Integrated Scheduling of Handling Equipment in Automated Container Terminal Considering Quay Crane Faults
Abstract
:1. Introduction
2. Literature Review
3. Problem Formulation
3.1. Assumptions
- The number of QCs, AGVs, and YCs is known and numbered in sequence;
- Similar handling equipment has the same efficiency;
- Each QC needs to maintain a working distance for operation safety;
- Once a QC faults, the fault information must be obtained immediately and repaired for a fixed amount of time;
- The ship stability, traffic congestion, and AGV collisions during loading and unloading are not considered.
3.2. Model Parameters
3.3. Mathematical Model
4. Solution Approach
Algorithm 1: Two-Stage NSGA-II algorithm for integrated scheduling of transport equipment | ||||||||
This Two-Stage NSGA-II algorithm is divided into three parts: a, b, and c. | ||||||||
Initialization: Location of import and export containers. Randomly generate container sequences. | ||||||||
1 | Algorithm a: | |||||||
2 | Input: ) | |||||||
3 | /* Genetic algorithm */ | |||||||
4 | for do | |||||||
5 | ) | |||||||
6 | for do | |||||||
7 | if the random number < crossover probability then | |||||||
8 | ||||||||
9 | for do | |||||||
10 | if the random number < variation probability then | |||||||
11 | Mutate new_seq | |||||||
12 | Renewal population | |||||||
13 | Output: import container handling sequence with maximizing fitness | |||||||
14 | Algorithm b: | |||||||
15 | Input: import container handling sequence from algorithm a | |||||||
16 | Randomly generated population of import container handling sequence | |||||||
17 | for do | |||||||
18 | Calculate fitness for each sequence by genetic algorithm | |||||||
19 | Output: export container handling sequence with maximizing fitness | |||||||
20 | Algorithm c: | |||||||
21 | Input: import and export container handling sequence from algorithms a and b | |||||||
22 | for do | |||||||
23 | Obtain new sequence by genetic algorithm | |||||||
24 | Calculate the fitness function | |||||||
25 | Output: import and export container handling sequence with maximizing fitness | |||||||
Output: import and export container handling sequence with maximizing fitness from memory | ||||||||
end |
4.1. Chromosome Representation and Fitness Evaluation
4.2. Parent Selection Strategy
4.3. Crossover Operation
4.4. Mutation Operation
5. Numerical Experiment and Discussion
5.1. Experiment Settings
5.2. Numerical Analysis and Discussion
5.3. Algorithm Validity Verification Experiment
5.4. Sensitivity Analysis of Ship Scale
5.5. Sensitivity Analysis of Location and Number of Faulty QCs
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Normal Scheduling Plan | Scenario | Sequence of Faulty QCs | Sequence of Unfinished Containers |
---|---|---|---|
crane[1]=[34, 95, 59, 98, 22, 54, 45, 50, 3, 122, 47, 123, 118] | 1 | 1 | [122, 47, 123, 118] |
crane[2]=[48, 104, 36, 7, 93, 107, 76, 117, 25, 90, 102, 100] | 2 | [102, 100] | |
crane[3]=[108, 6, 94, 56, 43, 124, 84, 113, 79, 75, 30, 26] | 8 | [ 63, 91, 73, 38, 23, 62, 81, 27, 115, 58, 112] | |
crane[4]=[35, 71, 40, 53, 13, 120, 88, 103, 69, 101, 4, 67, 52] | 2 | 4 | [67, 52] |
crane[5]=[97, 86, 49, 61, 42, 99, 92, 114, 111, 64, 116, 18] | 5 | [49, 61, 42, 99, 92, 114, 111, 64, 116, 18] | |
crane[6]=[57, 39, 12, 77, 8, 68, 28, 105, 87, 17, 65, 46] | 6 | [17, 65, 46] | |
crane[7]=[29, 11, 66, 15, 44, 55, 10, 121, 78, 74, 16, 41, 5] | 3 | 1 | [22, 54, 45, 50, 3, 122, 47, 123, 118] |
crane[8]=[83, 63, 91, 73, 38, 23, 62, 81, 27, 115, 58, 112] | 7 | [55, 10, 121, 78, 74, 16, 41, 5] | |
crane[9]=[1, 110, 109, 82, 33, 31, 60, 96, 32, 89, 37, 119, 70] | 4 | 4 | [69, 101, 4, 67, 52] |
crane[10]=[72, 24, 9, 80, 2, 20, 51, 21, 19, 106, 85, 14, 125] | 5 | 10 | [80, 2, 20, 51, 21, 19, 106, 85, 14, 125] |
QC Sequence | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
---|---|---|---|---|---|
1 | [92, 18] | ||||
2 | [22, 54, 50, 3, 122, 123, 118, 5] | ||||
3 | [102, 100] | [67, 52] | [45] | [69] | |
4 | [122, 47, 123, 118] | [47] | |||
5 | [10] | [101, 4, 67] | |||
6 | [49, 61, 42, 65] | [55, 121] | [52] | ||
7 | [63, 91, 73, 38, 23, 81, 115, 58, 112] | [99, 17, 46, 114, 111, 64] | [85] | ||
8 | [116] | [78, 74, 16, 41] | |||
9 | [62, 27] | [80, 2, 20, 51, 21, 19, 106, 14,125] | |||
10 |
Appendix B
Normal Scheduling Plan | Scenario | Sequence of Faulty QCs | Sequence of Unfinished Containers |
---|---|---|---|
crane[1]=[18, 33, 4, 15, 29, 30, 17] | 1 | 4 | [2, 32, 5, 31, 13, 14] |
crane[2]=[23, 45, 49, 25, 16, 38, 26] | 2 | 2 | [25, 16, 38, 26] |
crane[3]=[36, 27, 54, 11, 8, 20, 9] | 7 | [1, 41, 52, 39] | |
crane[4]=[60, 42, 2, 32, 5, 31, 13, 14] | 8 | [10, 21, 55] | |
crane[5]=[37, 50, 56, 57, 3, 46, 22, 51] | 3 | 3 | [27, 54, 11, 8, 20, 9] |
crane[6]=[28, 59, 44, 12, 47, 34, 19, 6] | 4 | [13] | |
crane[7]=[35, 48, 24, 58, 1, 41, 52, 39] | 5 | [22, 51] | |
crane[8]=[43, 7, 40, 53, 10, 21, 55] | 4 | 1 | [15, 29, 30, 17] |
7 | [52, 39] | ||
5 | 1 | [15, 29, 30, 17] |
QC Sequence | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
---|---|---|---|---|---|
1 | [25, 16, 38, 26] | ||||
2 | [14] | [27, 54, 11, 20, 9] | [15] | [15, 29] | |
3 | [2, 32, 5, 31] | [29] | [30, 17] | ||
4 | [55] | [8] | [30] | ||
5 | [13] | [39] | [13] | ||
6 | [1, 10, 52, 21] | [22, 51] | [39] | ||
7 | |||||
8 | [41] | [52, 17] |
Normal Scheduling Plan | Scenario | Sequence of Faulty QCs | Sequence of Unfinished Containers |
---|---|---|---|
crane[1]=[33, 18, 4, 15, 31, 25, 27, 17, 26, 60] | 1 | 3 | [54, 16, 30] |
crane[2]=[23, 45, 38, 49, 11, 10, 57, 21, 43, 53] | 4 | [7, 41, 37, 13] | |
crane[3]=[9, 42, 36, 32, 14, 5, 2, 54, 16, 30] | 2 | 1 | [4, 15, 31, 25, 27, 17, 26, 60] |
crane[4]=[8, 56, 3, 29, 50, 20, 7, 41, 37, 13] | 5 | [55, 44, 34, 1, 22, 19, 40, 46, 28] | |
crane[5]=[51, 55, 44, 34, 1, 22, 19, 40, 46, 28] | 3 | 4 | [7, 41, 37, 13] |
crane[6]=[35, 24, 6, 48, 52, 47, 59, 39, 58, 12] | 4 | 6 | [47, 59, 39, 58, 12] |
5 | 3 | [5, 2, 54, 16, 30] | |
4 | [7, 41, 37, 13] | ||
5 | [40, 46, 28] |
QC Sequence | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
---|---|---|---|---|---|
1 | |||||
2 | [54, 16,30] | [4, 15, 25, 17, 26, 60] | [54, 16, 30] | ||
3 | [37] | [55, 31] | [37, 13] | [12] | [13] |
4 | [44, 34, 22, 46, 28, 27] | [2, 46, 28, 37] | |||
5 | [7, 41, 13] | [7, 41] | [47, 59, 39, 58] | ||
6 | [1, 19, 40] | [5, 40, 7, 41] |
Appendix C
Normal Scheduling Plan | Scenario | Sequence of Faulty QCs | Sequence of Unfinished Containers |
---|---|---|---|
crane[1]=[18, 33, 15, 4, 23, 8] | 1 | 1 | [4, 23, 8] |
crane[2]=[16, 25, 26, 28, 2, 14, 3] | 2 | [2, 14, 3] | |
crane[3]=[27, 11, 19, 13, 5, 30] | 3 | [30] | |
crane[4]=[9, 32, 31, 10, 21, 17, 7] | 2 | 3 | [19, 13, 5, 30] |
crane[5]=[6, 12, 20, 1, 22, 29, 24] | 3 | 1 | [23, 8] |
4 | 3 | [13, 5, 30] | |
5 | [29, 24] | ||
5 | 3 | [11, 19, 13, 5, 30] | |
4 | [32, 31, 10, 21, 17, 7] |
QC Sequence | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
---|---|---|---|---|---|
1 | [19, 5, 30] | ||||
2 | [13, 5, 30] | [8] | [5, 30] | [11, 13] | |
3 | [32, 31] | ||||
4 | [2, 4, 23] | [19] | [23] | [29, 24, 13] | |
5 | [30, 14, 3, 8] | [10, 21, 17, 7] |
Normal Scheduling Plan | Scenario | Sequence of Faulty QCs | Sequence of Unfinished Containers |
---|---|---|---|
crane1=[16, 10, 12, 5, 6, 32, 3, 24] | 1 | 1 | [32, 3, 24] |
crane2=[29, 21, 19, 27, 28, 18, 20, 25] | 3 | [31, 7, 13, 22, 4, 11] | |
crane3=[30, 14, 31, 7, 13, 22, 4, 11] | 2 | 1 | [32, 3, 24] |
crane4=[26, 33, 1, 17, 15, 2, 9, 8, 23] | 4 | [1, 17, 15, 2, 9, 8, 23] | |
3 | 1 | [32, 3, 24] | |
2 | [25] | ||
4 | [17, 15, 2, 9, 8, 23] | ||
4 | 2 | [20, 25] | |
3 | [14, 31, 7, 13, 22, 4, 11] | ||
4 | [33, 1, 17, 15, 2, 9, 8, 23] | ||
5 | 2 | [18, 20, 25] |
QC Sequence | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
---|---|---|---|---|---|
1 | [33, 20, 25, 31, 1, 7, 13, 17, 22, 4, 11, 15, 2, 9, 8, 23] | [20] | |||
2 | [32, 3, 24, 31, 7, 13] | [32, 3, 24] | [32, 3, 24] | [14] | |
3 | [1, 17, 15, 2, 9, 8, 23] | [17, 15, 2, 9, 8, 23,25] | [18, 25] | ||
4 | [22, 4, 11] |
References
- Qiu, X.; Xu, G. Optimizing rail transport service in a dry port system. IEEE Trans. Eng. Manag. 2022, 69, 2670–2683. [Google Scholar] [CrossRef]
- Knatz, G.; Notteboom, T.; Pallis, A.A. Container terminal automation: Revealing distinctive terminal characteristics and operating parameters. Marit. Econ. Logist. 2022, 24, 537–565. [Google Scholar] [CrossRef]
- De, A.; Wang, J.; Tiwari, M.K. Hybridizing basic variable neighborhood search with particle swarm optimization for solving sustainable ship routing and bunker management problem. IEEE Trans. Intell. Transp. Syst. 2020, 21, 986–997. [Google Scholar] [CrossRef]
- Bathke, H.; Münch, C.; von der Gracht, H.A.; Hartmann, E. Building resilience through foresight: The case of maritime container shipping firms. IEEE Trans. Eng. Manag. 2024, 71, 10534–10556. [Google Scholar] [CrossRef]
- Wang, P.; Mileski, J.P.; Zeng, Q. Alignments between strategic content and process structure: The case of container terminal service process automation. Marit. Econ. Logist. 2019, 21, 543–558. [Google Scholar] [CrossRef]
- Zhong, Z.L.; Guo, Y.Y.; Zhang, J.H.; Yang, S.X. Energy-aware integrated scheduling for container terminals with conflict-free AGVs. J. Syst. Sci. Syst. Eng. 2023, 32, 413–443. [Google Scholar] [CrossRef]
- Dąbrowska, E. Monte carlo simulation based optimization of port grain trasportation system reliability. In Proceedings of the 2019 International Conference on Information and Digital Technologies (IDT), Zilina, Slovakia, 25–27 June 2019; pp. 86–91. [Google Scholar]
- Zhang, X.; Li, H.; Sheu, J. Integrated scheduling optimization of AGV and double yard cranes in automated container terminals. Transp. Res. Part B-Meth. 2024, 179, 102871. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, C.; Wang, A. A cluster-based yard template design integrated with yard crane deployment using a placement heuristic. Transp. Res. Part E-Log. 2022, 160, 102657. [Google Scholar] [CrossRef]
- Hang, Y.; Huang, M.; He, J.; Tan, C. The clustering strategy for stacks allocation in automated container terminals. Marit. Policy Manag. 2022, 50, 1102–1117. [Google Scholar]
- Yang, Y.; Zhong, M.; Dessouky, Y.; Postolache, O. An integrated scheduling method for AGV routing in automated container terminals. Comput. Ind. Eng. 2018, 126, 482–493. [Google Scholar] [CrossRef]
- Zhou, C.; Lee, B.K.; Li, H. Integrated optimization on yard crane scheduling and vehicle positioning at container yards. Transp. Res. Part E-Log. 2020, 138, 101966. [Google Scholar] [CrossRef]
- Jiang, X.J.; Yang, X.M. A column generation approach for the crane scheduling with sidekick in a perpendicular automated yard block. Transp. Res. Part E-Log. 2023, 176, 103154. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, Q.; Zhu, B.F. Integrated scheduling of dual-cycle AGV and yard crane at automated container terminal. J. Tran. Sys. Eng. 2020, 20, 216–243. [Google Scholar]
- Tan, C.; Yan, W.; Yue, J. Quay crane scheduling in automated container terminal for the trade-off between operation efficiency and energy consumption. Adv. Eng. Inf. 2021, 48, 101285. [Google Scholar] [CrossRef]
- Yang, X.; Hu, H.; Cheng, C.; Wang, Y. Automated guided vehicle (AGV) scheduling in automated container terminals (ACTs) focusing on battery swapping and speed control. J. Mar. Sci. Eng. 2023, 11, 1852. [Google Scholar] [CrossRef]
- Song, X.; Chen, N.; Zhao, M.; Wu, Q.; Liao, Q.; Ye, J. Novel AGV resilient scheduling for automated container terminals considering charging strategy. Ocean Coast. Manag. 2024, 250, 107014. [Google Scholar] [CrossRef]
- De, A.; Wang, J.; Tiwari, M.K. Fuel bunker management strategies within sustainable container shipping operation considering disruption and recovery policies. IEEE Trans. Eng. Manag. 2021, 68, 1089–1111. [Google Scholar] [CrossRef]
- De, A.; Choudhary, A.; Tiwari, K.M. Multiobjective approach for sustainable ship routing and scheduling with draft restrictions. IEEE Trans. Eng. Manag. 2019, 66, 35–51. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Liu, R.; Zhou, Y.; Pan, E. A two-stage stochastic programming for AGV scheduling with random tasks and battery swapping in automated container terminals. Transp. Res. Part E-Log. 2023, 174, 103110. [Google Scholar] [CrossRef]
- Xing, Z.; Liu, H.; Wang, T.; Chew, E.P.; Lee, L.H.; Tan, K.C. Integrated automated guided vehicle dispatching and equipment scheduling with speed optimization. Transp. Res. Part E-Log. 2023, 169, 102993. [Google Scholar] [CrossRef]
- Li, X.; Peng, Y.; Tian, Q.; Feng, T.; Wang, W.; Cao, Z.; Song, X. A decomposition-based optimization method for integrated vehicle charging and operation scheduling in automated container terminals under fast charging technology. Transp. Res. Part E-Log. 2023, 180, 103338. [Google Scholar] [CrossRef]
- Klerides, E.; Hadjiconstantinou, E. Modelling and solution approaches to the multi-load AGV dispatching problem in container terminals. Marit. Econ. Logist. 2011, 13, 371–386. [Google Scholar] [CrossRef]
- Chen, X.; He, S.; Zhang, Y.; Tong, L.; Shang, P.; Zhou, X. Yard crane and AGV scheduling in automated container terminal: A multi-robot task allocation framework. Transp. Res. Part C Emerg. Technol. 2020, 114, 241–271. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, R. Container drayage transportation scheduling with foldable and standard containers. IEEE Trans. Eng. Manag. 2023, 70, 3497–3511. [Google Scholar] [CrossRef]
- Xu, B.; Jie, D.; Li, J.; Yang, Y.; Wen, F.; Song, H. Integrated scheduling optimization of U-shaped automated container terminal under loading and unloading mode. Comput. Ind. Eng. 2021, 162, 107695. [Google Scholar] [CrossRef]
- Zheng, X.; Liang, C.; Wang, Y.; Shi, J.; Lim, G. Multi-AGV dynamic scheduling in an automated container terminal: A deep reinforcement learning approach. Mathematics 2022, 10, 4575. [Google Scholar] [CrossRef]
- Darius, D.; Mindaugas, K.; Audrius, S. Deep reinforcement learning based optimization of automated guided vehicle time and energy consumption in a container terminal. Alex. Eng. J. 2023, 67, 397–407. [Google Scholar]
- Weerasinghe, B.A.; Perera, H.N.; Bai, X. Optimizing container terminal operations: A systematic review of operations research applications. Marit. Econ. Logist. 2023, 26, 307–341. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, S.; He, S.; Jiang, Y.; Wang, X.; Yin, H.; Zhu, J. Research on the multi-equipment cooperative scheduling method of sea-rail automated container terminals under the loading and unloading mode. J. Mar. Sci. Eng. 2023, 11, 1975. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Zhu, X. Multi-stage rescheduling decision of container terminal quay crane considering the fault. Syst. Eng. The. Pra. 2021, 41, 3321–3335. [Google Scholar]
- Kaliszewski, A.; Kozłowski, A.; Dąbrowski, J.; Klimek, H. Linkedin survey reveals competitiveness factors of container terminals: Forwarders’ view. Transp. Policy 2021, 106, 131–140. [Google Scholar] [CrossRef]
- Qi, J.; Zheng, J.; Yang, L.; Fan, Y. Impact analysis of different container arrival patterns on ship scheduling in liner shipping. Marit. Policy Manag. 2020, 48, 331–353. [Google Scholar] [CrossRef]
- Zheng, F.F.; Li, Y.; Chu, F.; Liu, M.; Xu, Y.F. Integrated berth allocation and quay crane assignment with maintenance activities. Int. J. Prod. Res. 2018, 57, 3478–3503. [Google Scholar] [CrossRef]
- Chargui, K.; Zouadi, T.; Sreedharan, V.R.; Fallahi, A.E.; Reghioui, M. A novel proactive–reactive scheduling approach for the quay crane scheduling problem: A VUCA perspective. IEEE Trans. Eng. Manag. 2023, 70, 2594–2607. [Google Scholar] [CrossRef]
- Rajali, J.M.; Saman, A.K.A.; Abdul, H.M.F.; Siang, K.H. A stochastic petri net-based approach for operational performance estimation of quay cranes. Qual. Reliab. Eng. Int. 2023, 39, 1660–1680. [Google Scholar]
- Duan, Y.; Ren, H.; Xu, F.; Yang, X.; Meng, Y. Bi-objective integrated scheduling of quay cranes and automated guided vehicles. J. Mar. Sci. Eng. 2023, 11, 1492. [Google Scholar] [CrossRef]
- Sun, B.; Zhai, G.; Li, S.; Pei, B. Multi-resource collaborative scheduling problem of automated terminal considering the AGV charging effect under COVID-19. Ocean Coast. Manag. 2023, 232, 106422. [Google Scholar] [CrossRef]
- Li, S.; Wang, N.; Jia, T.; He, Z.; Liang, H. Multiobjective optimization for multiperiod reverse logistics network design. IEEE Trans. Eng. Manag. 2016, 63, 223–236. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Z.; Wang, L. Scheduling of AGVs in automated container terminal based on the deep deterministic policy gradient (DDPG) using the convolutional neural network (CNN). J. Mar. Sci. Eng. 2021, 9, 1439. [Google Scholar] [CrossRef]
- Ji, S.; Luan, D.; Chen, Z.; Guo, D. Integrated scheduling in automated container terminals considering AGV conflict-free routing. Transp. Lett. 2020, 13, 501–513. [Google Scholar]
Abbreviation | Full Form |
---|---|
QC | Quay crane |
YC | Yard crane |
ACT | Automated container terminal |
AGV | Automated guided vehicle |
NSGA-II algorithm | Non-dominated sorting genetic algorithm II |
Sets | |
(the set of export containers) | |
Parameters | |
The travel speed of the AGV unloaded | |
The travel speed of the AGV overloaded | |
The battery per unit time of AGV consumption | |
The battery per unit time of AGV charging | |
during the course of a loading and unloading operation | |
) | |
The safe power of AGV completing the transporting task of container | |
The unit time of a QC handling a container in single cycle (loading or unloading) mode | |
The unit time of a QC handling containers in dual cycling mode | |
The unit time of a YC handling a container | |
The unit time of a YC flipping a container | |
Non 0–1 variables | |
The distance between the charging pile and the QC | |
The number of containers above container | |
The moment when QC starts loading and unloading the container | |
The moment when YC starts loading and unloading the container | |
Non 0–1 variables | |
charging during the course of transporting task | |
at single cycle model | |
at single cycle model | |
at dual cycle model | |
Decision variables | |
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
QC fault probability | 0.03 | ||||
0.5 unit/s |
Normal Scheduling Plan | Re-Scheduling Plan | |||||
---|---|---|---|---|---|---|
QC | Optimization Efficiency (%) | Optimization Efficiency (%) | ||||
1 | 19 | 5 | 21.44% | 16 | 5 | 25.46% |
2 | 37 | 12 | 26.43% | 21 | 2 | 7.76% |
3 | 22 | 4 | 14.81% | 14 | 1 | 5.82% |
4 | 17 | 5 | 23.97% | 15 | 1 | 5.43% |
5 | 37 | 13 | 28.63% | 30 | 14 | 38.02% |
6 | 18 | 5 | 22.63% | 23 | 10 | 35.43% |
7 | 18 | 5 | 22.63% | 28 | 12 | 34.92% |
8 | 19 | 5 | 21.44% | 20 | 7 | 28.52% |
9 | 35 | 12 | 27.94% | 27 | 11 | 33.20% |
10 | 33 | 8 | 19.75% | 61 | 11 | 14.69% |
Scenario Sequence | Length/Bay | Baseline Model (s) | NSGA-II (s) | Two-Stage NSGA-II (s) | GAP.Err (%) | GAP.Imp (%) |
---|---|---|---|---|---|---|
1 | 368/48 | 2616.23 | 4987.66 | 3633.41 | 90.64 | 27.15 |
2 | 368/48 | 3364.17 | 4659.24 | 3822.89 | 38.50 | 17.95 |
3 | 368/48 | 2836.93 | 4434.27 | 3458.07 | 56.31 | 22.02 |
4 | 368/48 | 3301.59 | 4584.57 | 3487.17 | 38.86 | 23.94 |
5 | 368/48 | 2409.31 | 4134.03 | 3184.13 | 71.59 | 22.98 |
Scenario Sequence | Length/Bay | Baseline Model (s) | NSGA-II (s) | Two-Stage NSGA-II (s) | GAP.Err (%) | GAP.Imp (%) |
---|---|---|---|---|---|---|
1 | 299/40-1 | 2142.37 | 2960.47 | 2489.64 | 38.19 | 15.90 |
2 | 299/40-2 | 1810.41 | 3363.29 | 2947.83 | 85.78 | 12.35 |
3 | 299/40-3 | 2086.11 | 3165.11 | 2760.97 | 51.72 | 12.77 |
4 | 299/40-4 | 2033.31 | 3428.34 | 2693.91 | 68.61 | 21.42 |
5 | 299/40-5 | 1892.75 | 3184.72 | 2211.38 | 68.26 | 30.56 |
6 | 224/32-1 | 2195.13 | 3786.53 | 2712.37 | 72.50 | 28.37 |
7 | 224/32-2 | 2533.61 | 3859.98 | 2606.63 | 52.35 | 32.47 |
8 | 224/32-3 | 2176.04 | 3469.09 | 2560.76 | 59.42 | 26.18 |
9 | 224/32-4 | 2160.44 | 3610.93 | 2561.41 | 67.14 | 29.07 |
10 | 224/32-5 | 2780.87 | 3770.00 | 3368.71 | 35.57 | 10.64 |
Scenario Sequence | Length/Bay | Baseline Model (s) | NSGA-II (s) | Two-Stage NSGA-II (s) | GAP.Err (%) | GAP.Imp (%) |
---|---|---|---|---|---|---|
1 | 199/20-1 | 516.63 | 932.99 | 909.85 | 80.59 | 2.48 |
2 | 199/20-2 | 500.97 | 829.78 | 544.83 | 65.64 | 34.34 |
3 | 199/20-3 | 485.03 | 842.28 | 521.50 | 73.66 | 38.09 |
4 | 199/20-4 | 505.30 | 974.35 | 646.33 | 92.83 | 33.67 |
5 | 199/20-5 | 591.20 | 1094.26 | 935.99 | 85.09 | 14.46 |
6 | 148/16-1 | 786.30 | 1512.76 | 872.46 | 92.39 | 42.33 |
7 | 148/16-2 | 727.68 | 1267.69 | 779.14 | 74.21 | 38.54 |
8 | 148/16-3 | 899.30 | 1665.87 | 1061.13 | 85.24 | 36.30 |
9 | 148/16-4 | 1153.87 | 1507.11 | 1153.87 | 30.61 | 23.44 |
10 | 148/16-5 | 902.61 | 1359.19 | 743.77 | 50.58 | 45.28 |
Scale (m) | Quay Crane/Bay | Baseline Model- Obj.1 (s) | NSGA-II-Obj.2 (s) | Two-Stage NSGA-II-Obj.3 (s) | GAP.Err (%) | GAP.Imp (%) |
---|---|---|---|---|---|---|
148 | 4/16 | 893.95 | 1462.52 | 922.07 | 66.61 | 37.18 |
199 | 5/20 | 519.83 | 934.73 | 711.70 | 79.56 | 24.61 |
224 | 6/32 | 2369.22 | 3699.31 | 2761.98 | 57.40 | 25.35 |
299 | 8/40 | 1992.99 | 3220.39 | 2620.75 | 62.51 | 18.60 |
368 | 10/56 | 2905.65 | 4559.96 | 3517.13 | 59.18 | 22.81 |
Number | Position | (s) | GAP.P (%) | GAP.F (%) | (%) | (%) | |
---|---|---|---|---|---|---|---|
Both Ends | Middle | ||||||
One fault | Both ends | 1930.35 | 2.62 | - | - | 4.50 | 13.41 |
Middle | 1981.00 | ||||||
Two faults | Both ends | 2032.84 | 4.09 | 5.31 | 6.81 | ||
Middle | 2115.92 | ||||||
Three faults | Both ends | 2284.40 | 6.80 | 18.34 | 23.16 | ||
Middle | 2439.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Dong, Q.; Sun, X. Integrated Scheduling of Handling Equipment in Automated Container Terminal Considering Quay Crane Faults. Systems 2024, 12, 450. https://doi.org/10.3390/systems12110450
Li T, Dong Q, Sun X. Integrated Scheduling of Handling Equipment in Automated Container Terminal Considering Quay Crane Faults. Systems. 2024; 12(11):450. https://doi.org/10.3390/systems12110450
Chicago/Turabian StyleLi, Taoying, Quanyu Dong, and Xulei Sun. 2024. "Integrated Scheduling of Handling Equipment in Automated Container Terminal Considering Quay Crane Faults" Systems 12, no. 11: 450. https://doi.org/10.3390/systems12110450
APA StyleLi, T., Dong, Q., & Sun, X. (2024). Integrated Scheduling of Handling Equipment in Automated Container Terminal Considering Quay Crane Faults. Systems, 12(11), 450. https://doi.org/10.3390/systems12110450