
Citation: Yang, Y.; Liang, J.; Feng, J.

Simulation and Optimization of

Automated Guided Vehicle Charging

Strategy for U-Shaped Automated

Container Terminal Based on

Improved Proximal Policy

Optimization. Systems 2024, 12, 472.

https://doi.org/10.3390/

systems12110472

Academic Editors: Shuqi Xue,

Yun Wang and Xiaomeng Shi

Received: 14 October 2024

Revised: 2 November 2024

Accepted: 4 November 2024

Published: 5 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Simulation and Optimization of Automated Guided Vehicle
Charging Strategy for U-Shaped Automated Container Terminal
Based on Improved Proximal Policy Optimization
Yongsheng Yang *, Jianyi Liang and Junkai Feng

Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
* Correspondence: yangys_smu@126.com

Abstract: As the decarbonization strategies of automated container terminals (ACTs) continue
to advance, electrically powered Battery-Automated Guided Vehicles (B-AGVs) are being widely
adopted in ACTs. The U-shaped ACT, as a novel layout, faces higher AGV energy consumption
due to its deep yard characteristics. A key issue is how to adopt charging strategies suited to
varying conditions to reduce the operational capacity loss caused by charging. This paper proposes
a simulation-based optimization method for AGV charging strategies in U-shaped ACTs based on
an improved Proximal Policy Optimization (PPO) algorithm. Firstly, Gated Recurrent Unit (GRU)
structures are incorporated into the PPO to capture temporal correlations in state information. To
effectively limit policy update magnitudes in the PPO, we improve the clipping function. Secondly,
a simulation model is established by mimicking the operational process of the U-shaped ACTs.
Lastly, iterative training of the proposed method is conducted based on the simulation model. The
experimental results indicate that the proposed method converges faster than standard PPO and Deep
Q-network (DQN). When comparing the proposed method-based charging threshold with a fixed
charging threshold strategy across six different scenarios with varying charging rates, the proposed
charging strategy demonstrates better adaptability to terminal condition variations in two-thirds of
the scenarios.

Keywords: u-shaped automated container terminal; AGV; charging strategy; deep reinforcement
learning; plant simulation

1. Introduction

ACTs allow terminal operators to densify their operations, maximizing the utilization
of terminal space [1]. As land resources become increasingly scarce, ACTs are expected
to become a prevailing trend in port development. Based on research on traditional
automated container terminal handling systems and integrating the unique characteristics
of the Qinzhou Terminal in Beibu Gulf Port, Shanghai Zhenhua Heavy Industries Co., Ltd.
has proposed a novel U-shaped terminal yard layout [2], which has garnered significant
attention from the academic community.

The layout of the ACT system, including the berth line layout that determines the
location of the quay crane, the layout of the yard involving the location of the yard crane,
and the block and path of the AGV, has a significant impact on the performance of ACTs [3].
AGV paths vary under different yard layouts. With the advancement of carbon neutrality
strategies and the emergence of large container vessels, ACTs are at a pivotal stage of
energy-saving, decarbonization, and intelligent transformation [4]. In this context, auto-
mated terminals have widely adopted electrically powered AGVs. However, due to the
limitation of battery capacity, AGVs must proceed to charging areas for power replenish-
ment when their battery levels drop below a certain threshold. The different charging
methods and the layout of power supply equipment influence the duration of AGV power
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replenishment. Uncertainty in charging time can result in unpredictable loading and un-
loading times, affecting the synchronization of equipment and the overall operational
efficiency of the terminal.

The charging methods for electrically powered AGVs primarily include battery swap-
ping strategies [5] and plug-in charging strategies [6]. Shanghai Yangshan Phase IV terminal
implements a battery swapping strategy, where AGVs with insufficient power travel to bat-
tery swapping stations at the terminal’s end to replace their batteries. This strategy allows
for more flexible AGV scheduling, but the distance between the battery swapping station
and the operational area affects the continuity of AGV operations [7]. The Guangzhou
Nansha Phase IV ACTs and the Qingdao Qianwan Terminal adopt the plug-in charging
strategy, where AGVs can use idle time to charge at charging piles. However, the plug-in
charging strategy requires consideration of battery charging time, making the coordination
of AGV charging and equipment scheduling more complex. Beibu Gulf Port ACT has
adopted the plug-in charging strategy along with a decentralized charge station layout
among the currently constructed U-shaped automated container terminals.

As shown in Figure 1 [8], the layout of U-shaped ACTs features loading and unloading
places distributed perpendicularly along the shoreline. These points are evenly spread
across both sides of the yard, and a double-cantilever rail crane (DCRC) is utilized to
enable multi-point loading and unloading. AGVs and external container trucks (ECTs)
can access the interior of the yard directly, interacting with loading and unloading places,
which enhances operational efficiency. AGVs enter and exit the yard via two single-
lane roads between paired yard blocks, while ECTs exit the yard through the U-shaped
roadway [9]. This traffic flow separation ensures physical isolation between AGVs and
ECTs, ensuring production safety at the automated terminal. However, the U-shaped
layout introduces new challenges: First, as AGVs need to travel deeper into the yard, the
increased distance required to complete loading and unloading tasks leads to higher energy
consumption, resulting in more frequent AGV charging. Second, uncertain events often
occur in actual terminal production environments, causing frequent changes in terminal
working conditions. How to adopt appropriate charging strategies for varying working
conditions is an urgent issue that needs to be addressed. Third, the increased number of
loading and unloading places in the U-shaped layout complicates mathematical modeling,
requiring a solution that reflects the actual terminal environment and is easy to solve.
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Therefore, in response to the need for modeling that closely aligns with actual U-
shaped ACT production operations and with a focus on AGV charging strategies under
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varying working conditions in the U-shaped layout, this paper employs simulation to
establish a model for U-shaped ACTs. Simulation modeling as the algorithm environ-
ment, a novel dynamic adjustment method for AGV charging thresholds based on deep
reinforcement learning, is proposed for the first time.

The main contributions of this paper are as follows:

1. Current research on charging strategies for automated container terminals predomi-
nantly employs fixed charging thresholds without considering working conditions
to optimize AGV charging strategies. The dynamic charging threshold strategy for
AGVs is a pressing issue in U-shaped ACTs and an essential academic topic in termi-
nal simulation research. For the first time, this paper introduces a simulation-based
optimization method for AGV dynamic charging thresholds in U-shaped ACTs using
an improved PPO algorithm. By simulating U-shaped ACTs and iteratively training
the improved PPO, our charging strategies apply appropriate charging thresholds
based on varying working conditions in automated terminals.

2. To meet the simulation optimization requirements for AGV charging in U-shaped
ACTs, we improved the PPO algorithm’s neural network and clipping function to en-
hance convergence speed and reduce training time in large-scale simulation scenarios.
By utilizing the ability of the Gated Recurrent Unit (GRU) to leverage historical state
information, a GRU structure was incorporated into the PPO deep neural network
to extract temporal correlations from input state information. The GRU enables the
algorithm to learn patterns in terminal working condition variations from historical
data and apply them to decision-making. To address the clipping function in the PPO
algorithm that fails to effectively constrain the ratio of new to old policies’ probability
updates within the specified range, we improved the clipping function by utilizing a
hyperbolic tangent function. This adjustment ensures that the ratio of policy updates
is constrained within the designated limits while facilitating smoother and more
natural transitions between the old and new policies.

The remainder of this paper is structured as follows: Section 2 presents the literature
review. Section 3 describes the simulation system. Section 4 introduces the improved
PPO algorithm and its training process. Section 5 conducts comparative experiments.
Conclusions are given in Section 6.

2. Literature Review

In this section, we review the existing research related to this study, which can be
divided into the following four categories: charging strategy optimization based on mathe-
matical models, charging strategy optimization based on simulation methods, charging
strategy optimization based on deep reinforcement learning, and simulation-based charging
strategy optimization using deep reinforcement learning in U-shaped ACTs.

2.1. Charging Strategy Optimization Based on Mathematical Models

The charging strategy optimization method based on mathematical models establishes
a mathematical model for the optimization objective and solves the model using intelligent
optimization methods. Dang et al. [10] and Singh et al. [11] addressed scenarios where
each transportation request requires different AGV capacities, allowing AGVs to charge
partially under a critical battery threshold. Their studies prioritize charging requests
and transportation assignments and develop a mixed-integer linear programming (MILP)
model. They proposed a hybrid adaptive extensive neighborhood search and integrated
a local search method to solve for feasible scheduling solutions. Practical calculations
demonstrate that this approach can reduce costs by 20–50%. Jun et al. [12] developed a
mathematical model for the pickup and delivery problem in a manufacturing environment,
considering partial and complete charging strategies. The objective was to minimize the
total delay in transportation requests. To solve the model, they developed a memetic
algorithm that combines genetic algorithms with local optimization techniques. Simulation
experiments showed that the proposed algorithm outperforms other algorithms in terms of
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average total delay. Yang et al. [13] discretized the capacity of battery swapping stations at
terminals and modeled their limited processing capabilities. A mixed-integer programming
(MIP) model was established to minimize the delay costs associated with AGV operations
and carbon emission costs. An improved genetic algorithm was employed to solve the
model. By optimizing the allocation and prioritization of container transportation and
AGV battery swapping tasks, the efficiency of terminal operations and carbon emissions
were significantly improved. Song et al. [14] studied the flexible scheduling problem of
AGVs with battery constraints. Their study considered the varying power consumption
of AGVs under empty and loaded conditions and the nonlinear characteristics of battery
charging. An improved charging strategy, incorporating two charging thresholds, was
proposed for the flexible scheduling model to minimize the total operational time required
to complete transportation tasks. A novel meta-heuristic algorithm based on an adaptive
extensive neighborhood search was employed to solve the model. Real-case calculations
demonstrated the effectiveness of the proposed charging strategy. Mousavi et al. [15]
developed a multi-objective AGV scheduling model to minimize the makespan and the
number of AGVs, considering battery charging constraints. They optimized the model
using a hybrid fuzzy genetic algorithm and particle swarm optimization. The model was
evaluated and validated through simulations conducted with Flexsim software. Li et al. [16]
addressed the joint scheduling problem of battery swapping and task operations with
random tasks by constructing a two-stage stochastic programming model. They proposed a
simulation-based ant colony optimization algorithm, where dual thresholds constrained the
battery swapping strategy. The results demonstrated that scheduling schemes that account
for random tasks in advance exhibit greater robustness and stability. Abderrahim et al. [17]
addressed the scheduling problem of manufacturing facilities in AGV-operated job shops,
aiming to minimize the makespan while considering AGV charging. They proposed a
meta-heuristic algorithm based on a General Variable Neighborhood Search (GVNS) to
solve the model. However, the mathematical model-based charging strategy optimization
methods mentioned above fail to fully capture the dynamic complexity of actual terminal
environments. Additionally, the multi-point loading and unloading configuration in U-
shaped ACTs further increases the difficulty of solving these models.

2.2. Charging Strategy Optimization Based on Simulation Methods

The ACT system is a complex dynamic system with numerous discrete events and
simulation methods widely used in terminal optimization. Chen et al. [18] developed a
simulation model based on actual production environment data to optimize the design and
operational settings of the AGV system. This model determined the required number of
AGVs, charging systems, positioning, scheduling, and routing rules. They conducted facto-
rial experiments using simulation models with different charging systems and constructed
a metamodel. An optimization method based on the global metamodel was applied to
optimize AGV utilization and throughput responses. Kabir et al. [19] developed a simu-
lation model to study the impact of charging less than total capacity on manufacturing
system productivity, considering the nonlinear characteristics of battery charging curves.
The results indicated that this method could significantly enhance the productivity of
the manufacturing system. Ma et al. [20] investigated the impact of charging pile facility
planning and battery-powered AGV operation strategies on terminal system performance.
They developed a simulation model consisting of a ship generator, a scheduler, and a traffic
network. Their study examined the effects of two charging pile layouts and two charging
strategies on system performance. The experimental results showed that a decentralized
charging pile layout and a progressive charging strategy outperformed the alternatives.
Kabir QS et al. [21] studied how the routing of AGVs to charge stations affects the produc-
tivity of manufacturing facilities using four heuristic algorithms and a simulation model.
The results showed that optimal productivity can be achieved when the routing heuristic
algorithm attempts to jointly minimize the total travel distance and the waiting time at
battery stations. Han et al. [22] addressed the issue of traditional AGV scheduling systems
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incurring significant additional time due to charging needs by proposing a dynamic AGV
scheduling method based on digital twins. This method includes four essential functions:
a technical support system, a scheduling model, scheduling optimization, and scheduling
simulation. The experimental results showed that this method, compared to traditional dy-
namic AGV scheduling approaches, reduces the makespan by 10.7% and decreases energy
consumption by 1.32%. Park et al. [23] addressed practical issues such as buffer space con-
straints and battery charging in AGV scheduling decisions, proposing a simulation-based
multi-AGV scheduling program. They introduced job selection rules, AGV selection rules,
and charging pile selection rules for AGV scheduling in actual workshops. Flexsim simula-
tion demonstrated that job selection rules had a more significant impact on average waiting
time compared to the other rules. However, the above simulation-based charging strategy
optimization methods did not consider the impact of fluctuating working conditions at
terminals, which may lead to deviations from real-world operations when studying the
proposed charging strategies.

2.3. Charging Strategy Optimization Based on Deep Reinforcement Learning

To overcome the dynamic complexity of actual ACT environments and the vast amount
of state information generated, deep reinforcement learning (DRL) methods have been
recently introduced [24]. Drungilas et al. [25] addressed the problem of energy consump-
tion optimization for battery-powered AGVs by establishing a model that includes the
AGV transportation process from the quay crane to the yard. They proposed an AGV
speed control algorithm based on DRL. The experimental results, compared with actual
measurements, showed that the proposed method reduced energy consumption by 4.6%.
Gao et al. [26], focusing on the impact of a dynamically complex environment in ACTs
on AGV operational efficiency, proposed a digital twin-based decision support method
to improve AGV scheduling efficiency. They used a mathematical programming model
and a Q-learning algorithm to generate AGV scheduling plans for battery charging. They
mapped physical space operations to virtual space to validate the solution’s effectiveness.
The results indicated that this method outperformed genetic algorithms and particle swarm
optimization. Zhang et al. [27] tackled the dynamic scheduling problem of AGV battery
swapping strategies in logistics systems, modeling the bi-objective joint optimization of
AGV scheduling and battery swapping management as a Markov Decision Process (MDP).
They developed a novel dueling double deep Q-network algorithm to maximize the long-
term reward of minimizing material handling delays and energy consumption. Gong
et al. [28] proposed a novel multi-agent deep deterministic policy gradient (MADDPG)-
based scheduling algorithm called MDAS to solve the multi-AGV hybrid scheduling prob-
lem by reducing AGV energy consumption and total turnaround time in ACTs. Simulation
experiments demonstrated that this method effectively reduced AGV energy consumption
compared to baseline methods.

2.4. Simulation-Based Charging Strategy Optimization Using Deep Reinforcement Learning in
U-Shaped ACTs

Based on a simulation model that can account for ACTs’ complex working condi-
tion variations, state information related to environmental changes is provided to deep
reinforcement learning, which outputs action values suited to the current ACTs’ working
condition. Building on this concept, many scholars have integrated simulation models
with deep reinforcement learning to study AGV systems. Zhang et al. [29] addressed the
AGV scheduling optimization problem in logistics systems considering spatiotemporal and
kinematic constraints in AGV path planning. They proposed a digital twin-enhanced deep
reinforcement learning optimization framework using an improved competitive double
deep Q-network algorithm with count-based exploration. This algorithm interacted with a
high-fidelity digital twin model that integrated static path planning agents using A* and
dynamic collision avoidance agents to learn better scheduling strategies. The experimental
results showed that this method achieved shorter delays and lower energy consump-
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tion. Zheng et al. [30], considering the complexity and uncertainty of terminal operations,
aimed to improve terminal operational efficiency by establishing an ACT simulation model
through PlantSimulation software. They developed an adaptive learning algorithm based
on a deep Q-network (DQN) to generate optimal scheduling strategies. The proposed
algorithm was trained using data obtained through interactions with the simulation envi-
ronment. Simulation experiments demonstrated that this approach outperformed heuristic
algorithms in terms of effectiveness and efficiency. Hu et al. [31] proposed a new algorithm,
Artificial Potential Field (APF)-D3QNPER, to overcome the limitations of traditional AGV
path planning algorithms which rely on high-precision maps and lack generalization and
obstacle avoidance capabilities in unknown environments. The APF action output method
was combined with the double deep Q-network algorithm, and improvements were made
to the experience replay and state feature extraction network. Comparisons with traditional
path planning algorithms on the Gazebo simulation platform showed that the proposed
method exhibited superior generalization ability and performance.

Based on the review of the above literature, the following bottlenecks in optimizing
AGV charging strategies for U-shaped ACTs are summarized:

1. Due to the multi-point loading and unloading operations and the dynamic complexity
inherent in U-shaped ACTs, mathematical modeling approaches face difficulties in
obtaining solutions and fully accounting for the dynamic complexities of actual ACTs’
operational environments.

2. Current research on AGV charging strategies based on simulation modeling has not
adequately considered the impact of terminal working condition variations.

3. No researchers have employed deep reinforcement learning methods for optimizing
AGV charging strategies in U-shaped ACTs.

To address the abovementioned issues, we establish a U-shaped ACT simulation model
that accounts for terminal working condition variations by simulating different working
condition changes through varying ship arrival intervals. The simulation model serves
as the environment, providing state information to the improved PPO algorithm. After
iterative training, the model outputs charging thresholds adapted to the current working
conditions. Finally, the effectiveness of the proposed method is validated through compara-
tive experiments, offering a feasible approach for optimizing AGV charging strategies in
U-shaped ACTs.

3. Simulation System Description

In this section, we introduce the simulation model of the U-shaped ACTs, explaining
its various modules to provide a foundation for the subsequent algorithm design.

3.1. U-Shaped ACT Simulation Model

The simulation model of the U-shaped ACTs was developed using Siemens Tecnomatix
Plant Simulation 15.0, as shown in Figure 2. The modeling process leverages the built-in
components of the simulation software and the integrated SimTalk language to simulate
various operations in the terminal. The multiple operations include unloading containers
from the ship to the AGV via quay cranes, AGVs waiting in the buffer zone for loading and
unloading, transporting containers to the designated yard locations, and moving containers
in the yard via a yard crane. The simulation process can be divided into four main modules,
the quay crane module, yard module, AGV module, and charging module, each with
corresponding function files.
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3.2. Quay Crane Module

The quay crane module includes both the ship and the quay crane unloading modules.
The shipping module has a generator that sets the ship arrival intervals and function files
that generate container entities once the ship reaches a designated position. The quay crane
unloading module contains function files related to the generation of quay cranes and the
control of quay crane unloading movements. During the initialization of the simulation,
quay cranes and unloading places are generated at specified track positions. When a ship
arrives, function files control the movement of the quay crane gantry, trolley, and hook to
designated positions, completing the container handling and unloading processes.

3.3. Yard Module

The yard module includes the AGV buffer module and the yard crane module. When
an AGV reaches the designated position in the yard, it waits at the unloading place under
the yard crane for container handling. The AGV buffer module transfers the AGV to
buffer control after it arrives at the yard unloading position, waits for the yard crane,
and ensures that the AGV leaves buffer control after unloading is completed. The yard
crane module controls the movement of the yard crane to the specified buffer position,
grabbing containers from the AGV and moving the yard crane to the designated bay for
container placement.

3.4. AGV Module

This module includes the AGV class and AGV roadway modules. The AGV class is
responsible for generating different AGV fleets and contains functions for tracking the status
of each AGV. When an AGV is generated, it is assigned a fixed loading/unloading location.
If the number of AGVs under a quay crane is less than two, the AGV prioritizes picking up
a container from that quay crane; otherwise, it heads to its designated loading/unloading
place. During the simulation, AGV status can be accessed in real time, and the collected
information is summarized in an Excel sheet, as shown in Figure 3. The AGV roadway
module includes the paths that AGVs follow between the quay cranes and the yard. This
path can be divided into the quay-side AGV waiting buffer area, the horizontal transport
area between the quay cranes and the yard, and the AGV paths inside the U-shaped yard
between different yard blocks. When an AGV has no charging task and has completed
unloading in the yard, and the quay crane unloading place is busy, the AGV moves to
the waiting buffer area. After collecting a container from the quay crane, the AGV leaves
the quay crane unloading place and enters the horizontal transport area, which connects
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all yard blocks and quay cranes. The AGV selects the path based on the principle of the
shortest route. Upon entering the designated unloading place in the yard via the left-side
travel lane, the AGV completes the unloading task and then turns around to exit the yard
via the right-side travel lane.
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3.5. Charge Module

The charging module includes the charging pile and AGV charging strategy modules.
In Figure 2, the orange lanes represent the charging piles. AGVs can enter the charging
piles via the horizontal transport area for recharging. The charging pile module outputs the
number of AGV charging events and the AGV charging waiting time. The charging strategy
used by the AGVs in the simulation is shown in Figure 4. This strategy is embedded into
each AGV’s charging control through the charging strategy module, allowing for real-
time modification of the charging threshold by accessing global variables, which lays the
foundation for algorithm integration.
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4. Simulation Optimization Method for Charging Strategy Based on Improved PPO 
This section provides a detailed introduction to the simulation optimization method 
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The charging strategy can generally be divided into three sections: when the battery
level is below 40%, between 40% and the charging threshold x (determined by the DRL
agent), and above the charging threshold x. When the battery level exceeds the charging
threshold x, the AGV continues its current task or proceeds to a new one. When the battery
level drops below 40%, the AGV first checks for available charging piles. Suppose there
is an available station, the AGV charges until the battery reaches 100%. If no station is
available, it forces the AGV with the highest battery level (above 40%) to stop charging, or
if this is not possible, it goes to the charging pile with the shortest queue.

4. Simulation Optimization Method for Charging Strategy Based on Improved PPO

This section provides a detailed introduction to the simulation optimization method
for the charging strategy based on the improved PPO algorithm, including the definition
of the action and state spaces, improvements in the policy and value network architec-
tures, enhancements in the clipping function, the design of the reward function, and the
algorithm’s training process.

4.1. Action Space and State Space

Defining the action and state space for DRL methods is fundamental to solving the
problem. In DRL, the action space refers to the set of all actions that the algorithm can
execute. In this study, the actions correspond to the charging thresholds in the charging
strategy. The state space represents a series of states related to the charging strategy within
the simulation. The state and action spaces can be classified as discrete or continuous. This
study employs a continuous state space, while discrete action values are output.

At time step k, the action space is ak = [Thk], where Thk represents the charging
threshold output by the algorithm at time step k. The action space is set to {60, 63, 66, 70, 73,
76, 80, 83, 86}. The state space is defined as Sk = [Bk, Ck, Pk-1, Cspk-1, Fcsk-1, Cck, Qwk,
Cwk, Cdk, if_done], where the following holds:

• Bk is the average AGV battery level at time step k;
• Ck is the increase in the number of charging AGVs at time step k;
• Pk-1 is the number of ships in the berthing queue at time step k-1;
• Cspk-1 is the number of AGVs queuing at the charging piles at time step k-1;
• Fcsk-1 is the number of available charging piles at time step k-1;
• Cck is the AGV charging score at time step k;
• Qwk is the increase in quay crane waiting time at time step k;
• Cwk is the increase in AGV charging waiting time at time step k;
• Cdk is the proportion of AGV charging mileage at time step k;
• if_done is a signal indicating whether the simulation has reset;
• All input state variables are normalized to ensure their range is between 0 and 1.

4.2. Policy Network and Value Network Architecture

The state space and action space were defined in the previous section. However,
they may become exceedingly large, particularly as the number of training iterations
increases, making storing a separate value for every state or state–action pair impractical.
To address this, we use deep neural networks to estimate the value function or policy
function efficiently.

Various factors influence ship arrival times in ACTs. However, overall, ship arrival
times exhibit a time-dependency characteristic. Therefore, the GRU network structure is
considered, as it can leverage historical data to learn the patterns and dependencies of
ship arrival times, thereby improving prediction accuracy. The GRU network structure
is shown in Figure 5a. The input of the network consists of the state information output
from the simulation, and the hidden layer is composed of a forward GRU, which can
account for historical information and extract more useful information from the observed
data. The structure of a GRU is shown in Figure 5b. In the GRU structure, the update gate
and reset gate manage the flow of information within the network. By learning when to
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retain or discard information, the GRU helps effectively capture long-term dependencies
when processing sequential data. The output of the GRU can be obtained using the
following equations:
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The expression for the update gate zt at the current time step is as follows:

zt = σ(Wz·[ht−1, xt] + ∆bz) (1)

where Wz is the weight matrix for the update gate, ht−1 is the hidden state from the previous
time step, xt is the input at the current time step, and ∆bz is the bias parameter for the
update gate.

The expression for the reset gate rt at the current time step is given by the following:

rt = σ(Wr·[ht−1, xt] + ∆br) (2)

where Wr is the weight matrix for the reset gate, and ∆br is the bias parameter for the
reset gate.

Based on the output of the reset gate, the candidate hidden state h̃t at the current time
step is calculated as follows:

h̃t = tanh(Wh·[rt ⊙ ht−1, xt] + ∆bh) (3)

where Wh is the weight matrix, and ∆bh is the bias parameter.
Finally, the hidden state ht at the current time step t can be obtained as follows:

ht = zt ⊙ ht−1 + (1 − zt)⊙ h̃t (4)

The deep neural network is shown in Figure 6. In the simulation model, the AGV
module automatically retrieves relevant state information S, which is input into the policy
and value networks. The input layer of both networks consists of a GRU structure, which
processes the state information and outputs the final hidden state ht to the hidden layer.
The policy and value networks have only one hidden layer, with a dimension of 128*64.
The output of the policy network represents the charging threshold for the AGV charging
strategy, while the output of the value network estimates the advantage of the current
state. The parameters of the policy and value networks are denoted by θ and ζ, respec-
tively. During training, these parameters are continuously optimized through the objective
function. The objective of the iterative training is to ensure that the charging thresholds
generated by the policy network align with the current working conditions of the ACTs,
thereby preventing inefficient charging behaviors.
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4.3. Clipping Function Improvement

In the PPO algorithm, the clipping function limits the magnitude of updates between
the new and old policies. The objective function for the policy network is LCLIP.

LCLIP(θ) = Êt
[
min

(
rt(θ)Ât, clip(rt(θ), 1 − ε, 1 + ε)Ât

)]
(5)

In Equation (5), the clipping function uses fixed upper and lower bounds. This
approach has certain drawbacks, such as failing to constrain the likelihood ratio between
the new and old policies within the specified range and the sudden flattening of the
likelihood ratio curve, which can result in reduced optimization efficiency. To address the
above issues, we improve the clipping function by applying a hyperbolic tangent function
to limit the ratio that exceeds the bounds, preventing excessive policy update magnitudes.
The improved clipping function is shown in Equation (6):

clip(rt(θ), ε, α) =


−2αtanh(rt(θ)) + 1 − ε, rt(θ) < 1 − ε
−2αtanh(rt(θ)) + 1 + ε, rt(θ) ≥ 1 + ε

rt(θ), otherwise
(6)

where α is a hyperparameter that determines the degree of clipping in the function, and as
α increases, the upper and lower bounds increase.

4.4. Reward Function

After constructing the policy and value networks in the previous section, designing an
appropriate reward function to train the network and optimize its parameters is essential.
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The reward function guides the agent and offers timely feedback during interactions with
the environment, helping the agent quickly identify the optimal strategy.

In this study, to ensure the agent can adopt appropriate charging thresholds under
varying working conditions, the total reward function is designed based on the number
of ships in the queue as a criterion for distinguishing different working conditions. The
overall reward function is defined as follows:

Rt = Rbat + Rth + Rc + Rn + Rcc + RQw (7)

Rbat =
(Bt−1 + Bt)

2
× Wbat (8)

In Equation (8), Rbat represents the reward value for the average battery level of the
AGV fleet, which is used to assess the overall battery level of the AGVs at the terminal.
Wbat is the weight coefficient for the battery-level reward.

Rth = Hth + Wcc × 2 × abs(pt−1 − Cspt−1), n + 1 a ≤ pt−1 ≤ b and c ≤ at−1 ≤ d (9)

In Equation (9), Rth represents the reward value for the charging threshold, which
assesses whether the output action is appropriate for the current working condition. This
reward is calculated based on the number of ships in the queue at the terminal at the time
the action was generated, using the ship queue length pt−1 as the indicator for the current
terminal working condition. A fixed positive reward value Hth is given when the output
charging threshold falls within the target range under different working conditions. Wcc is
the weight coefficient for the charging rationality score, which is measured by the difference
between the ship queue length and the queue length at the charge piles. The variables a and
b represent the minimum and maximum ship queue lengths for each working condition.
The terminal working conditions are divided into three categories based on different
working conditions: 0–2, 3–6, and 7–8 ships in the queue. The charging thresholds c and d
define each working condition’s upper and lower bounds of the charging threshold range.
The parameter n tracks the number of times the algorithm’s output action falls within the
corresponding charging threshold range.

Rc = −Wc × ct (10)

In Equation (10), Rc represents the penalty for the number of charging events, which is
used to assess how well the charging threshold matches the current working condition. N
is the average number of AGV charging events under different working conditions, and
Wc is the weight coefficient for the penalty on charging frequency.

Rn = Wn × n (11)

In Equation (11), Rn represents the count reward, which tracks the number of times
the output action aligns with the current working condition. Wn is the weight coefficient
for the count reward.

Rcc = Wcd × Cdt + Wcw × Cwt (12)

In Equation (12), Rcc represents the reward value for charging-related evaluation
metrics, which is used to assess the effectiveness of the current charging threshold under
the given working condition. Wcc is the weight coefficient for the charging score, Wcd is the
weight coefficient for the charging distance reward, and Wcw is the weight coefficient for
the charging waiting time reward.

RQw =

{
−HQw Qwt > 0

0 else
(13)
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Equation (13) represents the penalty for quay crane waiting time in the simulation. To
avoid situations where quay cranes are waiting for AGVs, a fixed penalty value of H is
applied whenever such waiting occurs.

4.5. Policy Training

After completing the network architecture setup and reward function design, this sec-
tion focuses on designing an efficient training strategy to optimize the network parameters.

PPO, a popular policy gradient method in deep reinforcement learning, is chosen for
its training stability, flexibility, and broad applicability. Therefore, PPO is used to train both
the policy and value networks. The PPO training framework and algorithm flowchart are
shown in Figure 7 and Algorithm 1, respectively.
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First, the agent retrieves the initial state value from the simulation environment and
generates action values based on the new policy network to interact with the simulation
environment. After the AGV module in the simulation collects data, the state changes S in
the simulation environment during this period are fed back to the value network and the
new policy network. The state values are input into the value network to obtain the state
function V(s), and the advantage function A(s) is calculated using the following equation:

Qπ(s, a) = Eπ

[
∞

∑
k=0

γkrt+k+1|st = s, at = a

]
(14)

A(s, a) = Q(s, a)− V(s) (15)
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LV(ζ) =
(

Vζ(st)− Vtarget
t

)2
(16)

In Equation (14), Qπ(s, a) represents the long-term return, and γ is the discount factor
for the long-term return. Equation (15) represents the calculation process of the advantage
function, and V(s) denotes the estimated value of the current state. Equation (16) defines
the objective function for the value network, which is minimized using backpropagation
and the Adam optimizer to adjust the parameters ζ in the value network.

In the PPO strategy, the policy network is divided into a new policy network and
an old policy network. The new policy network interacts with the environment and
generates action values, while the old policy network retains the parameter weights from
the previous step of the new policy network. The state values are input into the new policy
network to generate the policy function π(a|s), and at the same time, the old policy network
generates the old policy function πold(a|s). The PPO strategy updates the policy network
using the following objective function, with LCLIP as the final objective function for the
policy network:

LCLIP(θ, ε, α) = Êt
[
min

(
rt(θ)Ât, clip(rt(θ), ε, α)Ât

)]
(17)

Algorithm 1 can be summarized as the following pseudocode:

Algorithm 1: Policy Training Algorithm

Input: discount factor γ; actor learning rate lra, critic learning rate lrc; actor update steps
A_UPDATE_STEPS; critic update steps C_UPDATE_STEPS; batch size BATCH; max episode
EP_MAX; episode length EP_LEN; initial πθ0, Vζ0;
Output: πθ, Vζ

1. Initialize: πθ = πθ0, Vζ = Vζ0
2. For episode i → 1 to EP_MAX do
3. Reset simulation environment;
4. For timestep j → 1 to EP_LEN do
5. Collect data {Sij, aij, rij};
6. Compute advantage;
7. end for
8. if j %BATCH == 0 or j == EP_LEN − 1 then
9. for k → 1 to A_UPDATE_STEPS do
10. Optimize LCLIP (θ) w.r.t. θ with lra;
11. θold → θ;
12. end for
13. For k → 1 to C_UPDATE_STEPS do
14. Optimize LV (ζ) w.r.t. ζ with lrc;
15. ζold → ζ;
16. end for
17. end if
18. end for

5. Experiments and Results

As shown in Figure 8, a U-shaped ACT is simulated in the software, including two
berths, four quay cranes, eight container yards, with each yard equipped with three yard
cranes, sixteen AGVs, and two charge piles(The containers in the image have different
colors and numbers, but their size and weight are the same.). Based on the characteristics
of the U-shaped ACT, AGVs enter the yard through the left-side passageway between two
yards and proceed to the designated unloading place. After completing the unloading task,
they turn around and exit the yard via the right-side passageway. The ship arrival intervals
are controlled through a list, simulating different working conditions (working conditions)
within the ACTs. Each ship carries 144 containers, and the target positions of the containers
are generated based on the principle that 80% are placed in the nearest yard and 20% in
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other yards. Once all containers have been unloaded, the ship automatically departs from
the berth.
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To better align with the actual operational processes of the U-shaped ACTs, the
following assumptions are made:

1. The containers used in the simulation are standardized 20ft TEUs;
2. The problem of turning over the box is not considered;
3. Each container information is randomly generated, with 80% placed in the nearest

yard and 20% in other yards;
4. All containers are import containers;
5. Each AGV can transport only one container at a time;
6. All AGV roadways in the simulation are one-way;
7. The quay crane unloads containers from the ship in a top-to-bottom, right-to-left

order;
8. Two AGVs can wait under the quay crane for loading;
9. After an AGV reaches the designated unloading place in the yard, it is transferred to a

buffer, and only after the yard crane has picked up the container can the AGV leave
the buffer and exit the yard;

10. The simulation sets the movement speed of the quay crane, yard crane, and hook and
the height of the gantry to simulate the time for the hook to ascend and descend;

11. If the AGV does not need charging after completing the unloading task, it will move
to the buffer zone to wait for the next loading;

12. All AGVs navigate using the shortest path principle;
13. AGVs are divided into loaded and unloaded states, with varying energy consumption

depending on the load;
14. In the simulation, the AGV speed is set to 6.5 m/s. Regardless of whether loaded or

unloaded, the AGV can operate for 11 h with 60% battery. The energy consumption per
ten minutes is 1.4%, while AGV waiting consumes no energy. The specific parameters
for the ACT are shown in Table 1.
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Table 1. Simulation parameters for U-shaped ACTs.

Parameters Value

Quay crane loading/unloading speed Triangle (90, 144, 180)
Yard crane gantry movement speed 1 m/s
Yard crane hook movement speed 1 m/s
AGV speed 6.5 m/s
AGV unloaded mileage power consumption 0.6%/km
AGV loaded mileage power consumption 1.2%/km
AGV 60% battery operational time 11 h

5.1. Comparison of Different Algorithms

Before the training of different algorithms, the data-related components in the sim-
ulation are generated uniformly as follows: The arrival time intervals for all vessels are
controlled using the same scheduling table. The initial energy level of each AGV is gen-
erated based on a normal distribution, ranging between 85 and 95, during the simulation
initialization. The storage location for each container is determined according to the princi-
ple of placing 80% in the nearest storage yard, with the specific bay locations generated
randomly. The unloading time for each quay crane placing containers onto AGV is ran-
domly generated following a triangular distribution with parameters (90, 144, 180). Based
on the aforementioned data generation method for the simulation, the overall simulation
process is as follows: After the AGVs are generated, they automatically proceed to the
quay crane loading and unloading points until there are two AGVs under each quay crane.
When a vessel arrives at the berth, the quay crane transfers containers from the ship onto
the AGV. The AGV then transports the containers to their designated locations based on
randomly generated storage positions. After completing the transport, the AGV returns to
the idle buffer area to wait or proceed to recharge.

During algorithm training, the simulation environment first sends the initial environ-
ment information to the algorithm, generating action values and sending feedback to the
simulation. After receiving the action values from the algorithm, the simulation runs for
2 h before sending the relevant state information back to the algorithm. The algorithm
evaluates the action values based on the feedback and iteratively trains the model. If the
simulation run exceeds 20 days or congestion occurs in the yard, the simulation resets
automatically.

DQN, PPO, and the proposed improved PPO are compared during training, with the
hyperparameters for each algorithm listed in Table 2. The training process is conducted on
a computer with an i5-12600KF CPU @ 4.90 GHz and with 32 G RAM. The reward curves
for model training are shown in Figure 9. Owing to the introduction of the GRU structure,
which enables the improved PPO to utilize historical information more effectively, the
proposed method demonstrates faster convergence compared to PPO and DQN.

Table 2. Hyperparameters.

Parameters Value

Clipping Parameter 0.2
Discount Factor 0.85
Learning Rate of Actor 0.0001
Learning Rate of Critic 0.0003
Maximum Episodes 3500
Maximum Episode Length 5
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5.2. Comparison with Charging Strategies Using Fixed Charging Thresholds

When comparing our proposed charging strategy with the fixed charging threshold
strategy, we will embed the trained algorithm model into our charging strategy. Regarding
the interaction time between the algorithm and the simulation, tests indicate that it takes 1 s
for the algorithm to receive state information from the simulation and output new action
values. Since our proposed charging strategy sends state information to the algorithm every
2 h, we can conclude that the computation time of the algorithm has a minimal impact on
the real-time performance of the charging strategy.

The same ship arrival list and initial AGV battery distribution are used when com-
pared with a fixed charging threshold strategy. For the fixed charging threshold strategy,
thresholds are set at 60% and 80%. The metrics shown in Table 3 are used to evaluate these
two charging strategies. In the table, “Max” represents the maximum value of each metric.
Under this charging strategy, the weight assigned to these metrics is smaller since the set
charging threshold more significantly influences the charging frequency and charging dis-
tance. The charging score measures the rationality of AGV charging behavior. For instance,
in urgent working conditions at the ACTs, AGVs should reduce their charging frequency to
minimize the loss of operational capacity. A higher charging score indicates more rational
AGV charging behavior. Charging and quay crane waiting times are two metrics that
directly reflect the AGV charging strategy’s efficiency and the ACTs’ overall operational
efficiency. Longer charging waiting times will directly impact quay crane operations, and
since quay cranes are the core equipment in ACTs, minimizing the situation where quay
cranes wait for AGVs is critical. Therefore, these two metrics are given higher weights in
the evaluation.

Table 3. Charging strategy evaluation metrics.

Charging
Frequency

Charging
Wait Time

Charging
Distance

Charging
Score

Quay Crane
Wait Time

Normalization Max−x
Max

Max−x
Max

Max−x
Max

x
Max

Max−x
Max

Weight 0.1 0.3 0.1 0.2 0.3
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Since AGV charging is mainly affected by the charging speed of the charge piles,
different charging rates are set for evaluating the charging strategies. Table 4 shows the five
charging rates used in the evaluation. Tables 5–10 display the average values of various
metrics under different charging rates. When the charging rate falls below 0.0105%/s,
AGVs become concentrated at the charge piles, leading to a severe shortage of available
AGVs and making it difficult to complete tasks. Therefore, 0.0105%/s is set as the minimum
charging rate.

Table 4. Charging rates.

Charging
Rate Rate 1 Rate 2 Rate 3 Rate 4 Rate 5 Rate 6

Rate (%/s) 0.0105 0.0111 0.0125 0.0138 0.0152 0.0166

Table 5. Charging strategy evaluation metrics (rate 1).

Metric Charging
Frequency

Total Charging
Wait Time

Charging
Distance

Charging
Score

Quay Crane
Wait Time

Algorithm 984 58:08:10:48 624,551 3.66 2:09
80% 1575 69:06:31:16 1,162,095 3.2 9:01
60% 781 61:09:16:22 561,925 3.9 17:00

Table 6. Charging strategy evaluation metrics (rate 2).

Metric Charging
Frequency

Total Charging
Wait Time

Charging
Distance

Charging
Score

Quay Crane
Wait Time

Algorithm 1018 55:13:00:53 619,893 3.7 1:13
80% 1856 63:09:59:23 1,036,996 3.3 2:45
60% 789 47:21:04:30 375,163 3.12 13:45

Table 7. Charging strategy evaluation metrics (rate 3).

Metric Charging
Frequency

Total Charging
Wait Time

Charging
Distance

Charging
Score

Quay Crane
Wait Time

Algorithm 1142 39:08:46:41 562,470 2.85 0
80% 1838 35:18:58:10 791,452 2.15 0
60% 783 31:06:29:45 338,660 2.47 0:11

Table 8. Charging strategy evaluation metrics (rate 4).

Metric Charging
Frequency

Total Charging
Wait Time

Charging
Distance

Charging
Score

Quay Crane
Wait Time

Algorithm 1152 32:15:27:47 544,256 2.75 0
80% 1726 29:03:34:32 697,727 2.42 0
60% 775 27:15:55:16 350,432 2.45 0

Table 9. Charging strategy evaluation metrics (rate 5).

Metric Charging
Frequency

Total Charging
Wait Time

Charging
Distance

Charging
Score

Quay Crane
Wait Time

Algorithm 1180 28:01:15:58 531,395 2.53 0
80% 1654 26:02:12:17 670,936 2.49 0
60% 770 24:02:13:41 322,979 2.66 0
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Table 10. Charging strategy evaluation metrics (rate 6).

Metric Charging
Frequency

Total Charging
Wait Time

Charging
Distance

Charging
Score

Quay Crane
Wait Time

Algorithm 1170 24:19:49:48 495,517 2.75 0
80% 1603 24:09:58:16 624,276 2.76 0
60% 758 22:00:37:02 320,904 2.87 0

After collecting the corresponding data for different charging rates, the charging
strategy evaluation metrics are standardized, and the final scores are calculated. The
evaluation scores for each charging strategy under various charging rates are shown in
Tables 11–16. The summary of charging strategy evaluation scores under different charging
rates is shown in Table 17.

Table 11. Charging strategy evaluation scores (rate 1).

Metric Charging
Frequency

Total Charge
Wait Time

Charging
Distance Charging Score Quay Crane

Wait Time Weighted Score

Algorithm 0.451 0.124 0.403 1 0.912 0.5333
80% 0 0 0 0.892 0.800 0.3962
60% 0.574 0.245 0.638 0.843 0 0.3830

Table 12. Charging strategy evaluation scores (rate 2).

Metric Charging
Frequency

Total Charge
Wait Time

Charging
Distance Charging Score Quay Crane

Wait Time Weighted Score

Algorithm 0.376 0.153 0.462 0.938 0.874 0.6583
80% 0 0 0 0.821 0.470 0.4984
60% 0.504 0.113 0.516 1 0 0.3849

Table 13. Charging strategy evaluation scores (rate 3).

Metric Charging
Frequency

Total Charge
Wait Time

Charging
Distance Charging Score Quay Crane

Wait Time Weighted Score

Algorithm 0.378 0 0.289 1 1 0.6567
80% 0 0.091 0 0.754 1 0.5223
60% 0.574 0.204 0.572 0.867 0 0.4321

Table 14. Charging strategy evaluation scores (rate 4).

Metric Charging
Frequency

Total Charge
Wait Time

Charging
Distance Charging Score Quay Crane

Wait Time Weighted Score

Algorithm 0.332 0 0.22 1 1 0.6520
80% 0 0.107 0 0.88 1 0.5271
60% 0.55 0.151 0.498 0.891 1 0.6739

Table 15. Charging strategy evaluation scores (rate 5).

Metric Charging
Frequency

Total Charge
Wait Time

Charging
Distance Charging Score Quay Crane

Wait Time Weighted Score

Algorithm 0.286 0 0.208 0.951 1 0.5544
80% 0 0.069 0 0.936 1 0.5553
60% 0.534 0.141 0.519 1 1 0.7124
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Table 16. Charging strategy evaluation scores (rate 6).

Metric Charging
Frequency

Total Charge
Wait Time

Charging
Distance Charging Score Quay Crane

Wait Time Weighted Score

Algorithm 0.27 0 0.206 0.958 1 0.5636
80% 0 0.015 0 0.961 1 0.6183
60% 0.527 0.112 0.486 1 1 0.7485

Table 17. Summary of evaluation scores.

Rate 1 Rate 2 Rate 3 Rate 4 Rate 5 Rate 6

Algorithm 0.5333 0.6583 0.6567 0.6520 0.5544 0.5636
80% 0.3962 0.4984 0.5223 0.5271 0.5553 0.6183
60% 0.3830 0.3849 0.4321 0.6739 0.7124 0.7485

As shown in Figure 10, the proposed charging strategy outperforms the fixed charging
threshold strategy at charging rates 1, 2, and 3. At charging rate 4, the proposed method
performs similarly to the strategy with a fixed 60% threshold, while at charging rates 5 and
6, the fixed 60% threshold strategy delivers the best results.
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At slower charging rates (below charging rate 4), the proposed method achieves
higher scores because it minimizes the impact of AGV charging tasks on quay crane
operations. In contrast, at faster charging rates (greater than or equal to charging rate 4),
the quicker completion of charging reduces the time AGVs spend charging, making lower
fixed charging thresholds more effective as the charging speed increases.

6. Conclusions

This paper proposes a dynamic charging threshold method based on an improved
Proximal Policy Optimization algorithm to optimize AGV charging strategies under varying
working conditions in U-shaped automated container terminals. First, a U-shaped auto-
mated container terminal simulation model is established using the Tecnomatix PlantSimu-
lation platform. To enhance the Proximal Policy Optimization’s ability to utilize historical
information and reduce the issue of excessive update magnitudes during the training
process, an improved Proximal Policy Optimization algorithm is introduced. The improve-
ments include leveraging Gated Recurrent Unit network structures to process historical
information and refining the clipping function. This improved Proximal Policy Optimiza-
tion algorithm is applied to AGV charging strategy simulations in U-shaped automated
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container terminals. Then, the simulation model generates training data for the improved
Proximal Policy Optimization, enabling the model to output corresponding charging
thresholds under different working conditions. Finally, the improved Proximal Policy
Optimization is compared against standard Proximal Policy Optimization and deep Q-
network, demonstrating that the improved Proximal Policy Optimization achieves faster
convergence in this scenario.

The charging strategy based on the improved Proximal Policy Optimization is com-
pared with a fixed charging threshold strategy. The experimental results show that when
charging pile rates are low, the proposed method minimizes the impact of AGVs on quay
crane operations. However, as charging pile rates increase, the proposed method shows no
significant advantage over using a lower fixed charging threshold.

In actual automated container terminal environments, in addition to the energy con-
sumption issues of AGVs, there are many other factors that need to be considered, such as
the long-distance movements required for the gantry cranes in U-shaped yards and the
continuous operation of quay cranes. Therefore, in future research, energy optimization in
automated container terminals considering multiple devices should be a major focus.
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