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Abstract: Quay cranes (QCs) play a vital role in automated container terminals (ACTs), and once a
QC malfunctions, it will seriously affect the operation efficiency of ships being loaded and unloaded
by the QC. In this study, we investigate an integrated scheduling problem of quay cranes (QCs), yard
cranes (YCs), and automated guided vehicles (AGVs) under QC faults, which is aimed at minimizing
the loading and unloading time by determining the range of adjacent operational QCs of the faulty
QCs and reallocating unfinished container handling tasks of QCs. A mixed integer programming
model is formulated to dispatch QCs, YCs, and AGVs in ACTs. To solve the model, an adaptive
two-stage NSGA-II algorithm is proposed. Numerical experiments show that the proposed algorithm
can significantly reduce the impact of faulty QCs on productivity while maintaining its synchronous
loading and unloading efficiency. The sensitivity analysis of ship scale, location, and number of faulty
QCs indicates that the number of faulty QCs has a greater influence on the loading and unloading
efficiency than their locations, and the impact of faulty QCs on the efficiency of small-scale ships is
greater than that of large-scale ships.

Keywords: automated container terminal; handling equipment; integrated scheduling; synchronous
loading and unloading; quay crane fault

1. Introduction

With the rapid development of information technology and increasing global demand
for container shipping [1], ACTs have rapidly gained popularity and development due
to their advantages of high efficiency [2], low cost, high safety, and environmental protec-
tion [3,4]. Meanwhile, the operational efficiency of ACTs largely depends on the reliability
of the integrated scheduling system for handling equipment [5,6]. System reliability is
inherently linked to the maintenance and performance of critical components. However,
as the main equipment in ACTs for loading and unloading containers between container
ships and the dock front, once QCs malfunction, they will greatly reduce the reliability of
the integrated scheduling system of handling equipment [7].

At present, research on the problem of QC faults can be summarized into three
perspectives: the specific types of QC faults, the causes of QC faults, and the rescheduling
of QC tasks after the occurrence of faults. This article focuses on the rescheduling of faulty
QC tasks during dock loading and unloading processes, and analyzes the impact of the
number and location of faulty QC on loading and unloading efficiency for different ship
sizes. So, to enhance system reliability and operational efficiency, it is necessary to carry
out comprehensive allocation and integrated scheduling of QCs, YCs, and AGVs in ACTs,
considering QC faults for efficiency purposes. This proactive approach to maintenance
and scheduling not only mitigates the impact of faults but also optimizes the utilization of
resources, ensuring the continuous and efficient operation of ACTs [8,9].

Existing solutions for addressing the task scheduling problem of faulty QCs in ACTs
can be divided into two categories [10]. One is to reactivate idle QCs or to share the use of
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QCs among ships at adjacent berths. However, this solution will increase start-up costs,
such as opening, turning on, and warming up, or it may interfere with the operation
of the normal QCs adjacent to the faulty ones. Another is to reassign tasks to working
QCs that share adjacent berths with faulty QCs by making maximum use of the loading
and unloading capacity of the working QCs. This article focuses on the second practical
operation scheme.

In this study, a mixed integer programming model is formulated to dispatch QCs, YCs,
and AGVs in ACTs, considering QC faults, and an adaptive two-stage NSGA-II algorithm is
proposed to tackle the uncertainty of QC faults and solve the integrated scheduling model
of handling equipment. Meanwhile, we investigated the impact of ship scale, location
and number of faulty QCs on the integrated scheduling efficiency of handling equipment
in ACTs. The main contributions of this article are summarized as follows: (1) The task
redistribution of both the faulty QCs and their adjacent operational QCs and the integrated
scheduling of QCs, AGVs, and YCs are all considered simultaneously in this study; (2) A
mixed integer programming model, balancing the processing capacity of working QCs and
the overall efficiency of handling equipment, is proposed, which optimizes the task reas-
signment process of both the faulty QCs and their adjacent operational QCs by minimizing
loading and unloading time; (3) An adaptive two-stage NSGA-II algorithm is applied
to solve the mixed integer programming problem considering QC faults and numerical
experiments reveal that the number of faulty QCs, compared to the location of faulty QCs,
has a greater effect on the productivity of ACTs.

The rest of the paper is organized as follows. Section 2 briefly reviews the relevant
literature. The problem and model are described in detail in Section 3. The algorithm is
designed to solve the problem in Section 4, and numerical experiments are conducted in
Section 5. Finally, Section 6 concludes the whole research. The abbreviations and full names
mentioned in this article are shown in Table 1.

Table 1. Abbreviation explanation in this article.

Abbreviation Full Form

QC Quay crane
YC Yard crane

ACT Automated container terminal
AGV Automated guided vehicle

NSGA-II algorithm Non-dominated sorting genetic algorithm II

2. Literature Review

The integrated scheduling of handling equipment, including AGVs, QCs, and YCs,
is a crucial task of ACTs, which has garnered significant attention from both academics
and practitioners [11,12]. As shown in Figure 1, the automated container terminal in this
paper takes on a vertical shoreline layout. AGVs transport containers according to route
layout and replenishment electricity at charging piles. QCs and YCs pick up containers
from AGVs and load them in the correct location. Most of the integrated scheduling
problems in the existing literature are achieved through modeling and solving scheduling
problems of handling equipment under three loading and unloading modes as shown in
Figure 2, which are distinguished by colored lines: blue indicates ‘load before unload’,
black represents ‘dual cycle’, and orange signifies ‘unload before load’, respectively. The
modeling and solving scheduling problems of handling equipment are actually exploring
effective integrated scheduling strategies and their methods, considering various loading
and unloading modes.
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Figure 1. Layout of the automated container terminal.
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Figure 2. The synchronous and independent loading mode.

Integrated scheduling strategies for handling equipment during loading and unloading pro-
cesses. Most scholars studying integrated scheduling strategies mainly focus on collabora-
tion and resource allocation of handling equipment in ACTs. For example, Jiang et al. [13]
studied the entire coastline integrated scheduling problem of similar QCs and other han-
dling equipment in coastal distribution type ACTs; Tian et al. [14] discussed the integrated
scheduling of AGVs and YCs under dual cycling loading and unloading mode; Tan et al. [15]
optimized the transport sequence of containers to solve the integrated scheduling problem
of loading and unloading equipment; Yang et al. [16] investigated operation process of
handling equipment and paid attention to the relationship between efficiency and energy
consumption of AGVs. Moreover, some scholars have also taken into account the issue of
equipment charging and energy consumption [17–19]. For instance, Li et al. [20] studied the
impact of the number of battery packs on the integrated scheduling efficiency of ACTs, and
both Xing et al. [21] and Li et al. [22] analyzed the energy consumption of AGVs’ different
operation behaviors in mixed operation mode.

Methods for solving integrated scheduling optimization problems. It is generally known
that the integrated scheduling optimization problem of handling equipment is an NP-hard
problem. Most scholars often adopt heuristic algorithms to solve this problem. For exam-
ple, Klerides et al. [23] proposed a heuristic algorithm with an improved rolling horizon
approach to solve the dual-load AGV scheduling problem, and Chen et al. [24] designed
a double-layer genetic algorithm to solve and analyze the energy consumption problem
of AGVs, considering loading and unloading modes. Huang et al. [25] adopted a large
neighborhood search algorithm to solve the container drayage problem in ACTs. In recent
years, with the strong rise of deep learning, many scholars consider it an effective solution
method due to its ability to solve complex problems. For instance, Xu et al. [26] combined
reinforcement learning algorithm and hyper-heuristic genetic algorithm to solve integrated
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scheduling optimization of U-shaped automated container terminal. Zheng et al. [27] intro-
duced a deep reinforcement learning approach for information sharing among AGVs to
increase the efficiency of automated container terminals. Drungilas et al. [28] solved the
integrated scheduling problem of the green automated container terminal, and proposed an
AGV speed control algorithm based on deep reinforcement learning to reduce the energy
consumption of AGV. Meanwhile, the deep learning algorithm can also be applied to
optimize the operation sequence of QCs in the entire coastline [29].

As the main loading and unloading equipment between container ships and AGVs,
QCs play a crucial role in the efficiency and service level of ACTs. Once a QC malfunctions,
the efficiency of integrated scheduling in ACTs will be severely affected. Thus, the inte-
grated scheduling problem of handling equipment, considering QC faults, has attracted
much attention encompassing rescheduling decisions of QCs and uncertainty of QC faults.
For instance, Yang et al. [30] investigated the rescheduling problem of loading and unload-
ing operations in the case of sudden QC faults in the ACTs, and Zheng et al. [31] proposed
rules for determining the time points of rescheduling decisions while QCs experience
faults. Meanwhile, some scholars have proposed a scheduling plan for shared operations
of adjacent working QCs [32,33]. Moreover, Zheng et al. [34] considered the uncertainty of
QC faults and the diversity of fault scenarios; Chargui et al. [35] established an evaluation
model of QC working reliability to calculate the probability of failure; Rajali et al. [36]
determined the availability and reliability of QCs using the Stochastic Petri Net to resolve
the uncertainty of QC faults.

As mentioned above, most existing research on integrated scheduling of handling
equipment and QC faults tends to emphasize the transformation of uncertain issues into
deterministic ones and then focuses on optimizing a single problem. However, it ignores
the impact of QC faults and various loading and unloading modes on the efficiency of inte-
grated scheduling of handling equipment. Therefore, this article discusses the integrated
scheduling problem of handling equipment in ACTs, considering QC faults, by reallocating
container handling tasks to adjacent QCs of faulty QCs and minimizing the loading and
unloading time.

3. Problem Formulation

This article focuses on the integrated scheduling problem of different handling equip-
ment in ACTs, including QCs, YCs, and AGVs. So, it is essential to develop an overall
scheduling plan of a ship for vertical transporting and horizontal transporting containers
in order to reduce the total berthing time, which contains location designation and quantity
arrangement of import and export containers, the number determination of handling equip-
ment, and the specific task sequence of QCs, YCs, and AGVs. The workflow of handling
equipment in ACTs could be divided into four stages, namely ship berthing, unloading,
dual cycle, and loading. During the ship berthing stage, the ship will be docked at the
designated berth. During the unloading stage, the import containers are first handled from
the ship onto AGVs by QCs, and then transported from the quayside to yard blocks by
AGVs, and subsequently put into the designated position by YCs. During the dual cycle
stage, QCs will pick up import containers from the ship onto AGVs at the same bays after
loading export containers from the same AGVs. Containers loaded and unloaded by YCs
at corresponding yard blocks and transported by AGVs. During the loading stage, which is
the opposite of the unloading stage, YCs unload export containers from yard blocks onto
AGVs, and then QCs load export containers from AGVs into the ship.

Nevertheless, considering the uncertainty of QC faults, it is crucial to devise a method
for promptly adjusting the integrated scheduling scheme, which mitigates the impact of
QC faults on the productivity of handling equipment in ACTs. In this study, we devise
a rescheduling mechanism in the optimization model for the unfinished loading and
unloading tasks of both the faulty QCs and their adjacent operational QCs. Specifically,
when a QC malfunctions, the adjacent operational QCs will assume its incomplete container
tasks within the range of several bays. Subsequently, all adjacent operational QCs will
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re-optimize their unfinished container tasks, thereby minimizing the impact of the fault
on productivity. An improved adaptive Two-stage NSGA-II algorithm is employed to
solve the model, with the goal of generating optimal container sequences of loading
and unloading tasks based on the fault scenario and maximizing the productivity of the
handling equipment. This article first presents the scheme of task assignment under normal
operating conditions of QCs and then determines the rescheduling scheme considering the
location and number of faulty QCs. Finally, QCs, AGVs, and YCs are assigned based on the
overall collaborative optimal task scheduling scheme.

3.1. Assumptions

The following assumptions are proposed to avoid losing generality and ease the
modeling process:

• The number of QCs, AGVs, and YCs is known and numbered in sequence;
• Similar handling equipment has the same efficiency;
• Each QC needs to maintain a working distance for operation safety;
• Once a QC faults, the fault information must be obtained immediately and repaired

for a fixed amount of time;
• The ship stability, traffic congestion, and AGV collisions during loading and unloading

are not considered.

3.2. Model Parameters

The definitions of sets, parameters, non 0–1 variables, and decision variables are
presented in Table 2.

Table 2. Notation.

Sets

M The set of QCs, m ∈ M
N The set of YCs, n, u ∈ N

Ff
The set of work stages of QCs, including unloading, dual cycle, and loading, Ff =
{F1, F2, F3}

C The set of containers, including CI (the set of import containers) and CE (the set of
export containers)

K The set of bays, k ∈ K
B The set of charging piles, b ∈ B
G The set of AGVs, g ∈ G

Parameters

Ck
I The number of import container tasks at bay position k

Ck
E The number of export container tasks at bay position k

v1 The travel speed of the AGV unloaded
v2 The travel speed of the AGV overloaded
b0

g The initial power of the AGV g
b′ The battery per unit time of AGV consumption
b′′ The battery per unit time of AGV charging
Ss

m The initial position of QC m during the course of a loading and unloading operation

Sa
m

The position of other QCs adjacent to QC m, including Sl
m (the left of m ) and Sr

m
(the right of m )

C− The safe power of AGV completing the transporting task of container

t1
The unit time of a QC handling a container in single cycle (loading or unloading)
mode

t2 The unit time of a QC handling containers in dual cycling mode
t3 The unit time of a YC handling a container
t∗ The unit time of a YC flipping a container
Sik The specific bay position of the container i
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Table 2. Cont.

Non 0–1 variables

bgi The current charge of AGV g after completing the transporting task of container i
lmn The distance between QC m and YC n
l′nu The distance between YCs n and u
l ′′bn The distance between the charging pile b and the YC n
l ′′′bm The distance between the charging pile b and the QC m
pi The number of containers above container i

tQC
im The moment when QC m starts loading and unloading the container i

tYC
in The moment when YC n starts loading and unloading the container i

Non 0–1 variables

Zk
m The number of tasks for QC m to load and unload containers at bay k

tb
g The total time of AGV g charging during the course of transporting task

tQC
gm The total time of QC m handling containers for AGV g

t̂mn
g

The total time of AGV g transporting containers from QC m to YC n at single cycle
model

.
t
nm
g The total time of AGV g unloaded from YC n to QC m at single cycle model

tYC
gn The total time of YC n handling containers for AGV g

∼
t

nu
g The total time of AGV g unloaded traveling between YCs n and u

..
t
nm
g

The total time of AGV g transporting containers from YC n to QC m at dual cycle
model

Decision variables

ωk
m

The state of the QC m, ωk
m =

1, if QC m works normally at the bay k, otherwise ωk
m = 0

cgi cgi = 1, if bgi < C−, AGV g needs to be charged, otherwise cgi = 0

θm
ij

θm
ij =

1, if the QC m carries container j after completing container i, otherwise θm
ij = 0

ok
mi ok

mi = 1, if containers i of bay k is assigned to the QC m, otherwise ok
mi = 0

δim δim = 1, if the QC m carries container i, otherwise δim = 0
εig εig = 1, if the AGV g carries container i, otherwise εig = 0
γin γin = 1, if the YC n carries container i, otherwise γin = 0

xg
ij

xg
ij =

1, if the AGV g carries container j after completing container i, otherwise xg
ij = 0

3.3. Mathematical Model

The above assumptions and parameters are considered to build the integrated schedul-
ing model of handling equipment in ACTs considering QC faults, which redistributes
the task of both the faulty QCs and their adjacent operational QCs, and synchronously
optimizes the task assignment of handling equipment, namely QCs, AGVs, and YCs. The
overall goal of maximizing the efficiency of ACTs is realized through a globally optimal
strategy, which is idealized to minimize the maximum AGV task completion time. The
detailed optimization model is as follows.

Obj.

T = min
g∈G

max∑m∈M ∑n,u∈N

(
tQC
gm + t̂mn

g + tYC
gn +

∼
t

nu

g +
.
t
nm
g +

..
t
nm
g + tb

g

)
(1)

S.t.
∑3

f=1 Ff = 1 (2)

|Ss
m − Sa

m| ≥ 2 (3)

|Ss
m− Sik| < |Ss

m− Sjk

∣∣∣, ∀i, j ∈ C, i ̸= j, ∀k ∈ K, ok
mi = 1 (4)
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Zk
m = ∑C

i=1 ∑C
j=1 ok

mi × ωk
m

(
1 − θm

ij

)
, ∀k ∈ K (5)

Ck
E + Ck

I − 1
2

≤ ∑m∈M Zk
m ≤ Ck

E + Ck
I (6)

∑j θm
ij ≤ 1, ∀i, j ∈ C (7)

∑i θm
ij ≤ 1, ∀i, j ∈ C (8)

tQC
im < tQC

jm , ∀i ∈ CE, ∀j ∈ CI , θm
ij = 1 (9)

tYC
in < tYC

jn , ∀i ∈ CI , ∀j ∈ CE, xg
ij = 1 (10)

tQC
gm = ∑C

i=1 εig × δim ×
[(

1 − θm
ij

)
× t

1
+ θm

ij × t2

]
(11)

tYC
gn = ∑C

i=1 εig × γin × (t3 + 2pi × t∗) (12)

∑g∈G εig ≤ 1, ∀i ∈ C (13)

∑i∈C xg
ij ≤ 1, ∀j ∈ C (14)

∑j∈C xg
ij ≤ 1, ∀i ∈ C (15)

t̂mn
g = ∑m∈M,n∈N ∑CI

i=1 εig × lmn/v2 (16)

..
t
nm
g = ∑m∈M,n∈N ∑CE

i=1 εig × lnm/v2 (17)

∼
t

nu

g = ∑n,u∈N ∑i,j∈C xg
ij × l′nu/v1 (18)

.
t
nm
g = ∑m∈M,n∈N ∑C

i=1 (1 − c gi)lnm/v1 (19)

bgi = b0
g − b′ × l (20)

tb
g = ∑C

i=1 cgi ×
{

l′′bn
v1

+
b′ × l

b′′ +

[
F1 × l′′′bm + (F2 + F3)× l′′bn

]
v1

}
(21)

Constraint (2) means the current work stages of QCs; Constraint (3) means that the safe
operating distance is less than two bays; Constraint (4) represents that container i is assigned
to the QC with the shortest moving distance; Constraint (5) is the sum of tasks of QC m at
bay k; Constraints (6) represents the range of the task number of bay k; Constraints (7) and (8)
ensure that any container has no more than one preceding task; Constraint (9) and (10) means
the sequence of tasks of the QCs and YCs; Constraints (11) and (12) denote the total working
time of QCs and YCs for AGV g; Constraints (13)–(15) express the sequence of tasks of AGVs;
Constraints (16)–(19) denote the total time of each stage of AGVs in different loading and
unloading modes; Constraints (20) indicates the energy consumption of AGVs; Constraint (21)
represents the sum of the AGV charging time.

4. Solution Approach

The transportation of import and export containers in ACTs requires a variety of
handling equipment (such as QCs, AGVs, and YCs) to cooperate closely between the
terminal and the yard blocks. Therefore, the integrated scheduling of handling equipment
in ACTs is an NP-hard problem expressed as a mixed integer programming (MIP) model.
Since the NP-hard problem is difficult to obtain the exact solution in a limited time [37],
more and more researchers use heuristic algorithms to gradually approximate the optimal
solution [38]. For example, Li et al. [39] proposed a hybrid evolutionary algorithm by
combining non-dominated sorting genetic algorithm II (NSGA-II) and local search method;
Chen et al. [40] combined Convolutional Neural Network (CNN) and the Deep Determinis-
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tic Policy Gradient (DDPG) algorithm to solve time and space synchronization scheduling
problem of handling equipment; and Ji et al. [41] also considered AGV conflict-free routing
during integrated scheduling.

In order to efficiently address task redistribution of both the faulty QCs and their
adjacent operational QCs and optimize the task assignments of handling equipment, based
on the logical relationship among QCs, YCs, and AGVs in ACTs, this paper constructs an
adaptive two-stage NSGA-II algorithm for solving the mixed integer programming model.
The proposed algorithm focuses on the allocation and optimization of handling equipment
in ACTs, determines the container loading and unloading sequences of QCs, AGVs, and
YCs according to specific fault scenarios, and finally obtains the global optimal solution
through adaptive dynamic adjustment, whose detailed process is shown in Figure 3 and
pseudo-code is displayed as Algorithm 1.

Algorithm 1: Two-Stage NSGA-II algorithm for integrated scheduling of transport equipment

This Two-Stage NSGA-II algorithm is divided into three parts: a, b, and c.
Initialization: Location of import and export containers. Randomly generate container sequences.
1 Algorithm a:
2 Input: import container sequence (Q = {1, 2, · · · , q} )
3 /* Genetic algorithm */
4 for generation = {1, · · · , 100} do
5 Sort the top 10 sequences are selected based on fitness (1/T )
6 for population size = {1, · · · , 50 − 10} do
7 if the random number < crossover probability then
8 The new seq = crosses the sequence population [i]
9 for i = {10, · · · , populationsize} do
10 if the random number < variation probability then
11 Mutate new_seq
12 Renewal population
13 Output: import container handling sequence with maximizing fitness
14 Algorithm b:
15 Input: import container handling sequence from algorithm a
16 Randomly generated population of import container handling sequence
17 for generation = {1, · · · , 100} do
18 Calculate fitness for each sequence by genetic algorithm
19 Output: export container handling sequence with maximizing fitness
20 Algorithm c:
21 Input: import and export container handling sequence from algorithms a and b
22 for generation = {1, · · · , 100} do
23 Obtain new sequence by genetic algorithm
24 Calculate the fitness function
25 Output: import and export container handling sequence with maximizing fitness
Output: import and export container handling sequence with maximizing fitness from memory
end
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4.1. Chromosome Representation and Fitness Evaluation

Among many coding methods, permutation encoding can express the task sequence
more intuitively and conveniently, and real-valued encoding can directly generate the
genes of new individuals in the process of crossover and mutation, which makes it easier
to generate feasible solutions. To distinguish tasks of QCs, AGVs, and YCs, and clearly
represent the sequence of tasks involved during the process of container loading and
unloading, a hybrid encoding method is employed to integrate permutation encoding and
real-valued encoding. Specifically, each chromosome represents an orderly loading and
unloading sequence scheme, and each gene expresses a specific task sequence. The first line
in Figure 4 shows the sequence of container tasks, where positive numbers show import
containers and negative numbers denote export containers. The second, third, and fourth
lines indicate the allocation of QCs, AGVs, and YCs for the completion of the corresponding
assigned tasks.
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Figure 4. Schematic diagram of chromosome operation.

Based on the planned operation sequence of containers, a task sequence is generated
for the QCs, AGVs, and YCs while considering scheduling constraints. The objective
function T aims to minimize the maximum completion time of tasks of AGV, and the fitness
function is expressed as the reciprocal of T.

4.2. Parent Selection Strategy

In order to quickly find the optimal solution, the elite strategy is used for the selection
operation. Specifically, the 50 individuals in the population are sorted according to their
fitness value, and the top 10 individuals are selected. This strategy is able to improve the
quality of the initial population solutions and speed up the convergence of the algorithm.

4.3. Crossover Operation

The crossover operation selects two parents randomly from the top 10 ranked parents.
A crossover point is also randomly selected, and then the genes of the other parent are
traversed to exclude the gene sequence before the crossover point of the parent with higher



Systems 2024, 12, 450 10 of 20

fitness in the pair. As shown in Figure 5a, the new individual’s gene is composed of the gene
sequence of one parent before the crossover point and the remaining non-repeating gene
sequence of another parent. This method can effectively avoid the problem of generating
an infeasible gene sequence by crossover, reducing the steps of gene repair and solution
space cutting, and reducing the algorithm’s time complexity.
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Figure 5. Crossover and mutation operations.

4.4. Mutation Operation

The 40 new offspring individuals generated by the crossover operation are subjected to
gene mutation operation. Random selection mutation is used, and the mutation probability
is set to 0.1. The individual with the mutation randomly selects two positions on the gene
and exchanges their values. As shown in Figure 5b, the random gene positions of the
mutated offspring generated by crossover are 4 and 13, and their positions are exchanged
to generate new offspring.

5. Numerical Experiment and Discussion

The article analyzes how the health status of the QCs and the dual cycling model can
affect the loading and unloading efficiency of container ships in ACTs. In this section, we
carry out experimental analysis using a ship as a case, and five different combinations of
location and number of faulty QCs are considered based on the scales of different container
ships. The experiment considered dividing three real ship scale scenarios based on ship
length and container quantity, referring to existing literature and ship length data provided
by Chinese ship websites https://www.chinaports.com/. Numerical analysis is conducted
to evaluate the effectiveness of the two-stage NSGA-II algorithm and demonstrates the
superiority of task rescheduling and dual cycling loading and unloading strategies under
QC faults.

In order to express the experimental scenario mentioned in this section more clearly,
take three QC responsible for loading and unloading a container ship with a length of
10 bays as an example. As shown in Figure 6, the tasks of loading and unloading containers
for QC “a” and “c” before and after the fault of QC “b” located in the middle have been
rescheduled, sharing container tasks 30 and 38 for QC “b”, respectively.

https://www.chinaports.com/
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Figure 7. Effect of different parameters. 
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5.1. Experiment Settings

This article applies the scenario of large-scale ship container loading and unloading
to the experimental determination of genetic algorithm parameters, considering the task
volume of a 368 m container ship. It can operate 10 QCs, which need to load 125 containers
and unload 130 containers. Parameters of the proposed two-stage NSGA-II algorithm are
established by testing various parameter combinations, whose results are shown in Figure 7.
We categorize the results based on population scale, crossover rate, and mutation rate, and
obtain the best values in the solution of the proposed algorithm. By comparing the optimal
completion time of AGVs and the running time of the algorithm, we identify the optimal
experimental parameters for the problem instance, which are the population size of 100,
the crossover rate of 0.8, and the mutation rate of 0.1. Due to the lack of direct data on
QCs fault, this study calculated the fault probability of QCs reasonably on the basis of the
existing literature, and the remaining parameters were set based on previous studies as
shown in Table 3.
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Table 3. Experimental parameter settings.

Parameter Value Parameter Value Parameter Value

QC fault probability 0.03 t2 1.28 min

b′ b′ =


0.001%

m , AGVunlode
0.01%

m , AGVoverlode
0.005%

s , AGVwaiting

v1 2.5 m/s t3 1.08 min
v2 2.0 m/s t∗ 20 s
t1 1.08 min b′′ 0.5 unit/s

5.2. Numerical Analysis and Discussion

This article conducts a large-scale case study on a 368 m ship, examining the scheduling
plan of the QCs under various loading and unloading modes. Additionally, it randomly
generates the timing, sequence, and repair duration of QC faults by using a random number
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list. By utilizing a fault scenario involving three QC faults with sequences 1, 2, and 8, as an
example, the article analyzes the re-optimization efficiency of all operational QCs.

In Table 4, by analyzing the loading and unloading frequency of all QCs in single and
dual cycle modes, optimization efficiency is calculated using Formula (22). In the normal
scheduling plan, the average value of optimization efficiency is 22.968%, which means dual
cycling loading and unloading mode increases the productivity of ACTs by an average of
22.968%. In the re-scheduling plan, the proposed algorithm still guarantees the average
optimization efficiency of 22.926% in large-scale instances.

Optimization e f f iciency =
N2 × (2t1 − t2)

N1 × t1
(22)

Table 4. Normal scheduling plan of the QCs.

Normal Scheduling Plan Re-Scheduling Plan

QC Single Cycling (N1) Dual Cycling (N2) Optimization
Efficiency (%) Single Cycling (N1) Dual Cycling (N2) Optimization

Efficiency (%)

1 19 5 21.44% 16 5 25.46%
2 37 12 26.43% 21 2 7.76%
3 22 4 14.81% 14 1 5.82%
4 17 5 23.97% 15 1 5.43%
5 37 13 28.63% 30 14 38.02%
6 18 5 22.63% 23 10 35.43%
7 18 5 22.63% 28 12 34.92%
8 19 5 21.44% 20 7 28.52%
9 35 12 27.94% 27 11 33.20%

10 33 8 19.75% 61 11 14.69%

In this paper, GAP provides a comparable numerical value, calculated as the effect
of QCs faults on loading and unloading efficiency, as shown in Formula (23). In this fault
scenario, ship loading and unloading time increased compared to the normal scheduling
plan. In this large-scale instance, the overall optimal completion time (T′) of the normal
scheduling scheme is 2616.228 s, and the overall optimal completion time (T′′) of the re-
scheduling scheme is 3633.407 s. It is necessary to make rescheduling plans for the QC
faults because QC faults decrease the ship loading and unloading efficiency by 38.880%. In
addition, the proposed rescheduling scheme can still maintain the optimization efficiency
of the QC dual cycling to be above 22.926%. The proposed algorithm remains effective
even when dealing with large-scale instance calculation.

GAP =
T′′ − T′

T′ (23)

5.3. Algorithm Validity Verification Experiment

In this section, to further test the effectiveness of the proposed algorithm, randomly
generated fault scenarios are applied to container ships of three scales. The detailed
experiments are designed as follows: (1) The small-scale ships of 148 m and 199 m can
allow up to four and five QCs to operate, which need to load 33 containers and unload
34 containers, respectively. (2) The medium-scale ships of 224 m and 299 m can allow up to
six and eight QCs to operate at the same time, which need to load 60 containers and unload
118 containers, respectively. (3) The large-scale ships of 368 m can operate ten QCs, which
need to load 125 containers and unload 130 containers.

During the process of these experiments, we ran the calculation examples of each
scale five times and recorded the average results. We took the normal initial scheduling
scheme with dual cycle mode by NSGA-II algorithm, namely baseline model, and randomly
generated QC faults on this basis. Then, we compared the objective function values of
two algorithms with normal dual cycle mode under QC faults, namely the proposed two-
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stage NSGA-II algorithm and the traditional NSGA-II algorithm. “GAP.Err” and “GAP.Imp”
are indicators used to compare algorithm performance. They refer to the calculation method
of “GAP” as described in Formula (23). For their specific meanings, please refer to the
notes in the table. To assess the performance of the Baseline model, NSGA-II and Two-
stage NSGA-II on the same basis, the parameters were set the same as two-stage NSGA-II.
Furthermore, we investigated the effects of QC faults on the efficiency of ship loading and
unloading, as well as the effects of different fault states.

For large-scale ships, the loading and unloading efficiency with and without QC faults
are given in Table 5. Five typical fault scenarios are selected based on the location and
number of faulty QCs, and the simulation scenarios are shown in Appendix A. Specifically,
QCs 1, 2, and 8 are faulty in scenario 1; QCs 4, 5, and 6 are faulty in scenario 2; QCs 1 and
7 are faulty in scenario 3; QC 4 is faulty in scenario 4; and QC 10 is faulty in scenario 5.
According to the results of the experimental examples in Table 5, the handling time of ACTs
under QC faults on large-scale ships increases by at least 38.5% and possibly up to 90.64%.
The objective value of the proposed two-stage NSGA-II algorithm is obviously lower than
that of the traditional NSGA-II algorithm and the proposed algorithm can save about 20%
of time.

Table 5. Algorithm comparison results in large-scale ship scenarios.

Scenario
Sequence Length/Bay Baseline

Model (s) NSGA-II (s) Two-Stage
NSGA-II (s) GAP.Err (%) GAP.Imp

(%)

1 368/48 2616.23 4987.66 3633.41 90.64 27.15
2 368/48 3364.17 4659.24 3822.89 38.50 17.95
3 368/48 2836.93 4434.27 3458.07 56.31 22.02
4 368/48 3301.59 4584.57 3487.17 38.86 23.94
5 368/48 2409.31 4134.03 3184.13 71.59 22.98

“GAP.Err” is the relative increase value of the objective values obtained by NSGA-II in the fault scenarios relative
to that of initial objective values. “GAP.Imp” represents the proportion of reduction in the relative objective values
of NSGA-II by Two-stage NSGA-II.

For medium-scale ships, the loading and unloading efficiency with and without QC
faults are given in Table 6. Five typical fault scenarios are selected based on the location
and number of faulty QCs in 299 m and 224 m ships, respectively, and the simulation
scenarios are shown in Appendix B. Specifically, QC 4 is faulty in scenario 1; QCs 2, 7 and 8
are faulty in scenario 2; QCs 3, 4 and 5 are faulty in scenario 3; QCs 1 and 7 are faulty in
scenario 4; QC 1 is faulty in scenario 5; QCs 3 and 4 are faulty in scenario 6; QCs 1 and 5
are faulty in scenario 7; QC 4 is faulty in scenario 8; QC 6 is faulty in scenario 9; QCs 3, 4
and 5 are faulty in scenario 10. According to the results of the experimental examples in
Table 6, the handling time of ACTs under QC faults on medium-scale ships increases by
at least 35.57% and possibly up to 85.78%. The objective value of the proposed two-stage
NSGA-II algorithm is obviously lower than that of the traditional NSGA-II algorithm and
the proposed algorithm can save about 21% of time.

Table 6. Algorithm comparison results in medium-scale ship scenarios.

Scenario
Sequence Length/Bay Baseline

Model (s) NSGA-II (s) Two-Stage
NSGA-II (s) GAP.Err (%) GAP.Imp

(%)

1 299/40-1 2142.37 2960.47 2489.64 38.19 15.90
2 299/40-2 1810.41 3363.29 2947.83 85.78 12.35
3 299/40-3 2086.11 3165.11 2760.97 51.72 12.77
4 299/40-4 2033.31 3428.34 2693.91 68.61 21.42
5 299/40-5 1892.75 3184.72 2211.38 68.26 30.56
6 224/32-1 2195.13 3786.53 2712.37 72.50 28.37
7 224/32-2 2533.61 3859.98 2606.63 52.35 32.47
8 224/32-3 2176.04 3469.09 2560.76 59.42 26.18
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Table 6. Cont.

Scenario
Sequence Length/Bay Baseline

Model (s) NSGA-II (s) Two-Stage
NSGA-II (s) GAP.Err (%) GAP.Imp

(%)

9 224/32-4 2160.44 3610.93 2561.41 67.14 29.07
10 224/32-5 2780.87 3770.00 3368.71 35.57 10.64

“GAP.Err” is the relative increase value of the objective values obtained by NSGA-II in the fault scenarios relative
to that of initial objective values. “GAP.Imp” represents the proportion of reduction in the relative objective values
of NSGA-II by Two-stage NSGA-II.

For small-scale ships, the loading and unloading efficiency with and without QC faults
are given in Table 7. Five typical fault scenarios are selected based on the location and
number of faulty QCs in 199 m and 148 m ships, respectively, and the simulation scenarios
are shown in Appendix C. Specifically, QCs 1, 2, and 3 are faulty in scenario 1; QC 3 is
faulty in scenario 2; QC 1 is faulty in scenario 3; QCs 3 and 5 are faulty in scenario 4; QCs 3
and 4 are faulty in scenario 5; QCs 1 and 3 are faulty in scenario 6; QCs 1 and 4 are faulty in
scenario 7; QCs 1, 2, and 4 are faulty in scenario 8; QCs 2, 3, and 4 are faulty in scenario
9; QC 2 is faulty in scenario 10. According to the results of the experimental examples in
Table 7, the handling time of ACTs under QC faults on small-scale ships increases by at
least 30.61% and possibly up to 92.83%. The objective value of the proposed two-stage
NSGA-II algorithm is obviously lower than that of the traditional NSGA-II algorithm and
the proposed algorithm can save about 30% of time.

Table 7. Algorithm comparison results in small-scale ship scenarios.

Scenario
Sequence Length/Bay Baseline

Model (s) NSGA-II (s) Two-Stage
NSGA-II (s) GAP.Err (%) GAP.Imp

(%)

1 199/20-1 516.63 932.99 909.85 80.59 2.48
2 199/20-2 500.97 829.78 544.83 65.64 34.34
3 199/20-3 485.03 842.28 521.50 73.66 38.09
4 199/20-4 505.30 974.35 646.33 92.83 33.67
5 199/20-5 591.20 1094.26 935.99 85.09 14.46
6 148/16-1 786.30 1512.76 872.46 92.39 42.33
7 148/16-2 727.68 1267.69 779.14 74.21 38.54
8 148/16-3 899.30 1665.87 1061.13 85.24 36.30
9 148/16-4 1153.87 1507.11 1153.87 30.61 23.44

10 148/16-5 902.61 1359.19 743.77 50.58 45.28
“GAP.Err” is the relative increase value of the objective values obtained by NSGA-II in the fault scenarios relative
to that of initial objective values. “GAP.Imp” represents the proportion of reduction in the relative objective values
of NSGA-II by Two-stage NSGA-II.

5.4. Sensitivity Analysis of Ship Scale

The mean values of the objectives for the experiments mentioned above are shown
in Table 8 and Figure 8. Figure 8a indicates the impact of QC faults on the loading and
unloading efficiency of large-scale, medium-scale, and small-scale ships.

Table 8. Comparison results of different algorithms on ship scales.

Scale (m) Quay
Crane/Bay

Baseline
Model-

Obj.1 (s)

NSGA-II-
Obj.2 (s)

Two-Stage
NSGA-II-
Obj.3 (s)

GAP.Err (%) GAP.Imp
(%)

148 4/16 893.95 1462.52 922.07 66.61 37.18
199 5/20 519.83 934.73 711.70 79.56 24.61
224 6/32 2369.22 3699.31 2761.98 57.40 25.35
299 8/40 1992.99 3220.39 2620.75 62.51 18.60
368 10/56 2905.65 4559.96 3517.13 59.18 22.81

“GAP.Err” is the relative increase value of the objective values obtained by NSGA-II in the fault scenarios relative
to that of initial objective values. “GAP.Imp” represents the proportion of reduction in the relative objective values
of NSGA-II by Two-stage NSGA-II.
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Figure 8. Influence statistics of ship scale, location, and number of faulty QCs.

It is observed that the productivity of small-scale ships is weakened with QC faults more
than that of large-scale ships. Contrary to the NSGA-II algorithm, the two-stage NSGA-II
algorithm exhibits a greater improvement in efficiency under QC faults in small-scale ships
compared to large-scale ships. The effectiveness of the proposed two-stage NSGA-II algorithm
is still significant and demonstrated its effect on the large-scale ship calculation.

5.5. Sensitivity Analysis of Location and Number of Faulty QCs

In addition to the ship scale, location and number of faulty QCs also affect the ob-
jective. In this study, we discuss the changes in the objective for various scenarios under
different locations and numbers of faulty QCs. The fault scenarios above are calculated
and compared according to the location and number of faulty QCs. The results are shown
in Figure 8b–f. Under the condition of ensuring that the degree and number of faulty QC s
in the same period are consistent, five fault scenario experiments were conducted for each
period to obtain the average value. The experimental results of randomly generated QC
fault scenarios with different fault locations and different fault numbers in the shipping
schedule under five calculation case scales are statistically calculated. Taking the QC with
a single fault and the fault location at both ends as the baseline, GAP values affected by
fault location and fault number are calculated according to Formula (23) and represented
as “GAP.P” and “GAP.F”, respectively, as shown in Table 9.

Table 9. Comparison results of location and number of faulty QCs.

Number Position ¯
Obj. (s) GAP.P (%)

GAP.F (%) ¯
GAP.P (%)

¯
GAP.F (%)

Both Ends Middle

One fault
Both ends 1930.35

2.62 - -

4.50 13.41

Middle 1981.00

Two faults
Both ends 2032.84

4.09 5.31 6.81Middle 2115.92

Three faults
Both ends 2284.40

6.80 18.34 23.16Middle 2439.78

“GAP.P” is the influence degree of the location difference in the faulty QCs. “GAP.F” is the influence degree of the
difference in the number of faulty QCs. Obj., GAP.P, GAP.F are averages.
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In general, the difference in objective function value is 4.5% for the location of faulty
QCs and 13.41% for the number of faulty QCs. This indicates that the number of faulty QCs
has a greater impact on loading and unloading efficiency than the actual location of faults.
Under the same number of faulty QCs, the effect on loading and unloading efficiency of
faulty QCs occurring at both ends of the ship is lower than that of faulty QCs occurring in
the middle of the ship. During the loading and unloading period, the higher the number of
faulty QCs, the greater the impact on efficiency.

6. Conclusions

This paper investigates an integrated scheduling problem of QCs, YCs, and AGVs
considering QC faults, which is formulated as a mixed integer programming model. A
rescheduling mechanism and integrated scheduling of handling equipment are accom-
plished simultaneously to minimize the loading and unloading time in this model. To solve
the model, an adaptive two-stage NSGA-II algorithm is proposed, which first determines
the range of adjacent operational QCs of the faulty QCs by comparing the horizontal
distance between the operational QCs and the faulty QCs, and reallocates the unfinished
container handling tasks of both the faulty QCs and their adjacent QCs, where the adjacent
QCs of faulty QCs assume the container handling tasks. Then, the algorithm optimizes the
task sequence of QCs, YCs, and AGVs according to scheduling rules.

Numerical experiments have been conducted on loading and unloading operation
scenarios of three scale ships under different numbers and locations of faulty QCs and
results show that the number of faulty QCs has a greater influence on the loading and
unloading efficiency than their locations, and the impact of faulty QCs on the efficiency of
small-scale ships is greater than that of large-scale ships, which indicate that the proposed
algorithm can primely deal with the integrated scheduling problem of handling equipment
considering QC faults while maintaining their dual cycling efficiency.

This paper analyzes the influence of QC faults on the integrated scheduling of handling
equipment of ACTs and discusses the impact of the location and number of faulty QCs
on efficiency. This article refers to the data of ACTs on the China Port Network to design
and simulate a model for rescheduling the loading and unloading tasks of faulty QCs. The
model can be applied to the customized rescheduling task of a ship QC faults in ACTs, and
can demonstrate good results in various ship scales. However, the research hypothesis has
certain limitations. It does not take into account the impact of other ships near the bay
on the loading and unloading process, and it has not been validated for multiple ships
loading and unloading scenarios along the entire coastline. In the future, we will discuss
the integrated scheduling problem of handling equipment for multiple ships considering
QC faults, and consider validating the algorithm using real data, to the extent possible.
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Appendix A

Here, we present the normal scheduling plan and the rescheduling task of QCs in a
large-scale scenario for a 368 m ship, as shown in Tables A1 and A2.
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Table A1. Unfinished container sequence of the faulty QCs (a 368 m ship).

Normal Scheduling Plan Scenario Sequence of
Faulty QCs Sequence of Unfinished Containers

crane[1]=[34, 95, 59, 98, 22, 54, 45, 50, 3, 122, 47, 123, 118] 1 1 [122, 47, 123, 118]
crane[2]=[48, 104, 36, 7, 93, 107, 76, 117, 25, 90, 102, 100] 2 [102, 100]
crane[3]=[108, 6, 94, 56, 43, 124, 84, 113, 79, 75, 30, 26] 8 [ 63, 91, 73, 38, 23, 62, 81, 27, 115, 58, 112]
crane[4]=[35, 71, 40, 53, 13, 120, 88, 103, 69, 101, 4, 67, 52] 2 4 [67, 52]
crane[5]=[97, 86, 49, 61, 42, 99, 92, 114, 111, 64, 116, 18] 5 [49, 61, 42, 99, 92, 114, 111, 64, 116, 18]
crane[6]=[57, 39, 12, 77, 8, 68, 28, 105, 87, 17, 65, 46] 6 [17, 65, 46]
crane[7]=[29, 11, 66, 15, 44, 55, 10, 121, 78, 74, 16, 41, 5] 3 1 [22, 54, 45, 50, 3, 122, 47, 123, 118]
crane[8]=[83, 63, 91, 73, 38, 23, 62, 81, 27, 115, 58, 112] 7 [55, 10, 121, 78, 74, 16, 41, 5]
crane[9]=[1, 110, 109, 82, 33, 31, 60, 96, 32, 89, 37, 119, 70] 4 4 [69, 101, 4, 67, 52]
crane[10]=[72, 24, 9, 80, 2, 20, 51, 21, 19, 106, 85, 14, 125] 5 10 [80, 2, 20, 51, 21, 19, 106, 85, 14, 125]

Table A2. Results of each QC rescheduling task (a 368 m ship).

QC Sequence Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

1 [92, 18]

2 [22, 54, 50, 3, 122, 123,
118, 5]

3 [102, 100] [67, 52] [45] [69]
4 [122, 47, 123, 118] [47]
5 [10] [101, 4, 67]
6 [49, 61, 42, 65] [55, 121] [52]

7 [63, 91, 73, 38, 23, 81, 115, 58,
112] [99, 17, 46, 114, 111, 64] [85]

8 [116] [78, 74, 16, 41]

9 [62, 27] [80, 2, 20, 51, 21, 19, 106,
14,125]

10

Appendix B

Here, we present the normal scheduling plan and the rescheduling task of QCs in a
medium-scale scenario for the 299 m and 224 m ships, as shown in Tables A3–A10.

Table A3. Unfinished container sequence of the faulty QCs (a 299 m ship).

Normal Scheduling Plan Scenario Sequence of Faulty QCs Sequence of Unfinished
Containers

crane[1]=[18, 33, 4, 15, 29, 30, 17] 1 4 [2, 32, 5, 31, 13, 14]
crane[2]=[23, 45, 49, 25, 16, 38, 26] 2 2 [25, 16, 38, 26]
crane[3]=[36, 27, 54, 11, 8, 20, 9] 7 [1, 41, 52, 39]
crane[4]=[60, 42, 2, 32, 5, 31, 13, 14] 8 [10, 21, 55]
crane[5]=[37, 50, 56, 57, 3, 46, 22, 51] 3 3 [27, 54, 11, 8, 20, 9]
crane[6]=[28, 59, 44, 12, 47, 34, 19, 6] 4 [13]
crane[7]=[35, 48, 24, 58, 1, 41, 52, 39] 5 [22, 51]
crane[8]=[43, 7, 40, 53, 10, 21, 55] 4 1 [15, 29, 30, 17]

7 [52, 39]
5 1 [15, 29, 30, 17]

Table A4. Results of each QC rescheduling task (a 299 m ship).

QC Sequence Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

1 [25, 16, 38, 26]
2 [14] [27, 54, 11, 20, 9] [15] [15, 29]
3 [2, 32, 5, 31] [29] [30, 17]
4 [55] [8] [30]
5 [13] [39] [13]
6 [1, 10, 52, 21] [22, 51] [39]
7
8 [41] [52, 17]
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Table A5. Unfinished container sequence of the faulty QCs (a 224 m ship).

Normal Scheduling Plan Scenario Sequence of Faulty QCs Sequence of Unfinished
Containers

crane[1]=[33, 18, 4, 15, 31, 25, 27, 17, 26, 60] 1 3 [54, 16, 30]
crane[2]=[23, 45, 38, 49, 11, 10, 57, 21, 43, 53] 4 [7, 41, 37, 13]
crane[3]=[9, 42, 36, 32, 14, 5, 2, 54, 16, 30] 2 1 [4, 15, 31, 25, 27, 17, 26, 60]
crane[4]=[8, 56, 3, 29, 50, 20, 7, 41, 37, 13] 5 [55, 44, 34, 1, 22, 19, 40, 46, 28]
crane[5]=[51, 55, 44, 34, 1, 22, 19, 40, 46, 28] 3 4 [7, 41, 37, 13]
crane[6]=[35, 24, 6, 48, 52, 47, 59, 39, 58, 12] 4 6 [47, 59, 39, 58, 12]

5 3 [5, 2, 54, 16, 30]
4 [7, 41, 37, 13]
5 [40, 46, 28]

Table A6. Results of each QC rescheduling task (a 224 m ship).

QC
Sequence Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

1
2 [54, 16,30] [4, 15, 25, 17, 26, 60] [54, 16, 30]
3 [37] [55, 31] [37, 13] [12] [13]
4 [44, 34, 22, 46, 28, 27] [2, 46, 28, 37]
5 [7, 41, 13] [7, 41] [47, 59, 39, 58]
6 [1, 19, 40] [5, 40, 7, 41]

Appendix C

Here, we present the normal scheduling plan and the rescheduling task of QCs in a
small-scale scenario for the 199 m and 148 m ships, as shown in Tables A7–A10.

Table A7. Unfinished container sequence of the faulty QCs (a 199 m ship).

Normal Scheduling Plan Scenario Sequence of Faulty QCs Sequence of Unfinished
Containers

crane[1]=[18, 33, 15, 4, 23, 8] 1 1 [4, 23, 8]
crane[2]=[16, 25, 26, 28, 2, 14, 3] 2 [2, 14, 3]
crane[3]=[27, 11, 19, 13, 5, 30] 3 [30]
crane[4]=[9, 32, 31, 10, 21, 17, 7] 2 3 [19, 13, 5, 30]
crane[5]=[6, 12, 20, 1, 22, 29, 24] 3 1 [23, 8]

4 3 [13, 5, 30]
5 [29, 24]

5 3 [11, 19, 13, 5, 30]
4 [32, 31, 10, 21, 17, 7]

Table A8. Results of each QC rescheduling task (a 199 m ship).

QC Sequence Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

1 [19, 5, 30]
2 [13, 5, 30] [8] [5, 30] [11, 13]
3 [32, 31]
4 [2, 4, 23] [19] [23] [29, 24, 13]
5 [30, 14, 3, 8] [10, 21, 17, 7]
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Table A9. Unfinished container sequence of the faulty QCs (a 148 m ship).

Normal Scheduling Plan Scenario Sequence of Faulty QCs Sequence of Unfinished
Containers

crane1=[16, 10, 12, 5, 6, 32, 3, 24] 1 1 [32, 3, 24]
crane2=[29, 21, 19, 27, 28, 18, 20, 25] 3 [31, 7, 13, 22, 4, 11]
crane3=[30, 14, 31, 7, 13, 22, 4, 11] 2 1 [32, 3, 24]
crane4=[26, 33, 1, 17, 15, 2, 9, 8, 23] 4 [1, 17, 15, 2, 9, 8, 23]

3 1 [32, 3, 24]
2 [25]
4 [17, 15, 2, 9, 8, 23]

4 2 [20, 25]
3 [14, 31, 7, 13, 22, 4, 11]
4 [33, 1, 17, 15, 2, 9, 8, 23]

5 2 [18, 20, 25]

Table A10. Results of each QC rescheduling task (a 148 m ship).

QC Sequence Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

1 [33, 20, 25, 31, 1, 7, 13, 17,
22, 4, 11, 15, 2, 9, 8, 23] [20]

2 [32, 3, 24, 31, 7, 13] [32, 3, 24] [32, 3, 24] [14]
3 [1, 17, 15, 2, 9, 8, 23] [17, 15, 2, 9, 8, 23,25] [18, 25]
4 [22, 4, 11]
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