
Citation: Gu, P.; Zhang, Y.; Chen, Z.;

Zhao, C.; Xie, K.; Wu, Z.; Zhang, L.

X-RMTV: An Integrated Approach for

Requirement Modeling, Traceability

Management, and Verification in

MBSE. Systems 2024, 12, 443. https://

doi.org/10.3390/systems12100443

Academic Editor: Jérôme Morio

Received: 28 August 2024

Revised: 21 September 2024

Accepted: 10 October 2024

Published: 20 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

X-RMTV: An Integrated Approach for Requirement Modeling,
Traceability Management, and Verification in MBSE
Pengfei Gu 1,2,3, Yuteng Zhang 1,2,3, Zhen Chen 1,2,3, Chun Zhao 4 , Kunyu Xie 1,2,3, Zhuoyi Wu 1,2,3

and Lin Zhang 1,2,3,*

1 Hangzhou International Innovation Institute, Beihang University, 166 Shuanghongqiao Street, Pingyao Town,
Yuhang District, Hangzhou 311115, China; by2003151@buaa.edu.cn (P.G.); zytbh@buaa.edu.cn (Y.Z.);
czhen@buaa.edu.cn (Z.C.); kyxie@buaa.edu.cn (K.X.); 20373373@buaa.edu.cn (Z.W.)

2 State Key Laboratory of Intelligent Manufacturing Systems Technology, Yongding Road No. 51, Haidian,
Beijing 100854, China

3 School of Automation Science and Electrical Engineering, Beihang University, Xueyuan Road No. 37, Haidian,
Beijing 100191, China

4 School of Computer, Beijing Information Science and Technology University (BISTU), Taihang Rd 55,
Changpin District, Beijing 102206, China; zhaochun@bistu.edu.cn

* Correspondence: zhanglin@buaa.edu.cn

Abstract: Formal requirements modeling and traceability management are essential for effectively
implementing Model-Based Systems Engineering (MBSE). However, few studies have explored
the integration of requirement modeling, traceability management, and verification within MBSE-
based systems engineering methodologies. Moreover, the predominant modeling language for
MBSE, SysML, lacks sufficient capabilities for requirement description and traceability management
and for depicting physical attributes and executable capabilities, making it challenging to verify
functional and non-functional requirements collaboratively. This paper proposes an integrated
approach for requirement modeling, traceability management, and verification, building on the
previously proposed integrated modeling and the simulation language called X language. Our
contributions primarily include defining the ReqXL specification for MBSE-oriented requirement
modeling based on X language, proposing an algorithm for automatically generating requirement
traces, and an integrated framework for requirements modeling, traceability management, and
verification was developed by combining the X language with ReqXL. These functionalities were
customized on the self-developed integrated modeling and simulation platform, XLab, which is
specifically tailored for the X language. Furthermore, we showcase the efficacy and promise of our
approach through a case study involving the design of an aircraft electrical system.

Keywords: requirement modeling; traceability management; model-based systems engineering;
verification; X language

1. Introduction

The successful development of complex multidisciplinary products such as airplanes,
aircraft, and automobiles relies on rigorous systems engineering design methodologies.
At the same time, it also requires robust support from effective requirements engineering
practices [1]. During the development of complex systems, stakeholders’ needs must
evolve into design artifacts through the systems engineering design process. However,
managing the requirements for such complex systems is fraught with challenges [2]. A
report published by the Standish Group suggests that a significant reason for the failure
of many projects is incomplete requirements and insufficient stakeholder involvement [3].
Therefore, in the system design process, it is crucial first to define correct and unambigu-
ous requirements and ensure deep stakeholder involvement in the system design for the
successful development of the system [4]. Secondly, different departments or organizations

Systems 2024, 12, 443. https://doi.org/10.3390/systems12100443 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems12100443
https://doi.org/10.3390/systems12100443
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0003-4925-8793
https://orcid.org/0000-0003-1989-6102
https://doi.org/10.3390/systems12100443
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems12100443?type=check_update&version=1


Systems 2024, 12, 443 2 of 31

develop various design models and data based on the requirements. This can obscure
multiple relationships between elements at different levels, thereby raising higher demands
for the traceability management of requirements [5]. Model-Based Systems Engineer-
ing (MBSE) is a mainstream approach supporting the design and development of complex
systems throughout their entire lifecycle. Its core concept is to support requirements anal-
ysis, functional analysis, system design, and verification by developing a structured and
standardized model [6,7]. SysML is a systems modeling language proposed by the Object
Management Group (OMG) specifically for MBSE [8]. The requirements diagrams provided
by SysML can formally describe requirements and establish relationships between require-
ments and system modeling elements. However, SysML requirements diagrams only define
two attributes: the requirement ID and description, and do not provide any constraints.
They lack detailed definitions of the relationships between stakeholders, stakeholder needs,
system design requirements, and the system models generated during the system design
process, making it difficult to achieve traceability management of requirements from the
source effectively.

Recently, the standardization and formalization of requirements have been extensively
researched and have made significant progress [9–11]. However, most requirements expres-
sions remain independent of requirements traceability. In other words, the descriptions
of requirements do not effectively assist in requirements traceability. Currently, there are
several commercial requirements management tools, such as DOORS and Reqtify, that sup-
port requirements management and traceability. However, they need to be integrated with
MBSE design tools to function effectively [12,13]. This multi-platform traceability manage-
ment can lead to gaps in the top-down design process based on MBSE, making it difficult to
ensure consistency between requirements and the models defined in MBSE. Additionally,
there is related research that explores methods for formalizing and managing requirements
traceability by extending SysML or defining domain-specific modeling languages [14,15].
However, while these methods can achieve requirements traceability management, they are
not effectively integrated with MBSE methods. In other words, when requirements change,
although it is possible to trace the affected upstream and downstream requirements and
design artifacts, how this impact is linked through the MBSE-based system design process
cannot be determined. Additionally, these methods almost always rely on or incorporate
SysML for traceability management. However, SysML’s lack of description for physical
characteristics and its non-executable nature may require specific domain models to be im-
plemented in conjunction with other simulation languages and tools, leading to significant
challenges in requirements traceability management and verification [16]. Currently, there
are also related efforts aiming to establish links between requirements and MBSE-based
functional architectures by defining domain-specific modeling languages to achieve re-
quirements traceability and simulation verification [17]. However, this verification is only
focused on functional requirements.

In our previous research, we developed an integrated intelligent modeling and sim-
ulation language called X language, and its corresponding MBSE methodology, X-SEM,
based on SysML, Modelica, and Discrete Event Systems Specification (DEVS) [18–20]. X
language and its methodology effectively support object-oriented modeling, facilitating
requirements analysis, functional analysis, system logical architecture design, and phys-
ical architecture design. Furthermore, X language is a simulatable modeling language
supporting collaborative verification of functional and non-functional requirements.

Based on this foundation, this paper first extends X language and establishes a specifi-
cation for requirement modeling in two forms—graphical and textual—oriented towards
MBSE, termed ReqXL. Enriching the syntax and semantics of requirement description and
traceability, enables the construction of correct, unambiguous requirements and facilitates
the establishment of a complete traceability chain from requirement origins to requirement
realization, encompassing design components, and their related parameters or attributes.
Furthermore, the two modeling forms of requirement description bring benefits to model-
ing personnel in achieving traceability management: the graphical modeling form offers an



Systems 2024, 12, 443 3 of 31

intuitive understanding of associations among various requirements and system design
models, while the standardized textual modeling form defines unambiguous requirement
models and facilitates automated requirement traceability.

Secondly, building upon ReqXL, this paper proposes an algorithm for automated
requirement traceability, supporting the automatic capture of implicit requirement rela-
tionships among different hierarchical model elements. This ensures rapid identification
of the impact of requirement changes on the system design process and facilitates prompt
adjustments to system design solutions.

Lastly, leveraging ReqXL and X language, an integrated approach is proposed for
MBSE encompassing requirement modeling, traceability management, and verification.
This integrated approach effectively establishes associations between requirement models
and hierarchical models generated during the system design process, swiftly clarifying
how requirements influence the design process and effectively linking them with system
design models. Consequently, when system requirements change, rapid identification of
their impact on design allows for expedited iterative system design. Additionally, the
integrated simulation capability of X language for both functional and non-functional
requirements ensures the establishment of simulation models based on a unified language.
This not only ensures consistency among different hierarchical models, but also avoids
cross-platform traceability management issues. Such an integrated approach to requirement
modeling, traceability management, and verification significantly enhances the efficiency
of system development.

The remainder of this paper is structured as follows. Section 2 introduces the current
state of research on requirements modeling, traceability management, and verification, as
well as the relevant background on the X language family. In Section 3, we provide a de-
tailed introduction to the proposed requirements modeling specification, ReqXL, including
the defined requirements metamodel and requirements syntax. Section 4 presents an inte-
grated framework for requirements modeling, traceability management, and verification
based on X language and ReqXL. This section sequentially introduces the implementation
methods and benefits of requirements modeling, traceability management, and verifica-
tion. Finally, we describe the integrated platform developed based on the aforementioned
methods. In Section 5, we demonstrate the effectiveness of our approach using a case
study of an aircraft electrical system. The paper concludes with a summary and outlook on
future work.

2. Related Works

In this section, we summarize the state-of-the-art requirement modeling, traceability
management, and verification methods in MBSE and analyze the challenges currently faced.

2.1. Requirements Modeling Methods

Requirements modeling methods can mainly be divided into text-based and model-
based methods in MBSE. Text-based methods generally use natural language to write
requirements. The advantage of natural language is that it can describe any type of require-
ment. However, its main problem is imprecision and the potential for ambiguity. As an
improvement to these issues, structured natural language has emerged [21]. Many scholars
and official organizations have provided clear guidelines for the structured description
of requirements [4,10,22]. These methods ensure, to some extent, that requirements are
unambiguous and verifiable. Unfortunately, such structured text-based requirements make
it difficult to establish relationships between requirements and between requirements and
system design models.

Model-based methods provide a new perspective. SysML forms the foundation of
model-based requirement modeling methods. SysML requirement diagrams allow re-
quirements to be represented as model elements, and they can explicitly show various
relationships between different requirements and between requirements and other system
design models [23]. However, the description of requirements in SysML requirement dia-



Systems 2024, 12, 443 4 of 31

grams is still based on natural language without any structured constraints. This can lead
to ambiguity and misunderstanding. Additionally, the SysML requirements metamodel
does not offer rich semantic support to effectively link requirements with previous and sub-
sequent system design models or stakeholders. To address this, some innovative methods
have been proposed that use SysML elements for requirements modeling [24,25]. Moreover,
many scholars have explored the definition of domain-specific modeling languages or the
combination of domain-specific modeling languages with SysML to achieve requirements
modeling and effectively link requirements with functional architectures or system design
models [15,17,26].

2.2. Requirements Traceability Methods

Requirement traceability methods are primarily model-based and ontology-based
in MBSE. Model-based methods for establishing requirement traceability relationships
primarily focus on constructing models, including requirements models and traceability
models. Currently, common model-based methods are mainly divided into two categories:
creating SysML profiles oriented towards requirements traceability using SysML extension
mechanisms, and defining domain-specific modeling languages for requirements trace-
ability. The literature [14] proposes a SysML-based method to enhance the traceability of
requirements in SysML diagrams, including enriched SysML profiles for requirements
definition and traceability, and algorithms for generating traceability models. These algo-
rithms link requirements with design elements, generating traceability links at different
levels of granularity. Deng et al. extended SysML models to model safety requirements
and design artifacts, capturing traceability information [27]. The literature [17] defines
five domain-specific languages based on the MBSE approach to achieve close association
between requirements and functional architecture, laying the foundation for requirements
traceability. The literature [28] defines a domain-specific modeling language oriented
towards requirements and combines it with SysML to achieve bidirectional traceability
between requirements and upstream/downstream system designers and components.
Taromirad et al. propose an agile modeling method for managing requirements traceabil-
ity in safety-critical systems engineering, using a domain-specific modeling language to
describe traceability models [29]. However, although these two categories of methods
establish associations between requirements and system design models to some extent,
they rarely consider the system design process. Moreover, the non-executability of SysML
models or models based on domain-specific languages poses difficulties for requirements
verification.

Ontology-based methods are another approach to achieving requirements traceabil-
ity. In the traceability management of MBSE, ontology refers to the types, attributes, and
relationships of different objects such as requirements and system design models [30].
Therefore, a formal definition of such ontologies can effectively realize requirements trace-
ability. Adithya et al. proposed an ontology called OntoReq, which uses machine learning,
knowledge engineering, and the sunflower optimization algorithm to create high-quality
requirements traceability matrices, effectively enhancing the stability and reliability of
requirements traceability [31]. Murtazina et al. developed an ontology that includes the-
oretical knowledge of requirements engineering in an agile environment. This ontology
accumulates knowledge of requirement types and requirement components, enabling effec-
tive traceability between them [32]. However, these methods seldom consider the system
development process. Recently, Wu et al. defined a cognitive domain-oriented design
ontology, which achieves traceability management among stakeholders, models, and the
system development process within a developed MBSE toolchain [33,34]. Nevertheless, the
different levels of models established during the system development process are devel-
oped using different languages and tools, posing challenges for requirements traceability
and verification.



Systems 2024, 12, 443 5 of 31

2.3. Requirement Verification Methods

The goal of requirement verification is to ensure that the designed system meets the
system requirements in MBSE. Currently, there are two mainstream methods: formal verifi-
cation methods and simulation-based verification methods. Formal verification typically
involves transforming system design models into formal models and then using theorem
provers or model checkers to verify system requirements. For example, Wang et al. pro-
posed a method to transform SysML block definition diagrams and state machine diagrams
into NuSMV models to verify safety properties [35]. Staskal et al. transformed SysML
activity diagrams into NuXmv modules and verified the system using user-defined Linear
Temporal Logic (LTL) formulas [36]. In another study, requirements modeled in RSML-e
were converted into NuSMV models to verify a flight guidance subsystem [37].

Simulation-based methods are also a primary means of requirements verification.
Current SysML-oriented software tools, such as Rhapsody and Cameo Systems Modeler,
have dynamic model execution capabilities that can simulate system behavior models (state
machine diagrams, activity diagrams, etc.) to verify requirements. However, both formal
model-checking tools and executable platforms for SysML can only achieve verification
and analysis of functional requirements.

The design and verification of complex products require not only the verification of
functional requirements but also the verification of non-functional requirements (such
as performance requirements, environmental requirements, etc.). Currently, to integrate
system design and system simulation effectively, the main approaches are through model
transformation or cosimulation [38]. Model transformation methods are primarily based
on SysML extension mechanisms, constructing SysML metamodel extension configuration
files for specific simulation languages (such as Modelica, Matlab/Simulink, etc.) to achieve
automatic conversion from system design to simulation, thereby achieving collaborative
verification of both functional and non-functional requirements. In 2012, OMG proposed a
SysML and Modelica mapping method based on Query/View/Transformation (QVT), and
defined the SysML4Modelica extension package for metamodel transformation, providing
standard conversion methods between SysML and Modelica [39]. Zhou, Li, and others have
further improved and expanded upon this foundation [40]. However, although Modelica
can support unified modeling of complex systems across multiple domains, equation-based
languages are not friendly for discrete event modeling and simulation [41]. Inconsisten-
cies between support for discrete and continuous models make mapping and conversion
between SysML and Modelica difficult, hindering bidirectional information exchange. In
addition to model transformation, collaborative simulation is also a commonly used inte-
grated system design and simulation method. Currently, it mainly utilizes the Functional
Mock-up Interface (FMI) and its Functional Mock-up Units (FMU) to achieve collaborative
simulation between SysML logical design models with discrete characteristics and physical
models with continuous characteristics. For example, ref. [42] uses FMI to compile SysML
models into .fmu files and integrates them with Simulink and Modelica, thereby achieving
collaborative verification of both functional and non-functional requirements. However,
both model transformation and collaborative simulation methods require cross-language,
cross-platform adaptability, posing significant challenges for requirement traceability and
model consistency.

In summary, the current issues in requirements modeling, traceability management,
and verification in MBSE primarily stem from the fact that SysML, which supports MBSE,
struggles to facilitate integrated modeling across the four levels of requirements, functional-
ity, logic, and physics, and cannot support collaborative verification of both functional and
non-functional requirements. Furthermore, there is a lack of an integrated approach to in-
corporate stakeholders, requirements, the system development process, system architecture
models, and even simulation models, leading to difficulties in requirements traceability
management and inefficiencies in system development.



Systems 2024, 12, 443 6 of 31

2.4. X Language Family

X language [18,19,43,44], X-SEM [20], and XLab comprise a new set of languages,
methods, and tools oriented towards MBSE system design and development. X language is
an integrated modeling and simulation language for MBSE, based on DEVS and combining
modeling concepts from SysML and Modelica. The specific classes established by X lan-
guage, combined with its two modeling formats of graphics and text allow for integrated
analysis and design at four levels: requirements, functions, logic, and physics. Further-
more, the text model based on X language supports simulation. This integration enables
the verification and validation of models at all levels to be coordinated with the system
design process. X-SEM encompasses the entire system design process through four distinct
perspectives and three domains, facilitated by X language and its associated software,
XLab. The four perspectives—requirements, structure, behavior, and parameters—provide
a multifaceted view of the system’s core. The three domains—problem domain, solution
domain, and verification domain—are designed to effectively manage, define, and verify
varying levels of abstraction and granularity within the system, ensuring timely validation
of both functional and non-functional requirements.

The primary focus of MBSE is multidisciplinary complex systems [45], defined as
systems with numerous components and interconnections that are difficult to describe,
understand, predict, manage, design, and change. Therefore, using X language for system
modeling and simulation is highly suitable. However, the requirements diagrams of X
language, derived from SysML, lack comprehensive descriptions of requirements and face
difficulties in supporting bidirectional traceability of requirements relationships. Thus,
by adopting the requirements modeling and automatic tracking methods proposed in
this paper, in combination with the X language family, it is possible to achieve integrated
modeling, tracing, and verification of complex product requirements effectively. This
approach not only enhances system development efficiency but also ensures that when
requirements change, the affected requirements and system components can be precisely
located, enabling rapid iteration of system design.

3. ReqXL Overview

To effectively support the formalized description of stakeholder needs and system
design requirements during the system design process, as well as to achieve traceability
among requirements, the sources of requirements involved in the MBSE development
process, functional models, and system components. To verify requirements, we have
defined a formal modeling specification for requirements based on X language requirement
diagram, named ReqXL. ReqXL adopts a model-based and structured language approach,
including specifically designed semantics for describing stakeholder needs, system design
requirements, and capturing their traceability links used in the MBSE development process.
These requirement semantics are introduced in Section 3.1, and the abstract syntax of ReqXL
is provided in Section 3.2.

Figure 1 shows how ReqXL is related to other elements of X language through import
relationships. Therefore, functional models, structural models, and behavioral models
established in X language can be imported into ReqXL, facilitating effective traceability
between these models and requirements defined during the MBSE development process.
Additionally, structural models and behavioral models defined using X language can auto-
matically generate simulation models to verify requirements. This enables an integrated
process of requirement modeling, traceability, and verification, thereby improving the
efficiency of system design and development.



Systems 2024, 12, 443 7 of 31

Figure 1. The relationship between ReqXL and existing elements of the X language.

3.1. Semantic Structure

The purpose of designing ReqXL is to enable requirements engineers and systems
engineers to identify stakeholder needs, system design requirements, and effectively define
the sources of requirements, authors, and responsible persons, as well as the hierarchy
and types of requirements. The description of system design requirements must ensure
unambiguity and verifiability. Additionally, tracking should be conducted in both forward
and backward directions. ReqXL is an extension of X language tailored for the requirements
domain, so the model file extensions are the same as existing X language models, which
is .xl. In this section, we will define the semantics of ReqXL based on the goals we aim to
achieve.

The semantics of ReqXL are designed to enable modelers to clearly define requirements.
ReqXL aims to express requirements simply and understandably. It handles all types of
requirements and records information about the requirements as attributes. Table 1 provides
an informal detailed semantic design of ReqXL, defining the representation of requirements,
types of requirements, requirement attributes, and requirement relationships.

First, ReqXL offers two modeling forms: requirement diagrams and requirement
texts. Requirement diagrams facilitate the intuitive observation of relationships between
requirements, model elements, and other entities, while also displaying specific details of
the requirements. Requirement texts provide effective input for the automatic tracking and
management of requirements, enabling data mining of implicit requirement relationships.

Second, ReqXL categorizes requirements into two main types: stakeholder needs and
system design requirements. Stakeholder needs primarily originate from stakeholders and
are often described vaguely and cannot be directly verified. System design requirements
are derived by systems engineers using systems engineering methods based on stakeholder
needs; they must be explicit and verifiable.

ReqXL records specific information about these two types of requirements as attributes.
For example, the attributes for both types include the requirement ID, name, and descrip-
tion. Stakeholder needs also include the source of the need and the proposing stakeholder,
while system design requirements include attributes such as level, priority, and type.

In addition to specifying requirements, ReqXL is used to establish traceability relation-
ships between requirements and different elements from the system development process.
Therefore, ReqXL provides ten types of requirement relationships to support the association
between requirements, different personnel involved in the system development process,
and model elements.



Systems 2024, 12, 443 8 of 31

Table 1. ReqXL semantics definition.

ReqXL Semantics Definition Description
Forms

diagram
text

Types
stakeholder need Stakeholders’ Expectations

system design requirement Specifications for System Design
Attributes

identifier Unique identifier for stakeholder needs and system
design requirements

name Name of stakeholder needs and system design requirements
priority Priority of System Design Requirements (High/Medium/Low)

type Type of System Design Requirements
(Functional/Performance/Design/Environmental/Suitability)

level Level of System Design Requirements
(System-level/Component-level)

source Source of Stakeholder Needs
stakeholder Presenter for Stakeholder Needs

responsible stakeholder Responsible person for System Design Requirements

optimization role
Optimization Roles for System Design Requirements (Design

variable/Design variable bound/Input
parameter/Constraint/Objective)

description
Description of Stakeholders’ Expectations for the Product

Description of System Engineers for Product System
Design Requirements

Traceability Relationships
source Correlation of the Stakeholder Needs and their Source

responsible Correlation of Responsible Stakeholders and System Design
Requirements

presenter Correlation of Stakeholders and Stakeholder Needs
compose Inclusion Relationship between Requirements

derive Derivation Relationship between Requirements, as well as
between Requirements and other Models

refine Refinement Relationship between Requirements, as well as
between Requirements and other Models

trace Traceability Relationship between Requirements, as well as
between Requirements and other Models

satisfy Satisfaction Relationship between Requirements and
Model Elements

verify verification Relationship between Requirements and Simulation
Test Cases

map Correlation of Requirements and Specific Attributes of
Model Elements

The most critical attribute in the requirements model is the description attribute. In
ReqXL, stakeholder needs are mostly general expectations of the product proposed by
stakeholders. Their description attributes do not strictly require a specific format. How-
ever, system design requirements ultimately need verification; therefore, their description
attributes must be strictly defined. INCOSE provides relevant guidelines for standard-
ized requirement descriptions. To define unambiguous and verifiable system design
requirements, ReqXL adopts the requirement description format proposed by Carson [10].
Different types of requirements should use different description formats, as illustrated
in Figure 2. For instance, functional requirements need to specify what functions the



Systems 2024, 12, 443 9 of 31

system should possess; performance requirements indicate how well a function should
perform. Design constraint requirements impose restrictions on the feasible design space,
while environmental requirements specify how the system should behave when exposed
to specific environments. Lastly, suitability requirements encompass all “abilities”, such as
maintainability, and reliability.

Figure 2. Specified patterns for expressing different types of requirements.

3.2. ReqXL Abstract Syntax

Here, we elaborate on the abstract syntax of ReqXL by introducing the ReqXL meta-
model and BNF-based grammar.

3.2.1. ReqXL Metamodel

ReqXL incorporates concepts commonly used for specifying requirements. To express
the requirement model in a structured manner, it must be defined through formaliza-
tion. Figure 3 provides an overview of the ReqXL metamodel describing requirement
constructs, along with model elements involving traceability. ModelElement is a highly
abstract element, encompassing requirements, needs, and trace links in ReqXL, along with
related model elements imported from the X language, such as couple class models and
discrete class models. In ReqXL, needs can specify their sources and stakeholders, while
requirements can delineate their levels, types, roles, and priorities. Furthermore, each need
or requirement possesses a descriptive attribute known as “text”, which articulates the
specific content of the need or requirement in natural language. This “text” attribute can
also be linked to related requirements or model elements. Notably, the “text” attribute of
a requirement provides a structured description template based on its requirement type.
Model elements typically capture X language components that we want to trace to needs
or requirements. Tracelink is utilized to establish the relationships between requirements
and other captured elements. There are four categories of trace links, encompassing a
total of ten corresponding trace relationships, which are associated with two traceable
elements: supplier and customer. Tracelink defines four-link categories: pre-specification
requirement traceability (PreRS), which refers to the connection between requirements and
the preceding model elements upon which they are based; post-specification requirement
traceability (PostRS), which pertains to the link between requirements and subsequent
development activities and model element; traceability between function and require-
ment (TraceBetFun_Req) refers to traceability between requirements, use cases and func-
tional activities in the system development process; and traceability between requirements
(TraceBetReq) involves dependencies between requirements.



Systems 2024, 12, 443 10 of 31

Figure 3. ReqXL metamodel.

3.2.2. ReqXL Grammar

The ReqXL metamodel depicted in Figure 3 is highly beneficial in guiding system
engineers in writing requirements. For instance, it describes requirement content by
specifying different types of requirements. Figure 4 specifies the corresponding grammar
for describing requirements and model elements, capturing some traceability information.

Figure 4. ReqXL grammar.



Systems 2024, 12, 443 11 of 31

ReqXL mainly consists of four primary rules. Firstly, there is the rule for importing
other model elements from X language. During system development, functionalities and
components defined based on X language can be referenced to support requirement trace-
ability. The use of these references is demonstrated through the import rule. The rule for
stakeholder needs starts with a mandatory name. Stakeholder needs have a set of attributes:
identifier, source, stakeholders, and description. The rule for requirements also begins
with a mandatory name. Requirements have a set of attributes: identifier, responsible
stakeholders, priority, type, level, and optimization roles. The possible values for priority,
type, level, and optimization roles are enumerated types of different kinds. In ReqXL,
stakeholder needs are generally vague and broad. Therefore, their description has no
restrictions. Requirements, on the other hand, guide system design and must be unambigu-
ous and verifiable. Therefore, we structure requirements. Specifically, different structured
description templates are provided for five types of requirements (functional requirements,
performance requirements, design requirements, etc.). The core objective of the traceability
rule is to establish direct traceability links between stakeholders, stakeholder needs, re-
quirements, model elements, etc. ReqXL provides 10 traceability relationships supporting
trace links for four types (PreRS, PostRS, TraceBetFun_Req, and TraceBetReq) of traceabil-
ity. Therefore, the proposal of ReqXL provides an opportunity to enable requirements
modeling, traceability management, and verification.

4. Integrated Approach for Requirement Modeling, Traceability Management,
and Verification

In this section, an integrated approach to requirement modeling, traceability manage-
ment, and verification is proposed. Firstly, an integrated framework is presented, defining
a unified process for requirement modeling, traceability management, and verification
based on X language and ReqXL. Secondly, the implementation methods and potential
advantages of requirement modeling and verification, as well as requirement traceabil-
ity management, are introduced in detail. Finally, an integrated platform based on the
aforementioned methods is developed.

4.1. Integrated Framework

To efficiently support requirement modeling, traceability management, and verifica-
tion, an integrated framework is proposed, as shown in Figure 5. Firstly, ReqXL is used to
capture stakeholder needs and their sources. Secondly, the MBSE methodology based on X
language and following the X-SEM can guide the creation of requirement models [18–20].

Specifically, in the problem domain, the functional analysis process can transform
stakeholder needs into functional models and guide the formulation of system-level and
component-level design requirements. Based on the functional analysis, the logical archi-
tecture of the system and the design of various logical subsystems can be implemented
according to the component-level design requirements. After defining the logical architec-
ture, the process first enters the verification domain, where the logical architecture model
can generate simulation test cases for functional component-level design requirements to
verify functional requirements.

In the solution domain, the logical architecture model defined in the problem domain,
along with non-functional component requirements, guides the definition of the final ar-
chitecture. The final architecture defines the design of logical subsystems oriented toward
functional requirements and physical subsystems oriented toward non-functional require-
ments. Once the final architecture is defined, the process re-enters the verification domain.
In the verification domain, the final architecture model can generate simulation test cases
for non-functional component-level requirements to verify non-functional requirements.

Additionally, the functional models, system design models (logical and physical
models), and simulation test case models for functional and non-functional requirements
generated during the system design can be imported into the requirement model defined by
ReqXL. Through the requirement relationships provided by ReqXL, complete traceability



Systems 2024, 12, 443 12 of 31

from requirement sources to requirement verification is established. Finally, using the
requirement relationships defined by ReqXL as input for the traceability generation algo-
rithm, a complete requirement traceability chain is established, achieving the integrated
goal of requirement modeling, traceability management, and verification.

Figure 5. Integrated framework.

Requirements modeling relies on the implementation of ReqXL in the integrated ap-
proach. ReqXL offers two views (graphical and text views) for requirements modeling,
as illustrated in Figure 6. The graphical view excels in intuitively displaying require-
ment relationships, providing a structured representation, and facilitating communication
among engineers. The text view, on the other hand, allows engineers to easily modify the
requirements model and provides a machine-readable format for the defined requirement
relationships, which can be used as input for the traceability generation algorithm to infer
implicit trace relationships. Additionally, ReqXL ensures the standardized modeling of
stakeholder needs and system design requirements. Lastly, the “import” feature of ReqXL
allows the functional models and system design models, which are established based on X
language, to be imported into the ReqXL-based requirements model. This supports and
guides the modeling of traceability relationships.

Requirement verification relies on the collaborative implementation of X language and
ReqXL in the integrated approach. X language can integrate the modeling and simulation of
both logical and physical models, ensuring that functional and non-functional requirements
can be verified collaboratively through the definition of simulation test cases. Additionally,
as shown in Figure 6b, ReqXL can define simulation test cases and establish traceability
relationships, linking simulation test cases with requirements.

Requirements traceability management relies on the collaborative implementation of
X language and ReqXL in the integrated approach. Requirements traceability management
includes two aspects: first, maintaining the requirements traceability chain established
during requirements modeling and verification; and second, deriving implicit traceability
chains based on the established traceability chain and expressing them graphically. As
shown in Figure 6b, ReqXL’s “traceability” feature can store the captured traceability
relationships. Additionally, the graphical and text views of ReqXL can be converted
into each other. Therefore, when changes occur in the requirement relationships, the
modifications made in the graphical view simultaneously reflect in the text view. This
brings great convenience to modelers for managing and maintaining the requirements



Systems 2024, 12, 443 13 of 31

model. Furthermore, ReqXL’s text view also facilitates the automatic capture of implicit
traceability chains. The method for acquiring implicit requirement relationships and the
automatic generation of traceability relationships will be elaborated in the next subsection.

Figure 6. Requirement models based on ReqXL’s graphical and text views.

In summary, the consistency between the requirements model, the functional model,
the system design model, and the system simulation model defined by this unified mod-
eling and simulation language based on ReqXL and X language is ensured. At the same
time, this integrated approach avoids the establishment of requirement-tracking rela-
tionships between different platforms, which is beneficial to improve the efficiency of
system development.

4.2. Auto-Generation Method for Requirement Traces

In Figure 7, we depict the overall process for the automated generation of requirement
traceability. First, a requirements engineer uses ReqXL to describe a set of requirements
either graphically or textually. Then, during the MBSE-based system development process,
it is necessary to capture other model elements established based on X language. These
model elements are responsible for executing the specified actions within each requirement,
particularly in the case of component requirements. Finally, during the system development
process, systems engineers need to manually create all possible direct requirement links
based on the different requirement relationships defined by ReqXL. These explicitly manu-
ally established requirement links are used to infer implicit links between stakeholder needs,
system design requirements, system components, and test cases. The auto-generation algo-
rithm for requirement traceability automatically generates these implicit links based on the
requirement relationship inference rules and produces a complete graphical requirements
traceability model. The following sections will focus on the derivation rules for requirement
relationships and the auto-generation algorithm for requirement traceability.

Figure 7. Overall process for generating requirement traceability Links.



Systems 2024, 12, 443 14 of 31

4.2.1. Derivation Rules for Requirement Relationships

During the system development process, requirement changes are inevitable. There-
fore, establishing effective traceability between stakeholders, stakeholder needs, require-
ments, and system design is crucial for the rapid iterative development of subsequent
systems. In ReqXL, we can establish explicit links during the system development process.
Additionally, implicit links need to be derived based on the semantics of requirement
traceability relationships. This subsection focuses on various requirement traceability rela-
tionships in ReqXL and provides the derivation rules for implicit requirement relationships.

Ten types of requirement relationships are utilized to facilitate requirement traceability
in ReqXL. The source,presenter, and responsible relationships belong to the PreRS type.
The source and presente relationships are used to establish forward traceability between
stakeholder needs, stakeholders, and source of stakeholder needs. The compose, derive,
re f ine, and trace relationships belong to either the TraceBetFun_Req or TraceBetReq types.
They are mainly used to establish traceability relationships between stakeholder needs,
system design requirements, and system functional elements (use cases, activities). The
satis f y, map, and veri f y relationships belong to the PostRS type. The satis f y and map
relationships are used to establish traceability between stakeholder needs or system design
requirements and system model elements or specific attributes of model elements. The
veri f y relationship is used to establish verification relationships between stakeholder needs
or system design requirements and test cases. The following section provides the derivation
rules for implicit requirement relationships based on the brief classification.

In ReqXL, forward traceability relationships are primarily used to help system engi-
neers identify the initiators or organizations behind stakeholder needs and the responsible
parties for system design requirements. Establishing such explicit traceability relation-
ships allows system developers to effectively correct and re-establish associations with the
initiators or organizations behind forward stakeholder needs and the responsible parties
for system design requirements when facing requirement changes. Therefore, the core of
requirement derivation should focus on the other three types of traceability relationships:
TraceBetFun_Req, TraceBetReq, and PostRS.

1. compose
The compose is primarily used to define the inclusion relationship between require-
ments. If there are requirements R1, R2, . . . Rn, where n ≥ 2, and R1 is a composite
requirement while R2, . . . Rn are atomic requirements, and R1 is composed of R2,
. . . Rn, then there is a compose relationship between R1 and R2, . . . Rn. That is,
compose(R1, Rn), n ≥ 2. According to the definition of the compose relationship, the
compose relationship has the following characteristics:

(a) Anti-reflexivity: the compose relationship is anti-reflexive, meaning there is no
decomposition from a requirement to itself. That is,

∀a ∈ R,¬compose(a, a) (1)

(b) Anti-symmetry: the compose relationship is anti-symmetric, meaning there is
no mutual compose between requirements. That is,

∀a, b ∈ R, compose(a, b)→ ¬compose(b, a) (2)

(c) Transitivity: the compose relationship is transitive. That is,

∀a, b, c ∈ R, compose(a, b) ∧ compose(b, c)→ compose(a, c) (3)

2. derive
The derive is commonly used to define an inheritance or generalization between
requirements. Given two requirements, R1 and R2, where R1 is the provider require-
ment and R2 is the client requirement, if requirement R2 is derived from requirement
R1 and the implementation of R1 is a prerequisite for R2, then there exists a derive



Systems 2024, 12, 443 15 of 31

relationship between R1 and R2. That is, derive(R2, R1). The derive relationship also
exhibits the following characteristics:

(a) Anti-reflexivity: the derive relationship is anti-reflexive, meaning there is no
derivation from a requirement to itself. In other words,

∀a ∈ R,¬derive(a, a) (4)

(b) Anti-symmetry: the derive relationship is anti-symmetric, meaning there is no
mutual derivation between requirements. In other words,

∀a, b ∈ R, derive(a, b)→ ¬derive(b, a) (5)

(c) Transitivity: the derive relationship is transitive. That is,

∀a, b, c ∈ R, derive(a, b) ∧ derive(b, c)→ derive(a, c) (6)

3. re f ine
The re f ine relationship is used to define a specialization between a client and a target.
Here, the client or provider can be a requirement, use case, or activity. If the provider
element is R1 and the client element is R2, and if R2 refines R1 by providing a more
specific description, then there exists a re f ine relationship between R1 and R2. That is,
re f ine(R2, R1). The re f ine relationship also exhibits the following characteristics:

(a) Anti-reflexivity: the re f ine relationship is anti-reflexive, meaning there is no
refinement from a requirement to itself. In other words,

∀a ∈ R,¬re f ine(a, a) (7)

(b) Anti-symmetry: the re f ine relationship is anti-symmetric, meaning there is no
mutual refinement between requirements. In other words,

∀a, b ∈ R, re f ine(a, b)→ ¬re f ine(b, a) (8)

(c) Transitivity: the re f ine relationship is transitive. That is,

∀a, b, c ∈ R, re f ine(a, b) ∧ re f ine(b, c)→ re f ine(a, c) (9)

4. trace
The trace relationship is a generalized requirement relationship. In ReqXL, we gener-
ally recommend using the aforementioned three relationships to establish connections
between requirements, as well as between requirements and other model elements.
The trace relationship is primarily used to establish implicit cross-layer relationships.
Typically, the trace relationship exhibits the following characteristics:

(a) When there is a compose (derive) relationship between a and b, and a derive
(compose) relationship between b and c, a trace relationship is established
between a and c. In other words,

∀a, b, c ∈ R, derive(a, b) ∧ compose(c, b)→ trace(a, c) (10)

∀a, b, c ∈ R, compose(a, b) ∧ derive(c, b)→ trace(c, a) (11)

(b) When there is a compose (re f ine) relationship between requirements a and b,
and a re f ine (compose) relationship between b and c, a trace relationship is
established between a and c. In other words,

∀a, b, c ∈ R, re f ine(a, b) ∧ compose(c, b)→ trace(a, c) (12)

∀a, b, c ∈ R, compose(a, b) ∧ re f ine(c, b)→ trace(c, a) (13)



Systems 2024, 12, 443 16 of 31

(c) When there is a derive (re f ine) relationship between requirements a and b, and
a re f ine (derive) relationship between b and c, a trace relationship is established
between a and c. In other words,

∀a, b, c ∈ R, re f ine(a, b) ∧ derive(b, c)→ trace(a, c) (14)

∀a, b, c ∈ R, derive(a, b) ∧ re f ine(b, c)→ trace(a, c) (15)

(d) When there exist R1 and R2, R2 and R3, . . ., Rn-1 and Rn, with n ≥ 3, and the
above three types of relationships exist between them without the same type
of relationship being consecutive, a trace relationship is established between
R1 and Rn.

5. satis f y
The satis f y relationship is used to define the fulfillment relationship between sys-
tem design components and requirements. Similar to the previous three types of
requirement relationships, the satisfaction relationship also exhibits anti-reflexivity
and anti-symmetry. However, since the satisfaction relationship spans both the re-
quirement layer and the design layer, its transitivity is not considered. Satisfaction
relationships are generally established between system component requirements and
system design components. Therefore, it is often difficult to observe how stakeholder
needs or top-level system design requirements are fulfilled. In ReqXL, we have de-
fined four types of requirement relationships oriented towards TraceBetFun_Req and
TraceBetReq, along with their derivation rules. Consequently, the implicit satis f y
relationship can also be easily derived. Specifically:
When there is a compose/derive/re f ine/trace relationship between a and b, and a
satis f y relationship between b and c, a satis f y relationship is established between a
and c (where the four types of relationships between a and b can be either explicit
relationships or implicitly derived relationships). In other words,

∀a, b, c ∈ R, compose(a, b) ∧ satis f y(c, b)→ satis f y(c, a) (16)

∀a, b, c ∈ R, derive|trace(b, a) ∧ satis f y(c, b)→ satis f y(c, a) (17)

6. veri f y
The veri f y relationship is used to define the verification relationship between test
cases and requirements. The veri f y relationship also exhibits anti-reflexivity and
anti-symmetry. The veri f y relationships are generally established between system
component requirements and test cases. In ReqXL, we have defined four types of
requirement relationships oriented towards TraceBetFun_Req and TraceBetReq, along
with their derivation rules. Consequently, implicit veri f y relationships can also be
easily derived. Specifically:
When there is a compose/derive/re f ine/trace relationship between requirements a
and b, and a veri f y relationship between b and c, a veri f y relationship is established
between a and c (where the four types of relationships between a and b can be either
explicit relationships or implicitly derived relationships). In other words,

∀a, b, c ∈ R, compose(a, b) ∧ veri f y(c, b)→ veri f y(c, a) (18)

∀a, b, c ∈ R, derive|trace(b, a) ∧ veri f y(c, b)→ veri f y(c, a) (19)

4.2.2. Auto-Generation Algorithm for Requirement Traces

An auto-generation algorithm for requirement traces based on the ReqXL specification
was designed to generate traceability links automatically. It is based on collecting system el-
ements associated with these requirements. In Algorithm 1, the input is a .xl file established
using ReqXL. Firstly, the algorithm extracts the sources set So, the stakeholders set S, the
responsible stakeholders set RS, the stakeholder needs set N, system design requirement



Systems 2024, 12, 443 17 of 31

set R, explicitly defined traceability relationship set T0, and model elements E imported
from X language based on the established .xl file. Secondly, the algorithm retrieves all
possible requirement trace paths from stakeholder needs to system components and test
cases through a recursive method based on the acquired requirement traces. Then, based
on the existing requirement traces and derivation rules, it iteratively traverses all elements
on each path to obtain the implicit requirement traces. Finally, the algorithm returns a set
TM(So, S, RS, N, R, E, Rt) containing all elements and their traces.

Algorithm 1 Requirement traces generation

Require: .xl files based on ReqXL
Ensure: Trace Model: TM(So,S,RS,N,R,E,Rt)

1: So = .xl.getAllsources();
2: S = .xl.getAllstakeholders()
3: RS = .xl.getAllresponsible_stakeholders();
4: N = .xl.getAllstakeholderneeds();
5: R = .xl.getAllsystemdesignreqs();
6: E = .xl.getAllmodelelements();
7: T0 = .xl.getAlltraces(); ▷ triad (A,B,relationship)
8: for each trace ∈ T0 do ▷ get child and parent nodes for all elements
9: trace.A← CreateNewChild(B, relationship);

10: trace.B← CreateNewParent(A, relationship);
11: end for
12: function path_search(node) ▷ get all paths for requirement traces by recursion
13: if node.child == NULL then
14: All_Path← CreateNewPath(path);
15: else
16: for each child ∈ node.child do
17: path← CreateNewNode(child);
18: path_search(child);
19: end for
20: end if
21: end function
22: for each stakeholder_need ∈ N do ▷ get all paths relevant to stakeholder needs
23: path_search(stakeholder_need);
24: end for
25: for each path ∈ All_Path do ▷ get all implicit traces
26: for each e ∈ path do
27: for each e′ ∈ path do
28: if The derivation rule holds then
29: T1 ← CreateNewTrace(e, e′);
30: end if
31: end for
32: end for
33: end for
34: Rt ← T0

⋃
T1;

35: return TM(So,S,RS,N,R,E,Rt)

Currently, some SysML-based approaches require converting SysML diagrams into
XML files to extract model elements and requirement relationships, which increases the
difficulty of obtaining input information for algorithms. Additionally, some domain-specific
modeling language-based methods establish requirement relationships by modeling each
requirement individually, which also complicates the extraction of requirement relationships.

As shown in Figure 6b, the ReqXL-based requirement modeling method separates the
definition of model elements and requirement relationships, and the custom .xl text file
format of ReqXL can be directly used as input for Algorithm 1. Therefore, extracting both
model elements and requirement relationships is very straightforward, effectively reducing



Systems 2024, 12, 443 18 of 31

the implementation complexity of requirement traceability generation algorithms and
increasing the efficiency of automatically generating traceability chains to a certain extent.

4.3. Integrated Platform for ReqXL and X Language

To effectively support system design engineers in integrated requirement modeling,
traceability management, and verification, we have customized the development based
on our self-developed XLab tool, which is oriented toward X language [18–20]. XLab is a
B/S architecture modeling and simulation platform that supports requirement modeling,
functional modeling, system architecture design, and simulation verification based on X
language and X-SEM. The original requirement modeling functionality of X language was
derived from SysML’s requirement diagrams.

Therefore, in XLab, we have extended the requirement diagram to develop graphical
modeling functions, text modeling functions, bidirectional conversion between graphical
and text representations, and requirement traceability analysis functions oriented towards
ReqXL, as shown in Figure 8a,e. From a technical implementation perspective, the devel-
opment of ReqXL-based graphical sources, line types, and related attributes is achieved
using the LogicFlow framework. The ReqXL-based text editing, code suggestion, and
highlighting functions are implemented using the CodeMirror framework. Utilizing the
XML intermediate data format, the bidirectional conversion between graphical and textual
models based on ReqXL is realized using the ANTLR4 conversion framework and ReqXL
syntax. The requirement traceability analysis function based on ReqXL is implemented
using Algorithm 1.

Figure 8. Integrated platform.

As shown in Figure 8, the existing functions of XLab and the customized development
functions for ReqXL enable integrated requirement modeling, traceability management,
and verification on a unified platform. This approach, based on a unified language and
platform, ensures consistency across models at various stages and can effectively enhance
system development efficiency.



Systems 2024, 12, 443 19 of 31

5. Case Study

The application case focuses on an aircraft electrical system to implement an integrated
process of requirements management, traceability, and verification. In this context, the
aircraft electrical system employs an MBSE approach based on X language, combined
with ReqXL, to achieve an integrated process of requirements traceability management.
This process, starting from capturing stakeholder needs and continuing through system
verification, demonstrates the superiority of the proposed method.

5.1. Requirement Modeling and Verification
5.1.1. Capturing Stakeholder Needs

In this section, ReqXL is used to describe stakeholder needs. In the design of the
aircraft electrical system, we begin with two specified stakeholder needs. We use the
acronym SN to denote stakeholder needs. The descriptions are as follows:

SN1: lithium battery supplies power to all electrical equipment, ensuring the normal
operation of the aircraft electrical system.

SN2: during the different phases of guidance, the power of all electrical equipment is
adjusted according to predetermined instructions.

In Figure 9, ReqXL specifies these stakeholder needs. These needs are proposed
by the aircraft electrical system design team and originate from a design document. In
ReqXL, forward traceability is captured based on the source and stakeholder attributes.
Additionally, stakeholder needs are relatively general, vague, and not directly verifiable.
Therefore, we need to transform these stakeholder needs into verifiable system design
requirements through X language and its MBSE methodology, X-SEM, to achieve complete
system design and closed-loop verification of the top-level stakeholder needs. On this basis,
comprehensive traceability management is achieved using ReqXL.

Figure 9. Modeling stakeholder needs and their sources based on ReqXL.

5.1.2. Problem Domain: Black Box Stage

The first step in the black box stage is to transform stakeholder needs into use cases.
For the aircraft electrical system, the relevant use case is “power distribution”. Since
the operator needs to allocate the appropriate power to various electrical devices, the
“power distribution” use case encompasses four sub-use cases: power_rudder, power_radar,
power_ f use, and supply_power, as illustrated in Figure 10d. Once the use case diagram
is established, the system context is also defined, as shown in Figure 10b. Additionally,
based on the use case diagram, a black box activity diagram can be constructed to depict
the interaction behaviors between the aircraft electrical system and the operator. The
black box activity diagram captures the use case scenarios by creating a flow of functional
activities between the operator and the aircraft electrical system, as illustrated in Figure 10c.
The operator initiates the aircraft electrical system, and upon receiving the signal, the
aircraft’s electrical system sequentially completes power startup and allocates power to



Systems 2024, 12, 443 20 of 31

each electrical device according to internal commands until the target is hit. By combining
the stakeholder needs captured in Figure 10a, the physical parameters (voltage, current,
and power) that the aircraft electrical system must meet to satisfy the stakeholder needs
can be analyzed and obtained, as shown in Figure 10e.

Figure 10. Problem domain with the aircraft electrical system considered as a black box: (a) Stake-
holder needs; (b) System context; (c) Use case scenarios; (d) Use cases; (e) Measurements of effectiveness.

In the black box stage, the stakeholder needs for the aircraft electrical system are
refined into use cases. Based on the aforementioned analysis, the relationships between
stakeholder needs and use cases can be detailed using ReqXL, as illustrated in Figure 11.

Figure 11. Modeling the relationships between stakeholder needs and functional models based
on ReqXL.

5.1.3. Problem Domain: White Box Stage

In the white box stage, it is necessary to refine the black box functional activity flows
into a white box implementation to further detail the use cases. Here, the functional activity



Systems 2024, 12, 443 21 of 31

logic executed by each subsystem during the aircraft’s flight is established using a white box
activity diagram with swimlanes, as illustrated in Figure 12a. The definition of the white box
activity diagram not only guides system engineers in defining system design requirements
but also helps to outline the logical architecture of the aircraft electrical system.

Figure 12. Problem domain with the aircraft electrical system considered as a white box: (a) Functional
analysis; (b) Logical architecture definition; (c) Logical subsystems communication; (d) Logical
architecture text.

Based on the use cases and functional activity analysis within the problem domain,
system design requirements can be derived. We use acronyms to formulate the system
design requirements. The detailed descriptions are as follows:

SR1: functional requirement: the aircraft electrical system shall be continuously pow-
ered during guidance.

SR2: functional requirement: the aircraft electrical system shall ensure that all electrical
equipment operates normally during guidance.

Our goal is to address downstream traceability at a fine-grained level through ReqXL.
Therefore, based on the analysis process of the problem domain, component-level require-
ments are derived. These requirements can be directly traced to individual classes or small
groups of classes that contribute to fulfilling the requirement. We use acronyms to specify
the component requirements. The detailed descriptions are as follows:

CR.1: design requirement: the SOC of the lithium battery shall be no less than 0
during guidance.

CR.2: design requirement: the voltage of the lithium battery shall be maintained at
27 ± 3 V during guidance.

CR.3: functional requirement: the radar shall warm up normally.
CR.4: functional requirement: the radar shall be on high voltage normally.



Systems 2024, 12, 443 22 of 31

CR.5: functional requirement: the radar shall adjust the power according to the
control instruction.

CR.6: functional requirement: the rudder shall start up normally.
CR.7: functional requirement: the rudder shall adjust the power according to the

control instruction.
CR.8: functional requirement: the fuse shall ignite normally.
CR.9: functional requirement: the fuse shall adjust the power according to the con-

trol instruction.
As shown in Figure 13, ReqXL is used to describe use cases, activities, system design

requirements, component requirements, and the relationships between them. Next, it is
necessary to establish the logical architecture of the aircraft electrical system and the internal
behaviors of each logical subsystem to satisfy and verify the component requirements. The
logical architecture model of aircraft electrical systems generally only achieves satisfaction
and verification of functional requirements. Non-functional requirements such as CR.1
and CR.2 must be addressed and validated in the solution domain. Therefore, in the
problem domain, it is necessary to first establish the logical architecture of the aircraft
electrical system and utilize ReqXL to achieve satisfaction and verification of functional
component requirements.

Figure 13. Modeling the system requirements, component requirements and the relationships
between system requirements, component requirements, and functional models based on ReqXL.

In X language, the logical architecture of the aircraft electrical system is designed
following a top-down modeling approach, using the couple class to define the system’s
logical architecture. The definition diagram in Figure 12b describes the logical subsystems
included in the aircraft system, while the connection diagram in Figure 12c depicts the signal
and data interactions among the six subsystems (radar, rudder, fuse, scenario control system,
etc.). Additionally, an operator subsystem is added as an external stimulus to the aircraft
electrical system. Figure 12d provides a textual representation of the logical architecture.

Based on the determined logical architecture, behavior modeling and simulation of
each logical subsystem need to be conducted to satisfy and verify component requirements
CR.3 to CR.9. From the descriptions of component requirements CR.3 to CR.9, it can be
seen that CR.3 to CR.5 are fulfilled by the radar subsystem, CR.6 to CR.7 are fulfilled by the
rudder subsystem, and CR.8 to CR.9 are fulfilled by the fuse subsystem. Here, the radar
subsystem is selected as an example. The structure and behavior of the radar subsystem
are defined using discrete class in X language. The definition diagram of the discrete class
specifies the interaction ports, parameters, and variables of the radar subsystem with other



Systems 2024, 12, 443 23 of 31

subsystems, as shown in Figure 14a. The state machine diagram defines the transitions of
the radar subsystem’s states (off, preheat, and high-voltage activation) according to control
commands, as shown in Figure 14b. Figure 14c provides a textual representation of the
radar subsystem. The modeling process for the other subsystems is similar to that of the
radar subsystem and will not be repeated here.

Figure 14. Graphical and textual models for the radar: (a) Definition diagram for the radar; (b) State
machine diagram for the radar; (c) Text for the radar.

5.1.4. Verification Domain for Logical Architecture

After completing the logical models for all subsystems, the logical architecture model
based on couple class and all subsystem models based on discrete class are merged into a
simulatable project file. Compilation and simulation are then performed using X language
compiler and simulator to verify the requirements. Here, three simulation test cases
(sim_radar, sim_rudder, and sim_fuse) are defined to verify component requirements CR.3
to CR.9. As shown in Figure 15, sim_radar verifies CR.3 to CR.5, sim_rudder verifies CR.6
to CR.7, and sim_fuse verifies CR.8 to CR.9.

Based on the above analysis, ReqXL is used to describe the relationships between
component requirements, relevant subsystems, and simulation test cases, as shown in
Figure 16.



Systems 2024, 12, 443 24 of 31

Figure 15. Simulation results of sim_rudder,sim_radar and sim_fuse.

Figure 16. Modeling the relationships between component requirements, designed system and
simulation test cases based on ReqXL.



Systems 2024, 12, 443 25 of 31

5.1.5. Solution Domain

In the previous subsection, component requirements CR.1 and CR.2 are non-functional
requirements that serve as design constraints for the battery subsystem. In the solution
domain, the final architecture of the aircraft electrical system is realized by considering
the physical characteristics of each subsystem based on the logical architecture model.
Since component requirements CR.1 and CR.2 are aimed at the battery subsystem, we will
illustrate the establishment of the final architecture model of the aircraft electrical system
using the battery subsystem as an example. The physical model of the battery system is
designed based on the equivalent model framework referenced in the literature [46], with
the State of Charge (SOC) calculation using the ampere-hour integration method. In X
language, couple class is used to model the battery subsystem.

As shown in Figure 17a, the definition diagram of the couple class defines the com-
position of the battery subsystem. The battery subsystem consists of the SOC calculation
module, Resistance–Capacitance (RC) calculation module, voltage calculation module,
and current calculation module. The connection diagram of the coupling class defines the
interactions between these modules, as shown in Figure 17b. Figure 17c provides a textual
representation of the battery subsystem. The construction of other subsystems follows a
similar modeling process to that of the battery subsystem, and will not be elaborated here.

Figure 17. Graphical and textual models for the battery: (a) Definition diagram for the battery;
(b) State machine diagram for the battery; (c) Text for the battery.

5.1.6. Verification Domain for Final Architecture

After establishing all subsystems, all subsystem models are merged into a simulatable
project file to verify the requirements. Here, we define a simulation test case (sim_battery)
to verify component requirements CR.1 and CR.2, as shown in Figure 18.



Systems 2024, 12, 443 26 of 31

Figure 18. Simulation results of sim_battery.

Based on the above analysis, ReqXL is used to describe the relationships between
component requirements, related subsystems, and simulation test cases. As shown in
Figure 19, the relationships between component requirements CR.1 and CR.2, related
subsystems, and simulation test cases are supplemented.

Figure 19. Modeling the relationships between component requirements CR.1 and CR.2, designed
system and simulation test cases based on ReqXL.

5.2. Requirement Traceability Management

While completing the modeling and verification of the requirements for the aircraft’s
electrical system, the comprehensive requirements model (including requirement defini-
tions and relationships) has been progressively defined based on ReqXL, as illustrated in
Figures 9, 11, 13, 16 and 19. When these requirements models are integrated, they form a
complete requirements model. This requirements model encompasses all model elements
and their explicit traceability links, from the source of the requirements to their verification.

At this stage, we can use Algorithm 1 to produce explicit and inferred links between
stakeholder needs for the aircraft electrical system, system design requirements, system
design components, and simulation test cases. After generating potential traceability links
between all model elements, we can describe the created traceability links using a graphical
model. In XLab, by right-clicking the corresponding ReqXL file and selecting the hierarchy
analysis button, the visualization of the requirements traceability links can be achieved.

Here, we select the stakeholder need SN.1 to demonstrate the effectiveness of the
Algorithm 1. As shown in Figure 20, stakeholder need SN.1 can be effectively traced back
to its source and to the corresponding stakeholders. Additionally, using the design method-



Systems 2024, 12, 443 27 of 31

ology based on X language and X-SEM, it can be clearly shown how SN.1 establishes
traceability relationships with system design requirement SR.1 and component require-
ments CR.1 and CR.2. In the figure, black links represent explicit links, while red links are
automatically generated by Algorithm 1, associating the top-level stakeholder need SN.1
with the designed battery subsystem and the simulation test case sim_battery. This is very
useful for detecting the impact of requirements changes on all related requirements and
model elements.

Figure 20. The traces model for SN.1.

5.3. Discussion

Based on the integrated framework proposed in Section 4.1, an integrated process for
requirements modeling, traceability management, and verification of the aircraft electrical
system was achieved by combining ReqXL with the previously developed X language and
methodology, X-SEM. Specifically, during the system design process, stakeholder needs,
corresponding stakeholders, and the sources of these needs are initially defined using
ReqXL. Subsequently, under the guidance of X-SEM, comprehensive traceability links are
progressively established between stakeholder needs, use cases, activities, system-level



Systems 2024, 12, 443 28 of 31

requirements, component-level requirements, design components, and simulation test cases
through the integration of the X language with ReqXL. Finally, the automatic traceability
process is executed using the proposed Algorithm 1. When stakeholder needs change,
the predefined traceability links, along with the implicit traceability links derived from
Algorithm 1, facilitate the rapid identification and localization of how these changes impact
the system’s functionality, architectural design, and verification process. This integrated
approach significantly enhances the development efficiency of the aircraft electrical system.

Based on previous experience, it appears that integrating ReqXL with SysML can, to
some extent, achieve an integrated process for requirements modeling, traceability manage-
ment, and verification of aircraft electrical systems. However, as previously mentioned,
SysML cannot describe the system’s physical characteristics and perform simulations. This
limitation results in the inability to model and simulate the physical architecture of the
aircraft within the solution and verification domains, such as the battery subsystem. Conse-
quently, the integration of ReqXL and SysML struggles to establish complete traceability
links, making it difficult to achieve an integrated approach to requirements modeling,
traceability management, and verification.

A feasible approach is to integrate ReqXL, SysML, and simulation languages such as
Modelica and MATLAB/Simulink to realize an integrated process for the aircraft electrical
system’s requirements modeling, traceability management, and verification. However, this
multi-language and multi-platform integration approach faces challenges in maintaining
consistency between requirements and other models, in addition to the high learning curve
for modelers. In contrast, the X language is a unified modeling and simulation language
that combines SysML’s system modeling capabilities with Modelica’s multi-domain unified
modeling and simulation capabilities. Therefore, the integration of ReqXL with the X
language effectively avoids the aforementioned drawbacks.

It is worth noting that the integrated approach proposed in this paper is a general
method designed for complex multidisciplinary products and is not limited to product
development in the aerospace field. In the future, we plan to consider applying this
integrated method to industries such as automotive and marine.

6. Conclusions and Future Works

Currently, the methods for requirements modeling, traceability management, and
verification in Model-Based Systems Engineering (MBSE) encounter several challenges.
First, the MBSE-oriented modeling language, SysML, lacks the rich syntax and seman-
tics necessary to precisely model requirements and fully capture the traceability from the
source of requirements to system components and their specific attributes. Second, the
absence of capabilities within SysML to describe physical characteristics and perform simu-
lations necessitates the integration of external simulation languages, such as Modelica and
MATLAB/Simulink, to achieve a cohesive process for requirements modeling, traceability
management, and verification. However, this multi-language and multi-tool integration
approach presents significant challenges in maintaining consistency between requirements
and system design models, as well as ensuring traceability during changes to requirements.
Furthermore, current approaches to requirement traceability are predominantly manual,
lacking an automated method for effective traceability.

To address the aforementioned issues, this paper proposes an integrated approach
for modeling requirements, managing traceability, and verification within an MBSE envi-
ronment, building on a previously introduced unified modeling and simulation language,
X language.

The approach begins by defining a requirement modeling specification called ReqXL,
tailored to the requirements diagram of the X language and the unique characteristics
of MBSE development. ReqXL is structured to depict stakeholder needs, system design
requirements, and to establish syntax and semantics necessary for generating traceability
links during the MBSE development process. Based on ReqXL, it is possible to achieve
precise modeling of requirements. Additionally, it ensures the modeling of complete



Systems 2024, 12, 443 29 of 31

traceability relationships from the source of the requirements to the system components
and their attributes. Subsequently, the paper outlines the derivation rules for require-
ment traceability based on ReqXL and proposes an algorithm for automated traceability
generation. This algorithm can automatically generate the upstream and downstream
traceability chains for selected requirements. This ensures that when requirements change,
it automatically identifies how the changes impact the system’s functionality, architectural
design, and verification process. This study also proposes an integrated framework that
achieves unified requirements modeling, traceability, and verification by combining ReqXL
with the previously introduced X language and the X-SEM methodology. This integrated
approach effectively ensures the consistency of models across different levels during the
system development process through language-level unification. Additionally, it facilitates
more convenient automatic traceability and verification of requirements.

Currently, we have implemented custom development functions for requirements
modeling and automatic traceability analysis using ReqXL on the XLab integrated modeling
and simulation platform tailored for the X language. The effectiveness of this approach
has been demonstrated through a case study involving the development of an aircraft
electrical system.

Although ReqXL is an extension of the requirements modeling specification based
on the X language, integrating ReqXL with SysML and its related software tools, such as
Rhapsody and Cameo System Modeler, holds practical significance to a certain extent.

In the future, we will explore the integration of ReqXL with existing software tools
that support SysML. Additionally, we will focus on achieving the synergy between MBSE
and Multidisciplinary Design and Optimization (MDO) by combining X language with
ReqXL and its defined optimization role attributes. This approach aims to create a cohesive
framework for requirements, system design, verification, and optimization, utilizing a
unified language and software to enhance the development efficiency of complex systems.
Furthermore, the textual representations of X language and ReqXL provide opportunities
for the automatic generation of requirements models and system architecture models based
on a large language model.

Author Contributions: All authors contributed to the study conception and design. P.G.: Methodol-
ogy, Writing—Original draft, Writing—review and editing, Project administration. Y.Z.: Methodology,
Software. Z.C.: Visualization, Investigation. C.Z.: Conceptualization, Supervision. K.X.: Concep-
tualization, Data curation. Z.W.: Validation, Data curation. L.Z.: Supervision, Resources, Funding
acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Key R&D Program of China, No. 2023YFB3308201.

Data Availability Statement: The data that support the findings of this study are available upon
request from the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kotonya, G.; Sommerville, I. An Introduction to Requirements Engineering; Pearson Education: Princeton, NJ, USA, 1998; Volume 25,

p. 2010.
2. Sage, A.P.; Rouse, W.B. Handbook of Systems Engineering and Management; John Wiley & Sons: Hoboken, NJ, USA, 2014.
3. Clancy, T. The Chaos Report; The Standish Group: Centerville, MA, USA, 1995.
4. Efremov, A.A.; Gaydamaka, K.I. Incose guide for writing requirements. Translation experience, adaptation perspectives. In

Proceedings of the CEUR Workshop Proceedings, Como, Italy, 9–11 September 2019; pp. 9–11.
5. Tufail, H.; Masood, M.F.; Zeb, B.; Azam, F.; Anwar, M.W. A systematic review of requirement traceability techniques and tools. In

Proceedings of the 2017 2nd International Conference on System Reliability and Safety (ICSRS), Milan, Italy, 20–22 December
2017; pp. 450–454.

6. Madni, A.M.; Sievers, M. Model-based systems engineering: Motivation, current status, and research opportunities. Syst. Eng.
2018, 21, 172–190. [CrossRef]

7. Zeigler, B.P. DEVS and MBSE: A review. Int. J. Model. Simul. Sci. Comput. 2022, 13, 2230001. [CrossRef]
8. Friedenthal, S.; Moore, A.; Steiner, R. OMG systems modeling language (OMG SysML) tutorial. INCOSE Intl. Symp. 2006, 9,

65–67. [CrossRef]

http://doi.org/10.1002/sys.21438
http://dx.doi.org/10.1142/S1793962322300011
http://dx.doi.org/10.1002/j.2334-5837.2008.tb00914.x


Systems 2024, 12, 443 30 of 31

9. Génova, G.; Fuentes, J.M.; Llorens, J.; Hurtado, O.; Moreno, V. A framework to measure and improve the quality of textual
requirements. Requir. Eng. 2013, 18, 25–41. [CrossRef]

10. Carson, R.S. Implementing Structured Requirements to Improve Requirements Quality. INCOSE Int. Symp. 2015, 25, 54–67.
[CrossRef]

11. Boggero, L.; Ciampa, P.D.; Nagel, B. An MBSE architectural framework for the agile definition of system stakeholders, needs and
requirements. In Proceedings of the AIAA Aviation 2021 Forum, Virtual Event, 2–6 August 2021; p. 3076.

12. Hull, E.; Jackson, K.; Dick, J.; Hull, E.; Jackson, K.; Dick, J. DOORS: A tool to manage requirements. Requir. Eng. 2002 , 187–204.
13. de Gea, J.M.C.; Nicolás, J.; Alemán, J.L.F.; Toval, A.; Ebert, C.; Vizcaíno, A. Requirements engineering tools. IEEE Softw. 2011,

28, 86–91. [CrossRef]
14. Haidrar, S.; Anwar, A.; Roudies, O. A SYSML-based Approach to manage stakeholder requirements traceability. In Proceedings

of the 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), Hammamet, Tunisia,
30 October–3 November 2017; pp. 202–207.

15. Haidrar, S.; Anwar, A.; Bruel, J.M.; Roudies, O. A Domain-Specific Language to manage Requirements Traceability. J. Softw. 2018,
13, 460–480. [CrossRef]

16. Zeigler, B.P.; Mittal, S.; Traore, M.K. MBSE with/out Simulation: State of the Art and Way Forward. Systems 2018, 6, 40. [CrossRef]
17. Lemazurier, L.; Chapurlat, V.; Grossetête, A. An MBSE approach to pass from requirements to functional architecture. IFAC-

PapersOnLine 2017, 50, 7260–7265. [CrossRef]
18. Zhang, L.; Ye, F.; Xie, K.; Gu, P.; Wang, X.; Laili, Y.; Zhao, C.; Zhang, X.; Chen, M.; Lin, T.; et al. An integrated intelligent modeling

and simulation language for model-based systems engineering. J. Ind. Inf. Integr. 2022, 28, 100347. [CrossRef]
19. Zhang, L.; Ye, F.; Laili, Y.; Xie, K.; Gu, P.; Wang, X.; Zhao, C.; Zhang, X.; Chen, M. X language: An integrated intelligent modeling

and simulation language for complex products. In Proceedings of the 2021 Annual Modeling and Simulation Conference
(ANNSIM), Fairfax, VA, USA, 19–22 July 2021; pp. 1–11.

20. Gu, P.; Chen, Z.; Zhang, L.; Zhang, Y.; Xie, K.; Zhao, C.; Ye, F.; Tao, Y. X-SEM: A modeling and simulation-based system
engineering methodology. J. Manuf. Syst. 2024, 74, 198–221. [CrossRef]

21. Cooper, K.; Ito, M. 1.6. 2 formalizing a structured natural language requirements specification notation. In Proceedings of the
INCOSE International Symposium, Las Vegas, NV, USA, 28 July–1 August 2002; Volume 12, pp. 1025–1032.

22. Garcia, I.; Pacheco, C.; León, A.; Calvo-Manzano, J.A. A serious game for teaching the fundamentals of ISO/IEC/IEEE 29148
systems and software engineering–Lifecycle processes–Requirements engineering at undergraduate level. Comput. Stand.
Interfaces 2020, 67, 103377. [CrossRef]

23. Friedenthal, S.; Moore, A.; Steiner, R. A Practical Guide to SysML: The Systems Modeling Language; Morgan Kaufmann: London, UK,
2014.

24. Bernard, Y. Requirements management within a full model-based engineering approach. Syst. Eng. 2012, 15, 119–139. [CrossRef]
25. Salado, A.; Wach, P. Constructing true model-based requirements in SysML. Systems 2019, 7, 19. [CrossRef]
26. Rahman, A.; Amyot, D. A DSL for importing models in a requirements management system. In Proceedings of the 2014 IEEE 4th

International Model-Driven Requirements Engineering Workshop (MoDRE), Karlskrona, Sweden, 25 August 2014; pp. 37–46.
27. Liumeng, D.; Guohua, S.; Zhiqiu, H.; Fei, W.; Xiaoyu, G. Extended SysML for Supporting Requirements Trace Model Automatic

Generation. J. Front. Comput. Sci. Technol. 2019, 13, 950.
28. Haidrar, S.; Bencharqui, H.; Anwar, A.; Bruel, J.M.; Roudies, O. REQDL: A requirements description language to support

requirements traces generation. In Proceedings of the 2017 IEEE 25th International Requirements Engineering Conference
Workshops (REW), Lisbon, Portugal, 4–8 September 2017; pp. 26–35.

29. Taromirad, M.; Paige, R.F. Agile requirements traceability using domain-specific modelling languages. In Proceedings of the 2012
Extreme Modeling Workshop, Innsbruck, Austria, 1–5 October 2012; pp. 45–50.

30. Chandrasekaran, B.; Josephson, J.R.; Benjamins, V.R. What are ontologies, and why do we need them? IEEE Intell. Syst. Their
Appl. 1999, 14, 20–26. [CrossRef]

31. Adithya, V.; Deepak, G. OntoReq: An ontology focused collective knowledge approach for requirement traceability modelling. In
Proceedings of the European, Asian, Middle Eastern, North African Conference on Management & Information Systems, İstanbul,
Turkey, 19–20 March 2021; pp. 358–370.

32. Murtazina, M.S.; Avdeenko, T. An ontology-based approach to support for requirements traceability in agile development.
Procedia Comput. Sci. 2019, 150, 628–635. [CrossRef]

33. Jinzhi, L.; Zhaorui, Y.; Xiaochen, Z.; Jian, W.; Dimitris, K. Exploring the concept of Cognitive Digital Twin from model-based
systems engineering perspective. Int. J. Adv. Manuf. Technol. 2022, 121, 5835–5854. [CrossRef]

34. Wu, S.; Wang, G.; Lu, J.; Hu, Z.; Yan, Y.; Kiritsis, D. Design ontology for cognitive thread supporting traceability management in
model-based systems engineering. J. Ind. Inf. Integr. 2024, 40, 100619. [CrossRef]

35. Wang, H.; Zhong, D.; Zhao, T.; Ren, F. Integrating model checking with SysML in complex system safety analysis. IEEE Access
2019, 7, 16561–16571. [CrossRef]

36. Staskal, O.; Simac, J.; Swayne, L.; Rozier, K.Y. Translating sysml activity diagrams for nuxmv verification of an autonomous
pancreas. In Proceedings of the 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), Los
Alamitos, CA, USA, 27 June–1 July 2022; pp. 1637–1642.

http://dx.doi.org/10.1007/s00766-011-0134-z
http://dx.doi.org/10.1002/j.2334-5837.2015.00048.x
http://dx.doi.org/10.1109/MS.2011.81
http://dx.doi.org/10.17706/jsw.13.9.460-480
http://dx.doi.org/10.3390/systems6040040
http://dx.doi.org/10.1016/j.ifacol.2017.08.1376
http://dx.doi.org/10.1016/j.jii.2022.100347
http://dx.doi.org/10.1016/j.jmsy.2024.01.013
http://dx.doi.org/10.1016/j.csi.2019.103377
http://dx.doi.org/10.1002/sys.20198
http://dx.doi.org/10.3390/systems7020019
http://dx.doi.org/10.1109/5254.747902
http://dx.doi.org/10.1016/j.procs.2019.02.044
http://dx.doi.org/10.1007/s00170-022-09610-5
http://dx.doi.org/10.1016/j.jii.2024.100619
http://dx.doi.org/10.1109/ACCESS.2019.2892745


Systems 2024, 12, 443 31 of 31

37. Hu, J.; Chen, S.; Chen, D.; Kang, J.; Wang, H. Model-based safety analysis for an aviation software specification. Int. J. Perform.
Eng. 2020, 16, 238.

38. Nigischer, C.; Bougain, S.; Riegler, R.; Stanek, H.P.; Grafinger, M. Multi-domain simulation utilizing SysML: State of the art and
future perspectives. Procedia CIRP 2021, 100, 319–324. [CrossRef]

39. Paredis, C.J.; Bernard, Y.; Burkhart, R.M.; de Koning, H.P.; Friedenthal, S.; Fritzson, P.; Rouquette, N.F.; Schamai, W. An overview
of the SysML-modelica transformation specification. In Proceedings of the INCOSE International Symposium, Chicago, IL, USA,
12–15 July 2010; Volume 20, pp. 709–722.

40. Shuhua, Z.; Yue, C.; Zheng, Z.; Yusheng, L. System design and simulation integration for complex mechatronic products based
on SysML and modelica. J.-Comput.-Aided Des. Comput. Graph. 2018, 30, 728–738.

41. Elmqvist, H.; Gaucher, F.; Mattsson, S.E.; Dupont, F. State machines in modelica. In Proceedings of the 9th International Modelica
Conference, Munich, Germany, 3–5 September 2012; pp. 3–5.

42. Palachi, E.; Cohen, C.; Takashi, S. Simulation of cyber physical models using SysML and numerical solvers. In Proceedings of the
2013 IEEE International Systems Conference (SysCon), Orlando, FL, USA, 15–18 April 2013; pp. 671–675.

43. Xie, K.; Zhang, L.; Laili, Y.; Wang, X. XDEVS: A hybrid system modeling framework. Int. J. Model. Simul. Sci. Comput. 2022,
13, 2243001. [CrossRef]

44. Gu, P.; Zhang, L.; Chen, Z.; Ye, J. Collaborative Design and Simulation Integrated Method of Civil Aircraft Take-off Scenarios
Based on X Language. J. Syst. Simul. 2022, 34, 929–943.

45. Yi, G.; Yi, L.; Zhang, S. A multidisciplinary design method and application for complex systems. Int. J. Model. Simul. Sci. Comput.
2023, 14, 2350015. [CrossRef]

46. Huang, M.; Zhao, J. Research on Constant Power Charging and Discharging of Battery Based on LCL Filter. In Information
Technology and Intelligent Transportation Systems; IOS Press: Beijing, China, 2017; pp. 193–202.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.procir.2021.05.073
http://dx.doi.org/10.1142/S1793962322430012
http://dx.doi.org/10.1142/S1793962323500150

	Introduction
	Related Works
	Requirements Modeling Methods
	Requirements Traceability Methods
	Requirement Verification Methods
	X Language Family

	ReqXL Overview
	Semantic Structure
	ReqXL Abstract Syntax
	ReqXL Metamodel
	ReqXL Grammar


	Integrated Approach for Requirement Modeling, Traceability Management, and Verification
	Integrated Framework
	Auto-Generation Method for Requirement Traces
	Derivation Rules for Requirement Relationships
	Auto-Generation Algorithm for Requirement Traces

	Integrated Platform for ReqXL and X Language

	Case Study
	Requirement Modeling and Verification
	Capturing Stakeholder Needs
	Problem Domain: Black Box Stage
	Problem Domain: White Box Stage
	Verification Domain for Logical Architecture
	Solution Domain
	Verification Domain for Final Architecture

	Requirement Traceability Management
	Discussion

	Conclusions and Future Works
	References

