a target parking lot. This delay is not evenly distributed among
vehicles, making it difficult to estimate the signal waiting delay for individual vehicles.
Therefore, the average delay across the traffic flow is usually calculated for this part of the
delay, as shown in Equation (2):

Dsl =
R
T
× R

2
(2)

2. Searching for Parking in the Vicinity of Transportation Hubs

At the entrance to the parking lot, the process of vehicles entering the parking lot
typically involves changing lanes to the far-right lane of the road and then slowing down
to queue and pass through the entrance gate into the parking lot. During this process, the
delays incurred by vehicles are concentrated during the lane-changing and the queuing
at the gate. Therefore, the delay in this process can be divided into vehicle lane-changing
delay and vehicle queuing delay.

Vehicle lane-changing delay refers to the delay caused by conflicts with other vehicles
when a vehicle, after determining its target parking lot, changes lanes to the far-right lane
of the road. Since the lane-changing vehicle must wait for an acceptable gap in the target
lane that the driver deems safe before making the lane change, its driving logic is similar
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to the logic at major–minor road intersections. Therefore, this part of the delay can be
considered as the delay incurred by minor road vehicles entering the main road, and it can
be calculated using the acceptable gap theory, as shown in Equation (3):

Dc =
1 − e−(qptc+qnt f )

1
t f

e−qptc − qn
+ t f (3)

Vehicle queuing delay refers to the delay that occurs when vehicles, after completing a
lane-changing maneuver, line up in the far-right lane of the road and wait to pass through
the gate to enter the parking lot. This part of the delay can be calculated using queueing
theory. Based on queueing theory, the parking lot gate should be categorized into single-
server and multi-server scenarios, with the calculation formulas given as in Equation (4):

Dqu =


1

µ−λ (c = 1)
cρcρ

c!(1−ρ)cλ
× 1

∑c−1
k=0

1
k!

(
λ
µ )

k+ 1
c!(1−ρ)

(
λ
µ )

c
+ 1

µ (c>1)

 (4)

Based on the above analysis, it is necessary to integrate the parking search delay for
vehicles with parking demand based on the road network structure around the hub and to
construct a model for the parking search delay of vehicles on the roads outside the parking
lot. Assume that vehicles with parking demands enter the roads surrounding the hub from
intersection i, pass through several traffic lights, and then through the last intersection j
encountered before reaching the parking lot. They drive to the target parking lot t, complete
lane-changing and queuing maneuvers, and enter the parking lot. Therefore, the total
delay that the vehicle needs to bear is the sum of the aforementioned delays is as shown in
Equation (5):

Dit = Drit + Dslij + Dct + Dqut =
Lit

v
− Lit

vs
+ ∑j

k=i (
Rk
Tk

∗ Rk
2
) +

1 − e−(qpt tct+qnt t f t)

1
t f t

e−qpt tct − qnt
+ t f t +

1
µt − λt

(5)

In a given parking demand scenario, the traffic flow proportions arriving at each
parking lot can be adjusted to minimize the total delay for vehicles with parking demand at
the hub. Based on the road network structure around the hub, the expression for the parking
demand traffic volume can be completed, and the objective function to be optimized as
shown in Equation (6):

minD = ∑
i

∑
t

Qi pitDit (6)

The optimization problem is subject to constraints as shown in Equations (7) and (8):

0 ≤ pit ≤ 1 (7)

∑t pit = 1 (8)

In the optimization model, the independent variable is pit. By adjusting pit, the distri-
bution of parking demand can be adjusted to achieve the optimization goal of minimizing
the total delay for vehicles with parking demand at the hub during peak demand periods.
Since pit is defined as the proportion of the number of vehicles for parking lot t relative
to the total arriving traffic flow at intersection i, pit must be within the range of 0 to 1.
Moreover, all vehicles arriving at the intersections need to complete the search for parking,
select the target parking lot, and finish the lane-changing and queuing before entering the
parking lot. Therefore, for the arriving parking demand traffic at intersection i, the sum of
pit for all target parking lots must be 1, ensuring that all vehicles from the arriving parking
demand traffic at intersection i complete the distribution of parking demand.
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4. Case Study

Taking a large transportation hub A in Nanjing, Jiangsu Province, China, as the
research object, this study obtains road traffic volumes and traffic flow direction ratios
through field surveys and establishes a vehicle delay model under high demand scenarios.
Combining the acquired video data and VISSIM simulations, the parameters within the
model are calibrated. Finally, the particle swarm optimization algorithm (PSO) is used to
solve the demand distribution optimization model, thereby obtaining the optimal parking
demand distribution scheme under this research scenario.

4.1. Determining the Peak Parking Demand Period for the Hub

In this study, gate data from a single parking lot at Transportation Hub A were
collected from 25 April 2022 to 15 May 2022, totaling 21 days, and comprising 107,042 gate
records. To determine the peak parking demand period for the hub, an analysis of weekly
and daily variations was conducted.

By calculating the average number of vehicles arriving and departing (where this
number is the sum of vehicles arriving and leaving) each day over three consecutive weeks,
a weekly variation graph of entry and exit volume can be shown in Figure 2. In the figure,
the horizontal axis represents time, ranging from 0:00 to 24:00, while the vertical axis
represents the volume of arrivals and departures. The three curves show the variation
trends in arrival and departure volumes for different weeks.

Systems 2024, 12, 404 9 of 18 
 

 

4. Case Study 

Taking a large transportation hub A in Nanjing, Jiangsu Province, China, as the re-

search object, this study obtains road traffic volumes and traffic flow direction ratios 

through field surveys and establishes a vehicle delay model under high demand scenar-

ios. Combining the acquired video data and VISSIM simulations, the parameters within 

the model are calibrated. Finally, the particle swarm optimization algorithm (PSO) is used 

to solve the demand distribution optimization model, thereby obtaining the optimal park-

ing demand distribution scheme under this research scenario. 

4.1. Determining the Peak Parking Demand Period for the Hub 

In this study, gate data from a single parking lot at Transportation Hub A were col-

lected from 25 April 2022 to 15 May 2022, totaling 21 days, and comprising 107,042 gate 

records. To determine the peak parking demand period for the hub, an analysis of weekly 

and daily variations was conducted. 

By calculating the average number of vehicles arriving and departing (where this 

number is the sum of vehicles arriving and leaving) each day over three consecutive 

weeks, a weekly variation graph of entry and exit volume can be shown in Figure 2. In the 

figure, the horizontal axis represents time, ranging from 0:00 to 24:00, while the vertical 

axis represents the volume of arrivals and departures. The three curves show the variation 

trends in arrival and departure volumes for different weeks. 

 

Figure 2. The weekly variation graph of the average number of vehicle arrivals and departures at 

the parking lot, with the red box indicating the peak period from 15:00 to 16:00. 

It can be observed that the characteristics of vehicle entries and exits through the gate 

are highly similar from week to week, with consistent trends and peak periods. The peak 

volumes of vehicle entries and exits within a single day occur between 3 and 4 p.m. 

After determining the weekly variation characteristics of the vehicle entries and exits 

through the gate at the hub, we proceeded to analyze the daily variation characteristics. 

A line graph depicting the hourly vehicle entries and exits at the hub from 0:00 to 24:00 

within a single week is shown in Figure 3. In the figure, the horizontal axis represents 

time, ranging from 0:00 to 24:00, and the vertical axis represents the volume of arrivals 

and departures. The seven curves represent the trends in arrivals and departures on dif-

ferent weeks during day x. 

Figure 2. The weekly variation graph of the average number of vehicle arrivals and departures at the
parking lot, with the red box indicating the peak period from 15:00 to 16:00.

It can be observed that the characteristics of vehicle entries and exits through the gate
are highly similar from week to week, with consistent trends and peak periods. The peak
volumes of vehicle entries and exits within a single day occur between 3 and 4 p.m.

After determining the weekly variation characteristics of the vehicle entries and exits
through the gate at the hub, we proceeded to analyze the daily variation characteristics.
A line graph depicting the hourly vehicle entries and exits at the hub from 0:00 to 24:00
within a single week is shown in Figure 3. In the figure, the horizontal axis represents
time, ranging from 0:00 to 24:00, and the vertical axis represents the volume of arrivals and
departures. The seven curves represent the trends in arrivals and departures on different
weeks during day x.

In crosswise, variations in the average number of vehicle arrivals and departures
exhibits a bimodal pattern, with the primary peak occurring from 15:00 to 16:00 and the
secondary peak from 19:00 to 20:00. A vertical comparison of the daily variations within a
single week shows that the average number of vehicle arrivals and departures on Friday
is significantly higher than at other times during the week. By synthesizing the daily and
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weekly variation characteristics, the peak demand period within a single week is identified
as Friday from 15:00 to 16:00.
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4.2. Calibration of Delay Model Parameters

In constructing the vehicle delay model, it is necessary to calibrate the parameters to
facilitate subsequent optimization algorithm solutions for the delay model. The parameters
in the model can be classified into those that can be obtained through field observations and
those that cannot. For the former, this study conducted a traffic survey at the transportation
hub A from 15:00 to 16:00 on Friday, 3 March 2023, to obtain parameters such as the service
rate of the gates at various parking lots, the cycle duration of traffic signals, and the duration
of red lights at various intersections. Detailed data can be found in Appendix A.

This large hub parking area has five parking lots open to the public, and there are
seven major intersections on the surrounding roads of the hub. The directions of vehicles
heading to the hub and surrounding intersections are shown in Figure 4. In the figure,
the red lines represent the main roads around the hub, traffic lights indicate the major
intersections, and the arrows along with the letter “A” denote different entry directions.
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For parameters that cannot be obtained through field observations, such as those
related to delays caused by lane changes at the entrances of each parking lot, the minimum
acceptable gap, and the follow-up time, this study uses a simulation experiment parameter
calibration method to obtain them. Commonly used traffic simulation platforms include
SimTraffic, CORSIM, and VISSIM. A comparison of the driving behavior models across
these simulation platforms is shown in Table 2.

Table 2. Comparison of Driving Behavior Models Across Different Simulation Platforms.

Model Types
Simulation Platforms

VISSIM CORRSIM SimTraffic Paramics AISSUN MITSMLab TransModeler

Car-Following, Lane-Changing,
and Gap Acceptance Models ✓ 1 ✓ ✓ ✓ ✓ ✓ ✓

Turning Movement Model at
Intersections ✓ ✓ ✓ ✓ ✓ ✓ ✓

Queue Formation and
Dissipation Models ✓ ✓ ✓ ✓ ✓ ✓ ✓

Left-Turn Impact Model at
Intersections ✓ ✓ ✓ ✓ ✓ ✕ —

Turning Speed Impact Model ✓ ✕ ✓ ✕ ✕ ✓ ✓

Stopping Impact Model ✓ ✓ ✕ ✓ ✕ ✓ ✓

Vehicle Turn Signal Impact
Model ✕ ✕ ✕ ✕ ✕ ✕ —

1 ✓ indicates the presence of the model, ✕ indicates its absence, and—indicates that the information is unknown.

From the table, it can be observed that VISSIM, as a widely applicable simulation
software, offers comprehensive driving behavior models, enabling the efficient setup and
execution of simulations for real-world traffic scenarios. Additionally, VISSIM features a
high degree of visualization, with both the user interface and the simulation environment
being fully visualized. This allows for the observation of each vehicle’s operational status
and the retrieval of its operational parameters, facilitating the assessment of the simulation’s
accuracy and realism. Therefore, VISSIM is selected for the calibration of simulation
experiment parameters.

Firstly, the experimental scenario is constructed in VISSIM based on the structure of
the real road network. Next, it adjusts the road traffic flow and parking demand within a
reasonable range to conduct simulation experiments and obtain vehicle delays at parking
lot entrances. Based on the data obtained from the traffic survey, the target lane traffic
flow in the simulation experiment is set to range from 200 vehicles per hour to 500 vehicles
per hour, with a value taken every 50 vehicles per hour. The initial lane traffic flow is set
to range from 100 vehicles per hour to 200 vehicles per hour, with a value taken every
20 vehicles per hour. A total of 42 sets of simulation experiment data were collected for
each parking lot entrance. Finally, the parameters are calibrated using the least squares
method. The results are shown in Table 3.

Table 3. Parameter Calibration Table for Simulation Experiments.

Parking Lot Number P1 P2 P3 P4 P5

tc 4.87 4.31 5.12 6.7 5.43
t f 5.73 5.67 5.34 3.45 5.15
R2 0.95 0.93 0.88 0.96 0.93
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4.3. Optimization of Parking Demand during Peak Demand Periods

During the traffic survey of hub A, aside from obtaining the parameters that need
calibration, it is also necessary to collect traffic flow data and parking lot arrival numbers
during peak periods to determine the parking demand at the hub. The external traffic flow
at major intersections around the hub and the number of vehicles arriving at each parking
lot are presented in Table 4.

Table 4. Equivalent Hourly Arrival Traffic Flow at Each Intersection and Parking Lot.

Intersection Number
Equivalent Hourly
Arrival Traffic Flow

(veh/h)
Parking Lot Number

Equivalent Hourly
Arrival Traffic Flow

(veh/h)

Intersection 1 1260 P1 432

Intersection 2 444 P2 504

Intersection 3 144 P3 36

Intersection 4 144 P4 648

Intersection 5 636 P5 360

Intersection 6 960

Intersection 7 336

Total 3924 Total 2004

From the table, it can be seen that the total traffic flow of vehicles arriving at each
intersection during the statistical period is approximately twice that of the parking lots.
Moreover, under the assumptions of the delay calculation model, the incoming traffic at
each intersection is considered to be homogeneous, so it can be assumed that about 50%
of the vehicles arriving at each intersection have parking needs. After determining the
parking demand, the optimization objective function of the model is shown in Equation (9):

minD = ∑
i

∑
t

Qi pitDit =∑
i

∑
t

Qi pit(
Lit

v
− Lit

vs
+

j

∑
k=i

(
Rk
Tk

∗ Rk
2
) +

1 − e−(qpt tct+qnt t f t)

1
t f t

e−qpt tct − qnt
+ t f t +

1
µt − λt

) (9)

Since this problem is a multivariable optimization problem, it is typically solved using
metaheuristic algorithms. Therefore, this paper uses the Particle Swarm Optimization
(PSO) algorithm for the solution. The initial values of the particle swarm are set as random
arrays between 0 and 1, the velocity threshold is set to 0.5, and the maximum number of
iterations is set to 1000. The optimized results are shown in Table 5.

Table 5. Results of Parking Demand Allocation Optimization.

Parking Lot Number P1 P2 P3 P4 P5 Average Delay per
Vehicle (s)

Number of Vehicles Served
Before Optimization (veh/h) 432 504 36 648 360

162Proportion of Passing Traffic
Stopping Before

Optimization
67% 100% 4% 64% 36%

Number of Vehicles Served
After Optimization (veh/h) 204 408 312 492 588

155
Proportion of Passing Traffic
Stopping After Optimization 30% 53% 25% 44% 56%
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The results before and after the demand allocation optimization are shown in Figure 5.
A comparison reveals that the parking demand allocation for Parking Lots 3 and 5 increased,
while the parking demand allocation for Parking Lots 1, 2, and 4 decreased.

Systems 2024, 12, 404 13 of 18 
 

 

𝑚𝑖𝑛 𝐷 = ∑ ∑ 𝑄𝑖𝑝𝑖𝑡𝐷𝑖𝑡 =

𝑡𝑖

∑ ∑ 𝑄𝑖𝑝𝑖𝑡(
𝐿𝑖𝑡

𝑣
−

𝐿𝑖𝑡

𝑣𝑠
+ ∑(

𝑅𝑘

𝑇𝑘
∗

𝑅𝑘

2

𝑗

𝑘=𝑖

) +
1 − 𝑒−(𝑞𝑝𝑡𝑡𝑐𝑡+𝑞𝑛𝑡𝑡𝑓𝑡)

1
𝑡𝑓𝑡

𝑒−𝑞𝑝𝑡𝑡𝑐𝑡 − 𝑞𝑛𝑡

+ 𝑡𝑓𝑡 +
1

𝜇𝑡 − 𝜆𝑡
)

𝑡𝑖

   (9) 

Since this problem is a multivariable optimization problem, it is typically solved us-

ing metaheuristic algorithms. Therefore, this paper uses the Particle Swarm Optimization 

(PSO) algorithm for the solution. The initial values of the particle swarm are set as random 

arrays between 0 and 1, the velocity threshold is set to 0.5, and the maximum number of 

iterations is set to 1000. The optimized results are shown in Table 5. 

Table 5. Results of Parking Demand Allocation Optimization. 

Parking Lot Number P1 P2 P3 P4 P5 
Average Delay per 

Vehicle (s) 

Number of Vehicles Served 

Before Optimization (veh/h) 
432 504 36 648 360 

162 
Proportion of Passing Traffic 

Stopping Before Optimization 
67% 100% 4% 64% 36% 

Number of Vehicles Served 

After Optimization (veh/h) 
204 408 312 492 588 

155 
Proportion of Passing Traffic 

Stopping After Optimization 
30% 53% 25% 44% 56% 

The results before and after the demand allocation optimization are shown in Figure 

5. A comparison reveals that the parking demand allocation for Parking Lots 3 and 5 in-

creased, while the parking demand allocation for Parking Lots 1, 2, and 4 decreased. 

 

Figure 5. Comparison Chart of Results Before and After Parking Demand Allocation Optimization. 

A red upward arrow indicates that the demand for the parking lot has increased after optimization, 

while a green downward arrow indicates that the demand has decreased after optimization. 

The corresponding explanations for the optimized allocation plan are as follows: 

1. Due to the large driving distance between Parking Lot 1 and the other parking lots, 

many vehicles are unwilling to continue seeking parking after entering the surround-

ing roads of the hub. Instead, they choose to queue at the entrance of Parking Lot 1, 

resulting in higher queue delays. Guiding some of this traffic to other parking lots 

can significantly optimize the overall efficiency of parking at the hub. 

2. The decrease in demand allocation for Parking Lot 2 is attributed to the low utiliza-

tion rate of Parking Lot 3, which is relatively close to Parking Lot 2. Redirecting 

parked vehicles to Parking Lot 3 can improve the overall delays at the hub. 

Figure 5. Comparison Chart of Results Before and After Parking Demand Allocation Optimization.
A red upward arrow indicates that the demand for the parking lot has increased after optimization,
while a green downward arrow indicates that the demand has decreased after optimization.

The corresponding explanations for the optimized allocation plan are as follows:

1. Due to the large driving distance between Parking Lot 1 and the other parking
lots, many vehicles are unwilling to continue seeking parking after entering the
surrounding roads of the hub. Instead, they choose to queue at the entrance of
Parking Lot 1, resulting in higher queue delays. Guiding some of this traffic to other
parking lots can significantly optimize the overall efficiency of parking at the hub.

2. The decrease in demand allocation for Parking Lot 2 is attributed to the low utilization
rate of Parking Lot 3, which is relatively close to Parking Lot 2. Redirecting parked
vehicles to Parking Lot 3 can improve the overall delays at the hub.

3. Parking Lots 4 and 5 are located close to each other, and neither has a spatial advantage
over the other. However, the optimization plan reduces the allocation for Parking
Lot 4 while increasing that for Parking Lot 5 because Parking Lot 5, with its dual
service counters, has a higher service efficiency, resulting in significantly reduced
queue delays.

Before optimizing the parking demand allocation, the average delay for vehicles was
162 s. After optimizing the parking demand allocation, the average delay was reduced to
155 s, an improvement of 4.5%, with the delay time for individual vehicles shortened by
7 s. During peak demand periods, the parking demand traffic volume is 1980 vehicles per
hour. Therefore, after reallocating and guiding the parking demand vehicles during peak
demand periods, the total delay for parking demand vehicles at the hub was reduced by
13,860 s within one hour.

5. Conclusions

Existing studies on the parking search behavior of vehicles with parking demands
in a hub parking lot clusters mainly focus on the search process within the parking lots,
lacking research on the search process on urban roads outside the hub parking lot clusters.
However, the outside search process is an essential component of the overall search process
for vehicles with parking demands in hub parking lot clusters. In contrast, this study
analyzes the outside search process of vehicles in hub parking lot groups during peak
demand periods, constructs mathematical expression models for various delays, and
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proposes an optimization model for parking demand allocation with the objective of
minimizing delays.

Taking a large transportation hub in Nanjing as an example, this study demonstrates
that through reasonable parking demand allocation, the average search delay time of
vehicles during peak parking demand periods can be significantly reduced, effectively
alleviating the congestion in hub parking lots and surrounding roads during peak demand
periods. Additionally, it can provide data support for the management and control of
outside parking search for vehicles with hub parking demands during peak hours.

In summary, this study effectively fills the research gap in the existing literature regard-
ing the outside road search process of vehicles with parking demands in hub parking lot
clusters. In practical applications, this method can be combined with intelligent transporta-
tion systems and navigation software to better serve users. It also provides strong support
for improving the parking management level of transportation hubs and the connectivity
efficiency of urban transportation.

However, this study still requires further research and improvement. Firstly, while
the six assumptions proposed for the delay model help simplify the modeling process
to some extent, it is acknowledged that they may have certain limitations in real-world
applications. Therefore, future research should further explore the potential impact of
these assumptions. Secondly, future research needs to further analyze the applicable
scenarios and sensitivity. Thirdly, consider the impact of traffic and parking dynamics on the
arrival rate and service rate. In addition, further optimization and improvement methods
should be considered, such as constructing multi-objective optimization models [49] and
employing Pareto optimization techniques [50]. Furthermore, factors such as traffic signal
timing and green wave coordination of upstream and downstream traffic signals can be
considered, which could significantly reduce the impact of traffic signals on the vehicle
parking search process.
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Appendix A

This study conducted a traffic survey at Major Transport Hub A in Nanjing. The
survey covered five parking lots and seven key intersections surrounding the hub. The
data collected included traffic flow at the intersections, parking lot arrival data, vehicle
queue delay data at each parking lot, gate service rates at the parking lots, and traffic signal
parameters at the main intersections.

• Traffic Flow at the Intersections

By conducting traffic flow statistics at key intersections on roads surrounding the
transport hub, the vehicle flow from various directions at these intersections was deter-
mined, as shown in Table A1. The definitions of the road intersections and directions in the
table are provided in Figure 4 of the main text.
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Table A1. Traffic Flow Statistics for Major Intersections on Roads Surrounding Hub A.

Intersection Number Vehicle Approach Traffic Flow (veh/h) Total Intersection Flow (veh/h)

Intersection 1
Approach 1 900

1260Approach 2 360

Intersection 2
Approach 1 444

828Approach 2 384

Intersection 3
Approach 1 636

780Approach 2 144

Intersection 4
Approach 1 24

1140Approach 2 120
Approach 3 996

Intersection 5
Approach 1 1116

1476Approach 2 360

Intersection 6
Approach 1 864

1828Approach 2 288
Approach 3 676

Intersection 7
Approach 1 216

1244Approach 2 1028

• Parking Lot Arrival Data

By recording the number of parked vehicles at the entrances and exits of the parking
lots, the parking demand at each parking lot during peak demand periods was determined,
as shown in Table A2.

Table A2. Parking Demand During Peak Demand Periods.

Parking Lot Number Parking Lot 1 Parking Lot 2 Parking Lot 1 Parking Lot 2 Parking Lot 5

Parking Demand (veh/h) 432 528 36 848 648

• Vehicle Queue Delay Data

By observing each vehicle frame by frame in the videos recorded at the entrances and
exits of the parking lots, the queue delay for each vehicle was determined. A 5 min delay
analysis was conducted for each parking lot entrance and exit, and the average vehicle
delay was calculated, as shown in Table A3.

Table A3. Vehicle Average Delay for Each Parking lot.

Parking Lot Number Parking Lot 1 Parking Lot 2 Parking Lot 1 Parking Lot 2 Parking Lot 5

Average Delay (s) 14.97 15.92 13 12 43.43

• Gate Service Rates

By analyzing the time each vehicle passes through the gate in the video recorded at the
entrances of the parking lots, the gate service rate for each parking lot could be determined.
This rate was used to calculate the queue delay at the parking lot entrances. The statistical
results are shown in Table A4.

Table A4. Gate Service Rates for Each Parking Lot at Hub A.

Parking Lot Number Parking Lot 1 Parking Lot 2 Parking Lot 1 Parking Lot 2 Parking Lot 5

Average Time for Vehicles to
Pass Through Gate (s) 5.8 6.8 5.2 10 5.6

Gate Service Rate (veh/h) 621 529 692 360 643
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• Traffic Signal Parameters at the Main Intersections

By analyzing the red signal duration and cycle duration at signalized intersections on
roads surrounding the hub, as recorded in the video footage, the parameters for the signal
delay component in the delay model were determined. The statistical results are shown in
Table A5.

Table A5. Signal Parameters for Major Signalized Intersections on Roads Surrounding Hub A.

Intersection Number 1 2 3 4 5 6 7

Red Signal Duration (s)

\

61 40 38

\

37 25

Green Signal Duration (s) 40 44 57 40
\Yellow Signal Duration (s) 3 3 3

Cycle Duration (s) 104 87 95 80

For Intersection 1, as it serves as the starting point within the study area, its traffic
signals do not impact the subjects of this study, so no signal timing data were collected
for this intersection. For Intersections 4 and 7, because the roads surrounding Hub A are
counterclockwise one-way streets, the placement of traffic signals does not affect vehicles
searching for parking around the hub; vehicles can proceed simply by staying on the left
side of the road. For Intersection 5, as it is a merge point between the elevated road traffic
and the traffic on the roads surrounding the hub, no traffic signals are installed.

References
1. Mahmassani, H.S.; Chang, G.-L. On Boundedly rational user equilibrium in transportation systems. Transp. Sci. 1987, 21, 89–99.

[CrossRef]
2. Jiang, G.; Fosgerau, M.; Lo, H.K. Route choice, travel time variability, and rational inattention. Transp. Res. Part B Methodol. 2020,

132, 188–207. [CrossRef]
3. Bell, M.G.H. Stochastic user equilibrium assignment in networks with queues. Transp. Res. Part B Methodol. 1995, 29, 125–137.

[CrossRef]
4. Zhang, M.; Huang, T.; Guo, Z.; He, Z. Complex-network-based traffic network analysis and dynamics: A comprehensive review.

Phys. A Stat. Mech. Its Appl. 2022, 607, 128063. [CrossRef]
5. Kushchenko, L.E.; Kushchenko, S.V.; Novikov, A.N. The Application of Wavelet Analysis to Study the Characteristics of the

Traffic Flow. In Proceedings of the 2020 International Multi-Conference on Industrial Engineering and Modern Technologies
(FarEastCon), Vladivostok, Russia, 6–9 October 2020; IEEE: New York City, NY, USA, 2020; pp. 1–4.

6. Islam, M.K.; Al-Muaybid, A.I.M.; Al-Saqer, M.F.A.; Al-Nagada, M.S.R.; Al-Newaihel, K.S.A.; Akter, R.; Gul, A.A.; Rhaman, M.M.;
Shatnawi, Z. Assessing Survey Data to Study Traffic Flow Characteristics: An in-depth analysis of King Fahad Road, Al-Ahsa,
Saudi Arabia. Forum Geografi. 2024, 38, 167–177. [CrossRef]

7. Zang, J.; Jiao, P.; Liu, S.; Zhang, X.; Song, G.; Yu, L. Identifying traffic congestion patterns of urban road network based on traffic
performance index. Sustainability 2023, 15, 948. [CrossRef]

8. Mahmood, T.S.; Awad, H.A. Evaluating the traffic characteristics of the road network in Ramadi city using sustainable trans-
portation indicators (Hazard Index). In IOP Conference Series: Earth and Environmental Science, Proceedings of the Fourth International
Conference on Geotechnical Engineering-Iraq, 2024 (ICGE-Iraq, 2024) and Warith First International Conference of Engineering Sciences
(WICES-2024), Karbala, Iraq, 18 April 2024; IOP Publishing: Bristol, UK, 2024; Volume 1374, p. 012051.

9. Li, B.; Sun, X.; He, Y.; Zhang, M. A Dynamic Collision Risk Assessment Model for the Traffic Flow on Expressways in Urban
Agglom-erations in North China. Systems 2024, 12, 86. [CrossRef]

10. Han, Y.; Shan, J.; Wang, M.; Yang, G. Optimization design and evaluation of parking route based on automatic assignment
mechanism of parking lot. Adv. Mech. Eng. 2017, 9, 1687814017712416. [CrossRef]

11. Kim, O.T.T.; Tran, N.H.; Pham, C.; LeAnh, T.; Thai, M.T.; Hong, C.S. Parking assignment: Minimizing parking expenses and
balancing parking demand among multiple parking lots. IEEE Trans. Autom. Sci. Eng. 2019, 17, 1320–1331.

12. Nakazato, T.; Fujimaki, Y.; Namerikawa, T. Parking lot allocation using rematching and dynamic parking fee design. IEEE Trans.
Control. Netw. Syst. 2022, 9, 1692–1703. [CrossRef]

13. Duan, M.; Wu, D.; Liu, H. Bi-level programming model for resource-shared parking lots allocation. Transp. Lett. 2020, 12, 501–511.
[CrossRef]

14. Hassija, V.; Saxena, V.; Chamola, V.; Yu, F.R. A parking slot allocation framework based on virtual voting and adaptive pricing
algorithm. IEEE Trans. Veh. Technol. 2020, 69, 5945–5957. [CrossRef]

https://doi.org/10.1287/trsc.21.2.89
https://doi.org/10.1016/j.trb.2019.05.020
https://doi.org/10.1016/0191-2615(94)00030-4
https://doi.org/10.1016/j.physa.2022.128063
https://doi.org/10.23917/forgeo.v38i2.4629
https://doi.org/10.3390/su15020948
https://doi.org/10.3390/systems12030086
https://doi.org/10.1177/1687814017712416
https://doi.org/10.1109/TCNS.2022.3165015
https://doi.org/10.1080/19427867.2019.1631596
https://doi.org/10.1109/TVT.2020.2979637


Systems 2024, 12, 404 17 of 18

15. Parmar, J.; Das, P.; Dave, S.M. Study on demand and characteristics of parking system in urban areas: A review. J. Traffic Transp.
Eng. (Engl. Ed.) 2020, 7, 111–124. [CrossRef]

16. Xie, Z.; Wu, X.; Guo, J.; Zhan, Z. Parking lot allocation model considering conversion between dynamic and static traffic. J. Intell.
Fuzzy Syst. 2021, 41, 5207–5217. [CrossRef]

17. Guan, Y.; Wang, Y.; Yan, X.; Guo, H.; Zhou, Y. A Big-Data-Driven Framework for Parking Demand Estimation in Urban Central
Districts. J. Adv. Transp. 2020, 2020, 8898848. [CrossRef]

18. Chen, Y.; Wang, T.; Yan, X.; Wang, C. An ensemble optimization strategy for dynamic parking-space allocation. IEEE Intell. Transp.
Syst. Mag. 2022, 15, 347–362. [CrossRef]

19. Saharan, S.; Kumar, N.; Bawa, S. DyPARK: A dynamic pricing and allocation scheme for smart on-street parking system. IEEE
Trans. Intell. Transp. Syst. 2023, 24, 4217–4234. [CrossRef]

20. Hassine, S.B.; Mraihi, R.; Lachiheb, A.; Kooli, E. Modelling parking type choice behavior. Int. J. Transp. Sci. Technol. 2022, 11,
653–664. [CrossRef]

21. Xie, M.; Lin, S.; Wu, Z.; Zhang, X.; Wang, Y. Optimal allocation and adjustment mechanism of shared parking slots considering
combined parking resources. Transp. Lett. 2023, 15, 730–741. [CrossRef]

22. Zhang, X.; Zhao, C.; Liao, F.; Li, X.; Du, Y. Online parking assignment in an environment of partially connected vehicles: A
multi-agent deep reinforcement learning approach. Transp. Res. Part C Emerg. Technol. 2022, 138, 103624. [CrossRef]

23. Zargayouna, M.; Balbo, F.; Ndiaye, K. Generic model for resource allocation in transportation. Application to urban parking
management. Transp. Res. Part C Emerg. Technol. 2016, 71, 538–554. [CrossRef]

24. Xie, M.; Zhang, X.; Wu, Z.; Wei, S.; Gao, Y.; Wang, Y. A shared parking optimization framework based on dynamic resource
allocation and path planning. Phys. A Stat. Mech. Its Appl. 2023, 616, 128649. [CrossRef]

25. Cai, Y.; Chen, J.; Zhang, C.; Wang, B. A parking space allocation method to make a shared parking strategy for appertaining
parking lots of public buildings. Sustainability 2018, 11, 120. [CrossRef]

26. Errousso, H.; El Ouadi, J.; Alaoui, E.A.A.; Benhadou, S. Dynamic parking space allocation at urban scale: Problem formulation
and resolution. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 9576–9590. [CrossRef]
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