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Abstract: Human errors (HEs) are prevalent issues in manual assembly, leading to product defects
and increased costs. Understanding and knowing the factors influencing human errors in manual
assembly processes is essential for improving product quality and efficiency. This study aims to
determine and rank factors influencing HEs in manual assembly processes based on expert judgments.
To achieve this objective, an integrated model was developed using two multi-criteria decision-
making (MCDM) techniques—specifically, the fuzzy Delphi Method (FDM) and the fuzzy Analytic
Hierarchy Process (FAHP). Firstly, two rounds of the FDM were conducted to identify and categorize
the primary factors contributing to HEs in manual assembly. Expert consensus with at least 75%
agreement determined that 27 factors with influence scores of 0.7 or higher significantly impact
HEs in these processes. After that, the priorities of the 27 influencing factors in assembly HEs were
determined using a third round of the FAHP method. Data analysis was performed using SPSS 22.0
to evaluate the reliability and normality of the survey responses. This study has divided the affecting
factors on assembly HEs into two levels: level 1, called main factors, and level 2, called sub-factors.
Based on the final measured weights for level 1, the proposed model estimation results revealed
that the most influential factors on HEs in a manual assembly are the individual factor, followed by
the tool factor and the task factor. For level 2, the model results showed a lack of experience, poor
instructions and procedures, and misunderstanding as the most critical factors influencing manual
assembly errors. Sensitivity analysis was performed to determine how changes in model inputs or
parameters affect final decisions to ensure reliable and practical results. The findings of this study
provide valuable insights to help organizations develop effective strategies for reducing worker
errors in manual assembly. Identifying the key and root factors contributing to assembly errors, this
research offers a solid foundation for enhancing the overall quality of final products.

Keywords: integrated model; human errors; manual assembly; fuzzy Delphi; fuzzy AHP

1. Introduction

Manual assembly is a human-centric process where skilled workers use their hands
and cognitive abilities to combine components into finished products [1]. This task ne-
cessitates spatial problem-solving, requiring workers to mentally visualize and interact
with the assembly process [2]. Work instructions are crucial in this context, as their clarity
and effectiveness greatly influence the performance of assemblers and thus reduce their
errors [3–6]. Optimal work instructions should be easily understandable, outlining compo-
nent usage and assembly procedures to minimize cognitive load that leads to human errors
(HEs) [5]. The universal accessibility of work instructions is a widely accepted principle [7].
Traditionally, digital work instructions combining text and visuals have been the norm [3–6].
However, Mattsson et al. [8] advocate for highly perceptual instructions, suggesting richer
sensory inputs. Three-dimensional models incorporated into work instructions (MBIs)
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enhance realism, precision, and clarity in representing the assembly process [9,10]. These
models can provide multiple perspectives and essential assembly guidance.

The assembly process is a critical stage in manufacturing, directly influencing the
final product’s quality. Engineers meticulously select assembly systems based on factors
such as flexibility, product variety, production volume, and productivity [7,11]. While
manual assembly systems offer greater flexibility and product variety, they typically exhibit
lower productivity and production volume than automated systems. Worker productivity, a
measure of output per worker or group, is a key consideration. Despite the advancements in
automation, including the significant contributions of industrial robots, product complexity,
and diversity remain challenges hindering the complete replacement of manual labor in
assembly [7,12]. As a result, manual assembly plays a critical role in numerous industries,
including engines, different-size electronics, telecommunications, aviation, automotive,
and machinery manufacturing [13,14]. This process is vital for ensuring precision and
quality in the construction of complex products, allowing for the meticulous attention to
detail that is often necessary in these high-stakes fields.

Successful manual assembly requires implementing several steps to ensure the prod-
uct meets quality standards. Human errors (HEs), as Torabi et al. [15] noted, can arise in
different phases such as design, product assembly processes, manufacturing processes,
maintenance strategies, industrial operations, and software development. To tackle as-
sembly mistakes, Park et al. [16] created a software tool called Foolproof Joint, which
streamlines the assembly process of 3D models. Moreover, Gursel et al. [17] introduced an
intelligent detection method that utilizes artificial intelligence to pinpoint human errors in
the maintenance and assembly of nuclear power plants. Additionally, Wang et al. [18] es-
tablished a connection between assembly errors and vibration problems in spindle systems.

Assembly errors in supporting components, such as bearings, can significantly influ-
ence bearing performance and spindle vibration characteristics [19,20]. Human error (HE)
is a prevalent cause of accidents across various industries, contributing to between 30% and
90% of all accidents despite rigorous safety measures [21]. Many HEs can occur through as-
sembly processes such as incorrect installation, missing parts, or improper fastening [22,23].
Moreover, poor cognitive and physical ergonomics have been associated with lower quality
of the produced part and higher error rates [12,24].

Human errors are deviations from intended actions made by individuals during
task execution [1]. These errors can arise from various factors, including inadequate
training, fatigue, and unclear work instructions. Recognizing that these errors can be
interconnected and affect each other is crucial, resulting in more severe assembly process
problems. Therefore, early identification of these errors and their underlying causes is
essential for preventing more significant issues.

Although previous efforts have been made to classify the potential causes of human er-
rors in assembly, a comprehensive understanding of the most critical factors remains elusive
due to the inherent complexities of the research process. While past studies have laid a foun-
dation, further investigation is needed to prioritize and quantify the relative importance of
these factors in the context of assembly processes. Therefore, the primary goal of this study
is to identify the key factors affecting human errors in manual assembly tasks by employing
two multi-criteria decision-making (MCDM) techniques: the fuzzy Delphi method (FDM)
and the fuzzy analytic hierarchy process (FAHP). These techniques have prioritized and
ranked the significance of various factors influencing human error occurrence.

1.1. The Need and Motivation for the Research

The need and motivation of this study is to address the critical issue of human error
reduction in assembly processes by identifying the main factors that contribute to assembly
errors. Hence, this research has implications for a variety of stakeholders, including:

(1) Organizations and Employers: This research can benefit organizations that deal with
manufacturing and assembly processes. By identifying the root causes of worker
errors, organizations can implement targeted strategies to minimize errors, boost
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productivity, and enhance product quality. This can result in significant cost savings,
increased customer satisfaction, and a stronger competitive edge in the marketplace.

(2) Workers: The benefits of this study are directly reflected in workers by improving their
working conditions and reducing the chances of errors to support them in performing
their tasks. Factors contributing to assembly errors can be reduced by implementing
some measures, such as improving training programs, improving the equipment and
tools used, improving the work environment, and enhancing safety measures, in
order to increase job satisfaction among workers and improve their well-being.

(3) Consumers: Reducing product assembly errors increases product quality and reliabil-
ity. This enhances consumer satisfaction and meets their expectations.

(4) Researchers and academics: This study encourages researchers interested in conduct-
ing more research and knowledge and developing new theories and methodologies
to reduce errors in various industries.

Hence, the main motivation of this research was to enhance productivity, product
quality, and worker well-being through minimizing assembly errors. This would ultimately
lead to increased efficiency, cost savings, and a stronger competitive advantage while
creating a safer and more fulfilling work environment.

1.2. Research Contributions

This research significantly advances the existing literature through several contribu-
tions, including the following:

(1) To our knowledge, this study is among the first to identify factors influencing human
errors in manual assembly using the combination of FDM and FAHP techniques
simultaneously, expanding the current understanding of error causes.

(2) This study ranks factors contributing to human errors in manual assembly processes
and investigates their underlying causes.

(3) The proposed methodology helps managers and experts understand why assembly
errors occur on manual assembly lines, enabling them to prioritize corrective actions
and reduce errors.

(4) The combination of FDM and FAHP offers a synergistic approach to MCDM. FDM
provides a structured framework for identifying and refining critical criteria, while
FAHP enables the quantification of their relative importance. By addressing both the
qualitative and quantitative aspects of decision-making, this integrated methodology
can enhance the accuracy and reliability of decision outcomes.

The structure of this study is organized as follows: Section 2 describes the literature
review, and Section 3 explains the research approach. The FDM and FAHP models are
detailed in Section 4. The results and discussion are presented in Section 5. Finally, Section 6
summarizes the key findings, offers conclusions, and suggests some future directions.

2. Literature Review

Several studies have explored the contributing factors to human errors (HEs) in various
industries. Lopez et al. [25] categorized these factors into personal and organizational
influences. Iraj et al. [26] expanded this analysis to include task-related, organizational, and
environmental factors in the mining process. Through inspection and maintenance actions
in the conical lighting pole industry, Noman et al. [27] found many factors contributing to
inspection errors, such as unclear instructions, stress, and some environmental conditions.
Moreover, Yaniel et al. [28] conducted a comprehensive study on a complex assembly line,
identifying more than thirty contributing factors related to assembly errors. These studies
highlight a common theme: HEs are often influenced by a combination of factors, including
individual characteristics, task demands, organizational practices, and some environmental
factors [1]. Identifying the factors that cause assembly errors in various industries is crucial
to developing effective strategies to reduce these errors in the future.

The existing literature was reviewed to identify potential factors contributing to
assembly errors. Then, the experts were emailed a fuzzy Delphi questionnaire, which asked
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them to identify and classify the most significant of those factors. Additionally, experts
were encouraged to review and revise the list of factors, adding any missing elements
deemed crucial. Based on the literature and experts, Table 1 provides a comprehensive
overview of the various factors that can contribute to assembly errors. These factors are
categorized into five main groups: individual factors (IFs), tool factors (TFs), task factors
(TsFs), organizational factors (OFs), and environmental factors (EFs).

• Individual Factors (IFs)

– Psychological factors: depression, disappointment, fatigue, fear of failure, fi-
nancial problems, lack of motivation, lack of trust, and psychological stress can
significantly impact performance.

– Cognitive factors: lack of experience, knowledge deficiency, low intelligence,
misunderstanding, poor perception, and poor memory can lead to errors.

Physical factors: age, body physique, poor health, sleep deprivation, and risk-taking
can influence assembly performance.

• Tool Factors (TFs)

– Equipment issues: Shortages and using incorrect equipment can contribute to errors.

• Task Factors (TFs)

– Workload and time pressure: Multitasking, repetitive tasks, task complexity, and
time pressure can increase the likelihood of errors.

– Instructional issues: Poor instructions and procedures can lead to misunderstand-
ings and mistakes.

• Organizational Factors (OFs)

– Management and culture: Poor management, communication, planning, and
organizational culture can create an environment that is conducive to errors.

– Resource allocation: Inadequate training, resources, and supervision can con-
tribute to errors.

• Environmental Factors (EFs)

– Workplace conditions: Factors such as temperature, humidity, lighting, noise,
ergonomics, air quality, and layout can affect worker performance and increase
the risk of errors.

Table 1. Classifying factors affecting assembly errors based on the literature.

Main Factors Sub-Factors

Ifs

Age [29], body physique [30], depression [26], disappointment [26], fatigue [26], fear of failure [31], financial
problems [26,32], gender [29], haste in doing work [33], job dissatisfaction [33], lack of experience [34],
knowledge deficiency [35–39], lack of motivation [26], lack of trust in performance [26], low intelligence
coefficient [26,32], misunderstanding [33], personal issues [40], personality type [26], poor perception [26],
poor health [40], poor memory [40], risk-taking [41], sleep deprivation/disorder [7,28,42], psychological
stress [3], Unknown roles and responsibilities [26,32], and unintentional errors [33].

TFs Equipment shortages and using wrong equipment [33,40].

TsFs Multitasking [43–46], poor instructions and procedures [47], repetitive tasks [30,48], task complexity [49],
time pressure [29], and workload [3].

OFs
Failure to address the error-causing problem [33], improper quality control [33], lack of training [26], poor
communication [33,40], poor management type [26], poor organization culture [26], poor planning [33], poor
resource allocation [26,33], and poor supervision [26,33].

EFs
Accessibility problems [26], improper temperature and humidity [50,51], inappropriate lighting [50,51],
noise [50,51], poor ergonomics design of the workplace [29], poor indoor air quality [26], and poor
workplace layout [26].
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HE remains a significant challenge in manual assembly, impacting product quality, ef-
ficiency, and worker safety [1]. To effectively address this issue, it is crucial to determine the
primary factors related to the assembly errors. Therefore, our study employs multi-criteria
decision-making (MCDM) techniques—specifically, the fuzzy Delphi method and the fuzzy
AHP—to systematically analyze and prioritize these factors based on expert knowledge.
MCDM offers a structured approach to handling complex multi-criteria decision-making
problems simultaneously. Applying FDM and AHP methods, this research aims to provide
valuable insights for developing targeted strategies to prevent human errors and enhance
overall assembly performance.

Researchers and decision-makers have used many MCDM techniques in the litera-
ture. Selecting a suitable MCDM technique hinges on carefully considering various factors
inherent to the decision-making problem. These include the problem’s specific characteris-
tics, the nature and availability of data, the decision-maker’s preferences, and the overall
goals of the decision-making process. Among the MCDM techniques, the fuzzy Delphi
and the fuzzy AHP methods have emerged as powerful tools for handling the inherent
uncertainties and complexities often associated with decision-making processes.

In 1993, Ishikawa et al. [52] proposed the FDM, which was derived from the tradi-
tional Delphi (TDM) method and the fuzzy set theory (FST). FDM is a powerful tool for
researchers to achieve consensus among experts within a specific domain [53]. Recognized
as a reliable and widely used approach for gathering expert opinions and conducting sur-
veys [54,55], the FDM is adept at addressing a broad spectrum of group decision-making
challenges, including factor selection, ranking, questionnaire development, and index
calculation [56]. Building upon the TDM, the FDM incorporates fuzzy set theory to enhance
its robustness [26]. Key advantages of the FDM include its capacity to aggregate expert
perspectives into a consensus, reduced time and costs compared to the TDM, and fewer
rounds of expert opinion collection [1]. Moreover, the key features of FDM include its
reliance on unexplored and unidentified initial responses, its sequential statistical process-
ing based on conditional phases, and its iterative, controllable, and manageable nature,
guided by a feedback loop focused on outcome improvement [1]. The method produces
consistent, updated, and collective statistical outputs. Additionally, the FDM excels at
handling qualitative complexities through multiple survey rounds, fostering consensus
building, and facilitating efficient decision-making. As a result, it has been widely adopted
across various fields to gather coherent and evolving expert insights through successive
survey iterations [54–56]. Recently, in the context of determining the factors affecting
HEs, the FDM has emerged as a valuable tool for identifying factors contributing to HEs.
For instance, Iraj et al. [26] employed the FDM to pinpoint the factors influencing HEs
within mining process design. Similarly, Adel et al. [40] utilized the FDM to uncover the
root causes of HE-related accidents in industrial park construction projects, revealing a
significant impact on accident occurrence. Daniel et al. [33] also applied the FDM to the
construction industry, identifying numerous factors with moderate to strong influence on
HEs. In the healthcare domain, Cheryl et al. [57] successfully employed a two-round FDM
to identify human factors contributing to nursing errors.

FAHP is a decision-making method that combines the traditional analytic hierarchy
process (TAHP) with fuzzy set theory (FST). Introduced by Laarhoven and Pedrycz in
1983 [58] and further developed by Saaty in 1990 [59], FAHP addresses the limitations
of AHP by incorporating fuzzy logic to handle uncertainty and subjectivity in decision-
making. By representing expert judgments as triangular fuzzy numbers instead of crisp
values, FAHP better aligns with human reasoning and enables more accurate evaluations.
Key advantages of the FAHP include its simplicity and ability to process diverse data
types making it a versatile tool. FAHP is grounded on three fundamental principles:
hierarchical problem structuring, pairwise comparisons of alternatives and criteria, and
synthesis of priorities [60]. In addition, the FAHP method has been extensively applied to
determine the factors affecting HEs in various industries and domains. Recent studies have
demonstrated the effectiveness of FAHP in this context, as it allows for handling uncertainty
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and subjective judgments in the decision-making process. FAHP has been used to identify
and prioritize key human error factors in healthcare [61], high-speed train operations [62],
construction [63], civil aviation [64], nuclear plants [65], and public transportation [66].

FDM and FAHP techniques are complementary methods for decision-making under
uncertainty. FDM is primarily a consensus-building technique that utilizes fuzzy logic
to manage imprecise expert judgments. It iteratively gathers expert opinions to reach a
shared understanding of complex issues. On the other hand, FAHP is a multi-criteria
decision-making method that employs fuzzy set theory to handle subjective judgments and
prioritize alternatives based on various criteria. While FDM focuses on qualitative aspects
and consensus formation, FAHP concentrates on quantitative evaluation and ranking.
Often, these methods are combined to leverage their strengths, with FDM used to identify
key criteria and FAHP to weight and evaluate alternatives [67–69]. The literature reveals a
dearth of studies that delve into the factors influencing assembly errors, particularly those
employing the combined FDM and FAHP techniques. Previous studies have concentrated
on identifying the variables impacting HEs in healthcare [57,61], construction [33,40,63,70],
public transportation [66], and mining process design [26]. Therefore, this study aims to
expand the body of knowledge and fill existing gaps relative to human error in manual
assembly processes by identifying key influencing factors using FDM and FAHP methods
from the perspective of multiple factors.

(1) Conduct a literature review to identify and categorize factors that contribute to human
error in manual assembly processes;

(2) Determine the critical factors impacting assembly errors using the FDM method;
(3) Prioritize the identified factors contributing to human errors using the FAHP method.

3. Research Methodology

The research methodology and its implementation steps are illustrated in Figure 1.
The following sections detail the steps taken to implement the proposed methodology.
Step 1: Reviewing the Literature and Identifying Variables: The existing literature was

reviewed to identify potential factors contributing to assembly errors.
Step 2: Developing a Fuzzy Delphi Questionnaire: In the first round of the fuzzy Delphi

process, an initial questionnaire was created to identify and prioritize factors influencing
manual assembly HEs. The fuzzy Delphi questionnaire is shown in Appendix A.

Step 3: Selecting Expert Panel: The study of John Baker et al. [71] recommended that
researchers ensure accuracy in selecting experts for the fuzzy research by choosing experts
with a minimum of ten years’ experience, based on their academic experience or level
of knowledge in the same field. Therefore, experts with at least ten years of experience
in the field of assembly processes were selected based on their academic credentials and
knowledge in this study. The demographic details of the experts are provided in Table 2.

Step 4: Sending the Questionnaire to the Experts: The experts were emailed the
questionnaire, which asked them to classify and rank the most significant factors under
individual, tool, task, organizational, and environmental categories. Additionally, experts
were encouraged to review and revise the list of factors, adding any missing elements
deemed crucial.

Step 5: Developing a Revised Fuzzy Delphi Questionnaire: Some factors did not reach
the expert consensus in the first round of the fuzzy Delphi study. Those factors were elimi-
nated from the Delphi questionnaire, then a second revised questionnaire was developed
and sent to the experts in the second round of the fuzzy Delphi process. Hence, 27 factors
that obtained expert consensus in the second round of the Delphi study were analyzed
and considered the most important factors affecting human errors in the manual assembly
processes. The same panel of thirty-two experts, consisting of individuals with academic
expertise and knowledge in the field, participated in both rounds of the Delphi study.

Step 6: Data Collection and Examination: The reliability and normality tests are crucial
in data analysis. Reliability ensures consistent and accurate measurement, while normality
allows for the use of various statistical tests. In addition, this study used these tests to
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determine whether the number of experts was sufficient by ensuring the reliability and
normality of the data collected from them.

The reliability of the survey data was assessed using Cronbach’s alpha coefficients, as
shown in Table 3. Results indicated strong internal consistency for both individual factors
(all α > 0.70) and the overall questionnaire (α = 0.91), suggesting the data are suitable for
further analysis [16]. In addition, to assess whether the survey data adhered to a normal
distribution, we employed the Shapiro–Wilk test. Given the sample size of less than 50, this
test is particularly suitable for detecting deviations from normality [33]. The Shapiro–Wilk
test compares the observed data to a theoretical normal distribution, yielding a p-value
indicating the likelihood of such deviations occurring by chance if the data were normally
distributed. We applied this test to all survey variables, including those related to IFs, TFs,
TsFs, OFs, and EFs. The results, summarized in Table 4, show a non-significant p-value
(greater than 0.05) for all factors examined. Consequently, we concluded that the data
followed a normal distribution at a 95% confidence level.
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Table 2. Participant demographic information.

Category Item Frequency Percentage (%)

Participant gender Male 25 78.1
Female 7 21.9

Participant age
Less than 35 years 6 18.7

36–50 years 23 71.9
More than 50 years 3 9.4

Education
Bachelor’s degree 14 43.8

MSC 9 28.1
PhD 9 28.1

Experience in manual
assembly

10–15 years 24 75
16–20 years 3 9.4
21–25 years 2 6.2

More than 25 years 3 9.4

Relevant experience

Academic 16 50.0
Assembly worker 13 40.6

Production manager, safety
manager, and supervisor. 3 9.4

Table 3. Survey reliability analysis.

Main Factors Items Cronbach’s α for
Each Factor

Cronbach’s α for Overall
Questionnaire

IF 26 0.91

0.91
TF 2 0.79
TsF 6 0.71
OF 9 0.86
EF 8 0.83

Table 4. Survey normality analysis using the Shapiro–Wilk test.

Main Factors
Using Shapiro–Wilk Test

α Is the Data Normally
Distributed?Sig. Statistics

IF 0.085 0.942

0.05

Yes
TF 0.120 0.996 Yes
TsF 0.110 0.992 Yes
OF 0.100 0.980 Yes
EF 0.380 0.961 Yes

Step 7: Developing a fuzzy AHP Questionnaire: This step is called round 3. In this
step, the most significant factors identified in the fuzzy Delphi process were used to create
a fuzzy AHP questionnaire (Appendix B).

Step 8: Selecting Expert Panel: The same panel of experts who participated in the
previous rounds of the Delphi study was selected to answer the FAHP questionnaire. The
participants were carefully selected according to their academic and knowledge experience
in the field of manual assembly processes, so they were chosen to perform both the fuzzy
Delphi and fuzzy AHP questionnaires.

Step 9: Sending the Questionnaire to the Experts: The experts were emailed the
questionnaire, which asked them to rank the identified factors based on their perceived
importance in influencing HEs in manual assembly processes.

Step 10: Developing Integrated Fuzzy Delphi and Fuzzy AHP Model.
Step 11: Ranking the Factors Influencing HEs in Manual Assembly Processes: A fuzzy

Delphi model was constructed to integrate expert opinions and identify significant factors
affecting HEs in the manual assembly processes. Factors with a rating below 70% were
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eliminated [26,56]. After that, the expert opinions gathered in the Delphi process were
analyzed to identify the most significant factors influencing manual assembly HEs. A
consensus agreement rate of 75% or higher was used as the threshold for determining the
importance of each factor [26,56]. By examining each expert’s individual agreement ratings,
a collective consensus for each factor was established. This analysis allowed for selecting
the most critical factors based on the shared expert opinions. Then, a fuzzy AHP model
was constructed to determine the priorities of the most influencing factors in assembly HEs
based on their weights.

Step 12: Comparing the results of the fuzzy Delphi with the fuzzy AHP method.
Step 13: Make a sensitivity analysis to determine how changes in model inputs or

parameters affect the final decisions.
This multi-step approach combined expert knowledge and quantitative analysis to

identify and prioritize key factors contributing to HEs in manual assembly processes.

4. Integrated Model Based on Fuzzy Delphi and AHP Methods
4.1. Fuzzy Delphi-Based Model

This study employs fuzzy logic, a methodology introduced by Lotfi A. Zadeh in 1955
for managing uncertainty and ambiguity in decision-making. The model utilizes Trigono-
metric Fuzzy Numbers (TFNs) to quantify expert opinions from linguistic assessments.
These fuzzy numbers represent expert judgments as triangular distributions with three
values: minimum possible (a), most likely (b), and maximum possible (c), as detailed
in Table 5.

Table 5. Fuzzy Delphi linguistic terms and corresponding fuzzy numbers [26,40,72].

Code Description Fuzzy Numbers (a,b,c)

NI Negligible influence (0, 0, 0.25)
LI Low influence (0, 0.25, 0.5)
MI Moderate influence (0.25, 0.5, 0.75)
HI High influence (0.5, 0.75, 1)
OI Overwhelming influence (0.75, 1, 1)

The fuzzy Delphi model is a multi-stage decision-making process that combines
expert opinion with fuzzy logic to achieve consensus on complex issues. In this study, to
implement the fuzzy Delphi technique, several steps were established as follows:

4.1.1. Determining Factor’s Average Fuzzy Rating Score

Firstly, each influencing factor’s average fuzzy rating weights were determined during
this step. The importance estimation for factor j, as provided by expert i among n experts,
is assumed to be calculated using Equation (1).

∼
wij =

(
aij.bij.cij

)
, f or i = 1, 2, . . . n, and j = 1, 2, . . . m. (1)

After that, the mean of the fuzzy weights (
∼
wj), which were determined in the first step

for each factor, can be calculated as Equation (2):

∼
wj =

(
αj·βj·cj

)
=

(
1
n

n

∑
i=1

aij·
1
n

n

∑
i=1

bij·
1
n

n

∑
i=1

cij

)
, f or j = 1, 2, . . . m. (2)
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4.1.2. Ranking of Factors Influencing Errors

In this step, the mean of the fuzzy weights for each factor was transformed into
aggregated fuzzy weights (W j

)
called crisp values as Equation (3) [26]:

Wj =
aj+bj+cj

3
, j = 1, 2, . . . m. (3)

After that, the aggregated fuzzy weights Wj are used to rank the rating weights to
show the importance of each factor. Based on expert judgments, factors with a score of
0.7 or higher were considered significant contributors to human errors and included in this
study. Factors with scores below 0.7 were excluded [26].

4.1.3. Assessing the Validity of the Estimation Domain

To assess the validity of the estimation domain, the following steps were organized.
Firstly, calculate the difference values (Dij) for each expert as Equation (4):

Dij =

√
1
3

[(
aj − aij

)2
+
(
b − bij

)2
+
(
cj − cij

)2
]
. (4)

After that, calculate the threshold value (d) for each factor as Equation (5):

d =
1
n

n

∑
i=1

Dij. (5)

Then, check the threshold value (Thd) for each estimation domain as Equation (6):

Thd =
1
n

m

∑
i=1

dj. (6)

The assessing the validity of the estimation domain was determined by the threshold
value (Thd). A domain was considered acceptable if Thd was less than or equal to 0.2.

Finally, determine the expert’s group consensus on each factor as Equation (7) and
(EAj) [56]:

EAj =
Ej

n
% (7)

A consensus was considered achieved if EAj was greater than or equal to 75%. Factors
with EAj below 75% were excluded from further analysis [56].

4.2. Fuzzy AHP-Based Model

Fuzzy Analytic Hierarchy Process (FAHP), an extension of Saaty’s Analytic Hierarchy
Process (AHP) [59], is a multi-criteria decision-making (MCDM) technique for prioritizing
attributes. It accommodates human judgment uncertainties by employing fuzzy numbers
in comparison matrices. To derive weights from these matrices, various algorithms exist,
including logarithmic least squares, fuzzy extent analysis, and geometric mean [73]. This
study adopts Buckley’s geometric mean method [74], known for its efficiency with smaller
datasets. The subsequent sections provide an overview of fuzzy set theory and the detailed
steps of Buckley’s FAHP.

Zadeh introduced fuzzy set theory in 1965 [75] to model vagueness inherent in

decision-making parameters. A fuzzy set
∼
A is characterized by a membership function

µ∼
A
(X) that assigns a degree of membership to each element within the set as given in
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Equation (8). This study employs triangular fuzzy numbers (TFNs)
∼
A to represent fuzzy

sets, defined by a triplet of values (a, b, c) as shown in Table 4.

µ∼
A
(x) =


x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c

0 otherwise
(8)

Common arithmetic operations applicable to the following TFNs include addition, multi-

plication, scalar multiplication, and inversion:
∼
A1 = (a1 + b1 + c1); and

∼
A2 = (a2 + b2 + c2)

are shown in Equations (9) to (12), respectively.

∼
A1 ⊕

∼
A2 = (a1 + a2, b1 + b2, c1 + c2) (9)

∼
A1 ⊗

∼
A2 = (a1a2, b1b2, c1c2) (10)

k ⊗
∼
A1 = (ka1, kb1, kc1) (11)

∼
A1

−1
=

(
1
c1

,
1
b1

,
1
a1

)
(12)

To build the fuzzy AHP model, several steps should be implemented as the following:

4.2.1. Establishing the Hierarchy Structure for the Goal

The application of fuzzy AHP necessitates the a priori establishment of a well-defined
objective (goal). Subsequently, the relevant domains and their constituent factors influenc-
ing the attainment of this objective are identified. This process necessitates the integration
of theoretical frameworks and expert elicitation.

4.2.2. Designing the Pairwise Comparison Matrix

The pairwise comparison matrix (
∼
M

k
) is obtained using the fuzzy number scale

(Table 6). If a k decision-maker (DM) considers the first attribute to be very strong over the
second then the first gets (6, 7, 8) and the second will get (1/8, 1/7, 1/6). This results in a
pairwise comparison matrix as shown in Equation (13).

∼
M

k
=


∼
a

k
11 · · · ∼

a
k
1n

...
. . .

...
∼
a

k
n1 · · · ∼

a
k
nn

 (13)

where
∼
a

k
ij represents rating of kth DM for ith attribute over jth attribute.

Table 6. Fuzzy AHP linguistic terms and corresponding fuzzy numbers [76].

Importance Degree Linguistic Terms Fuzzy Numbers (a,b,c)

1 Equally influential (1, 1, 1)
3 Weakly influential (2, 3, 4)
5 Strongly influential (4, 5, 6)
7 Very strongly influential (6, 7, 8)
9 Extremely influential (9, 9, 9)

2, 4, 6, 8 Intermediate levels (1, 2, 3), (3, 4, 5), (5, 6, 7), (7, 8, 9)
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After that, the total pairwise comparison matrix (
∼
M) that averages the ratings of k

DMs, was computed as shown in Equation (14).

∼
M =


∼
a11 · · · ∼

a1n
...

. . .
...

∼
an1 · · · ∼

ann

 (14)

where
∼
a ij represents average rating of all DMs for ith attribute over jth attribute, and it can

be calculated as Equation (15).

∼
a ij =

∑K
k=1

∼
a

k
ij

K
(15)

4.2.3. Analyzing the Consistency of Pairwise Comparison Matrix

Saaty et al. [59] proposed a method to assess how consistent decision-maker (DM)
judgments are in a comparison matrix. This method uses a Consistency Index (CI) as
the following.

1. First, the TFNs in the comparison matrix should be converted from fuzzy numbers into
crisp numbers to make a crisp comparison matrix

(
Mcrisp

)
as shown in Equation (16).

Mcrisp =
a + 4b + c

6
(16)

2. Then, a priority vector (PV), which shows the weights for each criterion (i) is calculated

by averaging each column of the comparison matrix (
∼
M) after normalizing it as shown

in Equation (17).

PVi =
∑n

j=i
aij

∑n
x=1 axi

n
(17)

3. Next, a weighted sum matrix (WSM) is from multiplication of crisp comparison
matrix

(
Mcrisp

)
by the priority vector (PV) as shown in Equation (18)

WSM =
[
Mcrisp

]
× [PV] (18)

4. The largest eigenvalue (λmax) of a specific matrix equation is then computed using
Equation (19).

λmax =
∑n

i=i
WSMi

PVi

n
(19)

5. Finally, the CI and Consistency Ratio (CR) are obtained using formulas that involve
λmax and the matrix size as shown in Equations (20) and (21), respectively.

CI =
λmax − n

n − 1
(20)

CR =
CI

RI(n)
(21)

Figure 2 provides a reference value (Random Consistency Index or RI) for different
matrix sizes (n). To ensure acceptable consistency in DMs’ judgments, the CR value should
be less than 0.10.
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4.2.4. Determining Attribute Weights with Fuzzy Logic

1. Construct a Fuzzy Geometric Mean Matrix: A special matrix is created that captures
the relative importance of different attributes using fuzzy numbers, as shown in
Equation (22).

∼
gi =

(
n

∏
j=1

∼
a ij

) 1
n

, i = 1, 2, . . . , n (22)

2. Calculate Fuzzy Weights: Weights are assigned to each attribute based on the fuzzy
geometric mean matrix. These weights represent their significance in the overall
evaluation and incorporate a degree of uncertainty using fuzzy logic, as shown in
Equation (23).

∼
wi =

∼
gi ⊗

[∼
g1 ⊕

∼
g2 ⊕ . . . ⊕ ∼

gn

]−1
= (lwi, mwi, uwi) (23)

where lwi, mwi, and uwi are a lower, middle, and upper value of the fuzzy weight
of wi.

4.2.5. Determining Normalized Values and Ranking of Attributes

The de-fuzzy number for FTNs (Di) is calculated using the center-of-area method as
shown in Equation (24) and normalized (Ni) using as shown in Equation (25).

(Di) =
lwi, mwi, uwi

3
(24)

(Ni) =
Di

∑n
i=1 Di

(25)

5. Results and Discussion

A thorough examination of existing research in the literature was undertaken to pin-
point the primary factors that lead to human errors in manual assembly tasks. Then, these
factors were subsequently categorized based on the literature and experts into five main
factors: individual-related factors, tool-related factors, task-related factors, organizational-
related factors, and environmental-related factors. A novel model combining fuzzy Delphi
and fuzzy AHP methods was developed to prioritize these factors and accurately assess
their impact on human error occurrence. Detailed findings and interpretations of the
model’s results are presented in the following sections.
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5.1. Ranking Main and Sub-Factors of Assembly Errors Using FDM

Using the fuzzy Delphi method, the most significant factors influencing assembly
errors were determined and listed in Table 7. The defuzzified evaluation rating scores (Wj)
for each factor were computed using Equations (3). If a factor’s Wj score was 0.7 or higher,
as per expert opinions, it was considered a significant factor affecting human errors. Factors
with scores below this threshold were excluded from further analysis [26]. Additionally, the
consensus among experts for each factor was assessed using the expert agreement metric
(EAj), with a threshold of 75% or higher required for a factor to be retained, as determined
by Equation (7).

Table 7. Ranking the main and sub-factors of HEs in manual assembly tasks based on FDM.

Main
Factors EAj

Normal
Weight Ranking Sub-Factors Wj EAj

Normal
Weight Ranking

IF 91% 0.2093 1

Inexperience (F1) 0.875 100% 0.0847 1

Misunderstanding (F2) 0.8281 100% 0.0802 2

Knowledge deficiency (F3) 0.8229 94% 0.0797 3

Poor perception (F4) 0.8177 100% 0.0792 4

Risk-taking behavior (F5) 0.8151 91% 0.0789 5

Memory issues (F6) 0.8099 91% 0.0784 6

Physical or mental fatigue
(F7) 0.7813 94% 0.0756 7

Psychological stress (F8) 0.776 88% 0.0751 8

Unknown roles and
responsibilities (F9) 0.776 94% 0.0751 9

Unintentional errors (F10) 0.776 88% 0.0751 10

Rushed work (F11) 0.7578 84% 0.0734 11

Health problems (F12) 0.75 81% 0.0726 12

Intelligence quotient (F13) 0.7448 81% 0.0721 13

TF 88% 0.1972 3

Using the wrong equipment
(F14) 0.7604 94% 0.5034 1

Equipment shortages (F15) 0.75 81% 0.4966 2

TsF 91% 0.2071 2

Poor instructions and
procedures (F16) 0.8464 97% 0.2147 1

Task complexity (F17) 0.8229 94% 0.2087 2

Time pressure (F18) 0.8099 97% 0.2054 3

Workload (F19) 0.75 88% 0.1902 4

Multitasking (F20) 0.7135 78% 0.1810 5

OF 89% 0.1970 4

No training (F21) 0.8229 100% 0.3628 1

Lack of supervision (F22) 0.7448 88% 0.3284 2

Problem to address error
(F23) 0.7005 78% 0.3088 3

EF 80% 0.1894 5

Inappropriate lighting (F24) 0.75 88% 0.2567 1

Noise (F25) 0.7266 75% 0.2487 2

Ergonomics problems (F26) 0.724 78% 0.2478 3

Poor layout (F27) 0.7214 78% 0.2469 4
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According to the results shown in Table 7, the main factors affecting HEs in the
manual assembly processes are individual factor (IF), task factor (TsF), tool factor (TF),
organizational factor (OF), and environmental factor (EF) with weights of 0.2093, 0.2071,
0.1972, 0.1970, and 0.1894, respectively. Based on the local ranking, the findings indicated
that IF significantly impacts human error in manual assembly processes, with a lack of
experience, misunderstanding, and fatigue being particularly influential. TF, including
the absence of necessary tools and the use of inappropriate tools, had the most substantial
effect on human errors. Among the TsF, poor instructions and procedures, task complexity,
and time pressure were identified as strongly influencing assembly errors. OF, such as
inadequate training, failure to address error-causing issues, and poor supervision, were
shown to have the most significant impact on human errors. Lastly, the EF, including noise,
inadequate lighting, and poor ergonomic design in the workplace, were found to be the
most influential factors affecting human assembly errors.

5.2. Ranking Main and Sub-Factors of Assembly Errors Using FAHP

Using the fuzzy AHP method, the most significant factors influencing assembly errors
were determined and listed in Table 8. According to the results shown in Table 8, the main
factors affecting HEs in the manual assembly processes are IFs, TsFs, TFs, EFs, and OFs
with weights of 0.2115, 0.2031, 0.1989, 0.1940, and 0.1925, respectively. At the sub-factor
level, specific elements within each main factor are identified and ranked. For instance,
under individual factors, lack of experience is deemed the most significant contributor,
followed by misunderstanding and lack of knowledge. Similarly, using inappropriate tools
is considered the primary factor within task factors, followed by a lack of necessary tools.
These rankings highlight the areas that require the most attention to reduce human error
rates in manual assembly operations.

Table 8. Ranking the main and sub-factors of HEs in manual assembly tasks based on FAHP.

Main Factors Test Value Normal
Weight Ranking Sub-Factors Test Value Normal

Weight Ranking

IF
CI = 0.031
CR = 0.028

0.2115 1

F1

CI = 0.137
CR = 0.088

0.0979 1

F2 0.0881 2

F3 0.0835 3

F4 0.0827 4

F5 0.0813 5

F6 0.0802 6

F7 0.0725 7

F8 0.0701 8

F9 0.0692 9

F10 0.0691 10

F11 0.0690 11

F12 0.0683 12

F13 0.0682 13

TF 0.1989 3
F14 CI = 0.092

CR < 0.10

0.5064 1

F15 0.4936 2
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Table 8. Cont.

Main Factors Test Value Normal
Weight Ranking Sub-Factors Test Value Normal

Weight Ranking

TsF

CI = 0.031
CR = 0.028

0.2031 2

F16

CI = 0.079
CR = 0.071

0.2403 1

F17 0.2263 2

F18 0.2093 3

F19 0.1718 4

F20 0.1523 5

OF 0.1925 5

F21
CI = 0.035
CR = 0.068

0.4127 1

F22 0.3150 2

F23 0.2724 3

EF 0.1940 4

F24

CI = 0.080
CR = 0.090

0.2689 1

F25 0.2478 2

F26 0.2435 3

F27 0.2398 4

5.3. Ranking the Factors Influencing HEs Based on the Integrated FDM and FAHP Model

Table 9 compares the performance of 27 factors (F1 to F27) using two different methods
(fuzzy Delphi and fuzzy AHP). Each factor is assigned a global weight using both fuzzy
Delphi and fuzzy AHP methods. The global weight indicates the relative importance of a
factor. A higher weight suggests a more important factor. The overall ranking shows the
order of the factors based on their global weights, with rank one being the most important
factor. For example, inexperience or the lack of experience (F1) has the highest fuzzy Delphi
global weight (0.0419) and fuzzy AHP global weight (0.0488), indicating it is the most
important factor that influences human errors in manual assembly processes according to
both methods. The second important factor is the poor instructions and procedures (F16),
with global weights of 0.0404 and 0.0442 using fuzzy Delphi and fuzzy AHP methods,
respectively. The misunderstanding factor (F2) comes in third place as the most influential
factor in human error. In addition, other factors significantly impact assembly errors, such
as the lack of knowledge (F3) and task complexity (F17). Moreover, Figure 3 compares the
overall ranking of all the important factors affecting human assembly errors using fuzzy
Delphi and fuzzy AHP.
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Figure 3. Overall weights and ranks using fuzzy Delphi and fuzzy AHP.
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Table 9. Ranking the affecting factors according to FDM and FAHP methods.

Index

Fuzzy Delphi Fuzzy AHP

Global Weight Overall
Ranking Global Weight Overall

Ranking

F1 0.0419 1 0.0488 1

F2 0.0397 3 0.0439 3

F3 0.0394 4 0.0416 6

F4 0.0392 6 0.0412 7

F5 0.0390 7 0.0405 8

F6 0.0388 9 0.0400 9

F7 0.0374 11 0.0361 13

F8 0.0372 12 0.0350 15

F9 0.0372 13 0.0345 17

F10 0.0372 14 0.0344 18

F11 0.0363 15 0.0344 19

F12 0.0359 17 0.0340 21

F13 0.0357 19 0.0340 22

F14 0.0361 16 0.0365 12

F15 0.0356 20 0.0356 14

F16 0.0404 2 0.0442 2

F17 0.0393 5 0.0417 5

F18 0.0387 10 0.0385 10

F19 0.0358 18 0.0316 25

F20 0.0341 25 0.0280 27

F21 0.0390 8 0.0432 4

F22 0.0353 22 0.0330 24

F23 0.0332 27 0.0285 26

F24 0.0354 21 0.0378 11

F25 0.0343 23 0.0349 16

F26 0.0341 24 0.0343 20

F27 0.0340 26 0.0337 23

5.4. Paired Samples t-Test

In this study, the paired samples t-test was used to compare the global weights of
the factors resulting from the fuzzy Delphi and fuzzy AHP methods. This statistical
test is used to determine if there is a significant difference between the means of two
related samples [77]. In this case, the p-value is 0.990, much greater than the testing alpha
level of 0.05 as shown in Table 10. This means no statistically significant difference exists
between the FDM and FAHP methods. The small mean difference of 0.0000074 and the
wide confidence interval (−0.0011825 to 0.0011973) further support the conclusion that
there is no meaningful difference between the two methods. Therefore, based on the
paired t-test, no evidence suggests that the FDM and FAHP methods produce significantly
different results.
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Table 10. Paired samples test for FDM and FAHP methods.

Paired t-Test

Paired Differences

T df
Sig.

(2-Tailed)Mean Std. Dev. Std. Error
Mean

95% Confidence Interval
of the Difference

Lower Upper

Pair 1
fuzzy Delphi

and
fuzzy_AHP

0.0000074 0.0030080 0.0005789 −0.0011825 0.0011973 0.013 26 0.990

5.5. Sensitivity Analysis

Sensitivity analysis is a crucial step in model development using decision-making
methods [78]. It helps to determine how changes in model inputs or parameters affect
the final decisions [79]. This analysis ensures that the outcomes are reliable and practical.
Therefore, we can make more accurate forecasts and develop more effective future plans.

In this study, the sensitivity analysis was performed according to the study of Moslem
et al. [78], as shown in Figure 4 as follows: At the first level, the weight of the “individual”
factor was adjusted from 0.2093 to 0.2111 in the fuzzy Delphi and from 0.2115 to 0.2129
in the fuzzy AHP according to the maximum range value of the weight of the individual
factor with no change in the ranking of the other factors at the second level. The slight
change in the weight of the individual factor in both methods is to detect the stability of
the weights of the other factors, which is the goal of conducting the sensitivity analysis.
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The weight scores of the other factors (TsF, TF, OF, and EF) at this level were adjusted
according to the minimum range to maintain a single score for the total calculation of the
weight scores while keeping their ranks. Therefore, the minimum range weights for the
factors (TsF, TF, OF, and EF), which keep their ranks, are 0.1967, 0.2066, 0.1966, and 0.1890
for the fuzzy Delphi method, and 0.1986, 0.2030, 0.1920, and 0.1935 for the fuzzy AHP
method, as shown in Table 11.
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Table 11. Range of weights and ranks for the main factors after the sensitivity analysis.

Main Factors
Fuzzy Delphi Fuzzy AHP

Range of Weights Rank Range of Weights Rank

IF 0.2093–0.2111 1 0.2115–0.2129 1

TF 0.1967–0.1972 3 0.1986–0.1989 3

TsF 0.2066–0.2071 2 0.2030–0.2031 2

OF 0.1966–0.1970 4 0.1920–0.1925 5

EF 0.1890–0.1894 5 0.1935–0.1940 4

Accordingly, the scores of the lower-level factors were changed while maintaining the
first-order level. This suggestion may cause the importance of the evaluators to be modified.
However, the overall ranking of the main factors remains relatively consistent between the
two methods before and after the sensitivity analysis. This indicates that the results are
reasonably robust to changes in the input data or parameters, a desirable property for any
decision-making model.

The sensitivity analysis conducted on the sub-factors, as shown in Figure 5, has
revealed minor changes in the rankings obtained using both the fuzzy Delphi and fuzzy
AHP methods. This indicates that the initial rankings were relatively robust and not
significantly influenced by the sensitivity analysis.

Systems 2024, 12, x FOR PEER REVIEW 20 of 29 
 

 

 
Figure 5. Overall weights and ranks after sensitivity analysis. 

The decision-making techniques offer significant advantages in decision-making 
processes within complex domains. This study developed an integrated model using two 
multi-criteria decision-making (MCDM) techniques: the fuzzy Delphi and the fuzzy AHP 
methods for determining and ranking the factors affecting human errors in manual 
assembly processes. These techniques effectively address the inherent uncertainties and 
complexities associated with expert judgments. Through its iterative process of expert 
consultation and feedback, the fuzzy Delphi method helps to refine and converge 
opinions on the factors influencing human errors. Meanwhile, the fuzzy AHP method 
provides a structured framework for ranking the identified factors based on their relative 
importance. Incorporating fuzzy logic, both techniques allow for considering linguistic 
variables and subjective judgments, which are often prevalent in human-centric decision-
making. The combined application of these methods can lead to more robust and reliable 
insights into the critical factors contributing to human errors in manual assembly, 
facilitating the development of effective mitigation strategies. 

Previous studies have identified multiple root causes of human errors in various 
industries, highlighting personal, organizational, task-related, and environmental factors, 
which include negative behaviors, inadequate training, poor management, and 
unfavorable working conditions [25,26,28]. Recently, some studies have consistently 
identified several key factors contributing to manual assembly errors. The studies of 
Noman et al. [27] and Fahad et al. [1] emphasized the significant roles of lack of 
experience, insufficient procedures and instructions, stress, inadequate training, task 
complexity, and environmental factors such as noise and workplace design. These 
findings align with our study, further solidifying the importance of addressing these 
issues to enhance assembly accuracy. Additionally, our research aligns with Torres and 
Landau’s study [7], which demonstrated the effectiveness of attention-grabbing assembly 
instructions in reducing errors and improving performance. This suggests that clear and 
engaging communication can significantly impact worker efficiency and product quality. 
Furthermore, Alogla and Mansoor’s research [80] highlighted the criticality of 
understanding human errors in manufacturing settings. By identifying and addressing 
these errors, organizations can prevent quality problems, reduce rework, and optimize 
labor input, ultimately improving overall productivity. 

1
3

4
5

6
8

11
12

13
14

15
16

18
17

20

2

7

10

19

25

9

22

27

21
23

24
26

1
3

5
7

8
9

13
15

17
18

19
20

21

12
14

2

6

10

25
27

4

24
26

11

16

22
23

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27

R
an

ks

G
lo

ba
l W

ei
gh

ts

Factors

New Global Weights and Ranks (After Sensitivity Analysis)

 Weights (FDM)  Weights (FAHP) Ranks (FDM) Ranks (FAHP)

Figure 5. Overall weights and ranks after sensitivity analysis.

Several sub-factors maintained their positions in the rankings regardless of the method
or the sensitivity analysis. These included lack of experience (F1), misunderstanding (F2),
fatigue (F7), stress (F8), non-understanding roles and responsibilities (F9), unintentional
unsafe acts (F10), haste in doing work (F11), lack of necessary tools (F15), poor instructions
and procedures (F16), time pressure (F18), multitasking (F20), poor supervision (F22),
failure to address the error-causing problem (F23), inappropriate lighting (F24), noise (F25),
and poor workplace layout (F27). The consistent ranking of these factors suggests that
they are consistently perceived as critical contributors to human error. However, some
sub-factors experienced slight shifts in their rankings after the sensitivity analysis. For
instance, “lack of knowledge” (F3) moved down one rank in the fuzzy AHP method but
remained unchanged in the fuzzy Delphi method. Similarly, “poor health” (F12) and “low
intelligence coefficient” (F13) experienced minor rank changes in both methods. These
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shifts, while present, were relatively small and did not alter the overall ranking of the
main factors.

Overall, the sensitivity analysis demonstrated that the initial rankings of the sub-
factors were generally stable and not highly sensitive to changes in the input data or the
methods used. This suggests that the identified factors are indeed significant contributors
to human error and that the rankings obtained are reliable and can be used to inform
interventions and prevention strategies.

The decision-making techniques offer significant advantages in decision-making pro-
cesses within complex domains. This study developed an integrated model using two
multi-criteria decision-making (MCDM) techniques: the fuzzy Delphi and the fuzzy AHP
methods for determining and ranking the factors affecting human errors in manual as-
sembly processes. These techniques effectively address the inherent uncertainties and
complexities associated with expert judgments. Through its iterative process of expert
consultation and feedback, the fuzzy Delphi method helps to refine and converge opinions
on the factors influencing human errors. Meanwhile, the fuzzy AHP method provides
a structured framework for ranking the identified factors based on their relative impor-
tance. Incorporating fuzzy logic, both techniques allow for considering linguistic variables
and subjective judgments, which are often prevalent in human-centric decision-making.
The combined application of these methods can lead to more robust and reliable insights
into the critical factors contributing to human errors in manual assembly, facilitating the
development of effective mitigation strategies.

Previous studies have identified multiple root causes of human errors in various indus-
tries, highlighting personal, organizational, task-related, and environmental factors, which
include negative behaviors, inadequate training, poor management, and unfavorable work-
ing conditions [25,26,28]. Recently, some studies have consistently identified several key
factors contributing to manual assembly errors. The studies of Noman et al. [27] and Fahad
et al. [1] emphasized the significant roles of lack of experience, insufficient procedures and
instructions, stress, inadequate training, task complexity, and environmental factors such
as noise and workplace design. These findings align with our study, further solidifying
the importance of addressing these issues to enhance assembly accuracy. Additionally, our
research aligns with Torres and Landau’s study [7], which demonstrated the effectiveness
of attention-grabbing assembly instructions in reducing errors and improving performance.
This suggests that clear and engaging communication can significantly impact worker effi-
ciency and product quality. Furthermore, Alogla and Mansoor’s research [80] highlighted
the criticality of understanding human errors in manufacturing settings. By identifying
and addressing these errors, organizations can prevent quality problems, reduce rework,
and optimize labor input, ultimately improving overall productivity.

The findings of this study align with previous research that highlights key factors
contributing to human errors in various industries. For example, Azhdari et al. [81]
emphasized that enhancing employee training and closely monitoring performance are
vital in reducing human errors. Similarly, Morais et al. [82] identified causes such as
insufficient skills, lack of information, poor quality control, inadequate communication,
limited working hours, design flaws, and management problems. Amiri et al. [83] noted
that burnout and heat significantly contribute to accidents. Xu et al. [84] pointed out
that education is crucial in minimizing human error risks, with age, experience, and
workplace conditions also playing important roles. Dhalmahapatra et al. [85] emphasized
the negative impact of inadequate interaction between humans and technology on error-
related accidents. The study of Cheng et al. [86] analyzed human errors in remotely
operated autonomous ships and found that available time, task complexity, and pre-
warning significantly influence performance. At the same time, boredom and experience
had limited impact. Finally, Rafieyan et al. [40] identified nine categories of these factors,
including incorrect actions, misinterpretations, planning issues, equipment problems,
organizational shortcomings, individual behaviors, environmental conditions, emergency
responses, and technology. Among these, mismanagement, inadequate supervision, and
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insufficient financial resources were highlighted as primary contributors to errors. Despite
significant efforts to reduce human errors in various industries, many challenges and
uncertainties persist. Previous research and the findings of this study highlighted the
ongoing struggle to fully address this issue.

The objectivity of the proposed model was supported through sensitivity analyses
that tested a range of weight values and their corresponding alternative scenarios. The
fuzzy method applies to all decision support areas where layman evaluators assess decision
system elements, particularly techniques using pairwise comparisons. Additionally, the
proposed model familiarizes experts with the entire assessment process, as confirmed by
survey data in this study. The integrated method assists decision-makers in focusing on the
most critical factors affecting assembly errors. In summary, our study reinforces previous
research findings, confirming the prevalence of specific factors contributing to manual
assembly errors. Organizations can enhance assembly accuracy, reduce costs, and improve
overall product quality by addressing these factors and implementing strategies such as
enhanced training, clearer instructions, and optimized work environments.

6. Conclusions and Future Research

This study developed an integrated model to determine the factors influencing human
errors (HEs) in the manual assembly processes and rank them using two MCDM techniques.
The first technique used to build the developed model is the fuzzy Delphi, which conducted
two rounds of the survey to identify the primary factors contributing to HEs in manual
assembly. After expert consensus, 27 factors were determined to have a significant impact
on HEs, with influence scores of 0.7 or higher. The second technique is the fuzzy AHP,
which used a third round of surveys to determine the priorities of the 27 influencing factors
in assembly HEs based on their weights.

The results of this analysis revealed that a lack of experience, inadequate instructions
and procedures, and misunderstandings constitute the most critical contributors to errors
in manual assembly. These findings offer valuable insights for organizations seeking to
mitigate human errors and enhance the overall quality of their products. To ensure reliable
and practical results of the developed model, sensitivity analysis was conducted on model
inputs and parameters that affect final decisions.

While this study provides a comprehensive overview of factors contributing to human
errors in manual assembly, certain limitations warrant consideration for future research.
The current analysis primarily focuses on identifying individual factors without delving
into their intricate interrelationships. Future investigations should employ methodologies
capable of exploring these complex interactions. Furthermore, empirical studies are en-
couraged to examine the mental and physical workloads experienced by workers during
manual assembly tasks. Such research would provide deeper insights into the underlying
causes of human errors, potentially leading to strategies that enhance both worker efficiency
and comfort in the workplace.

Author Contributions: Conceptualization, F.M.A., and M.A.N.; methodology, M.A.N.; software,
M.A.N.; validation, M.A.N.; formal analysis, F.M.A. and M.A.N.; investigation, M.A.N.; resources,
M.A.N.; data curation, M.A.N.; writing—original draft preparation, M.A.N.; writing—review and
editing, F.M.A.; visualization, M.A.N.; supervision, F.M.A.; project administration, F.M.A.; funding
acquisition, F.M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Researchers Supporting Project number (RSPD2024 R803),
King Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are included in the article.

Acknowledgments: The authors extend their appreciation to the Researchers Supporting Project
number (RSPD2024 R803), King Saud University, Riyadh, Saudi Arabia.



Systems 2024, 12, 479 22 of 29

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. The Fuzzy Delphi Questionnaire

Study Title: Evaluating the Most Important Factors Affecting Human Errors in
Manual Assembly Processes Using Fuzzy Delphi Method

Thank you for taking the time to help us. Please read this questionnaire and determine
if the main factors and variables affect human errors in the manual assembly process or
not. In addition, you can add any important factor or variable missing in the questionnaire.
The outputs of this questionnaire will be for academic research and will be published in
scientific journals while keeping your personal information.

I. Demographic information
Please indicate to the answer by placing X or check mark.
1. Gender: □male □female
2. Age: □35 years old (inclusive) under; □36 to 40 years old; □41 to 45 years old; □46

to 50 years old; □51 years old (inclusive) or older.
3. Education level: □Bachelor; □Master; □Doctoral; □Other: ____________________
4. Experience in industry/academia: □10 to 15 years; □16 to 20; □21 to 25; □More

than 25 years.
5. Service sector (Industry): _____________________________________
6. Job title: _____________________________________
II. Pairwise assessment criteria
Judgment scale

Code Description Fuzzy Numbers (a, b, c )

NI Negligible influence (0, 0, 0.25)
LI Low influence (0, 0.25, 0.5)
MI Moderate influence (0.25, 0.5, 0.75)
HI High influence (0.5, 0.75, 1)
OI Overwhelming influence (0.75, 1, 1)

Please assess criteria based on the judgment scale and place only one check mark
for each row during assessment criteria.

Determine the impact of the main factors concerning manual assembly errors.

Main Factors
Does a factor influence human
error in the manual assembly
process? (Yes or No)

If Yes, how much does the factor influence human error in the
manual assembly process?

NL LI MI HI OI

Individual Factors □ □ □ □ □

Tool Factors □ □ □ □ □

Task Factors □ □ □ □ □

Organizational Factors □ □ □ □ □

Work environment
Factors

□ □ □ □ □

Determine the impact of the individual factors concerning manual assembly errors.
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Individual Factors
Does a variable influence human
error in the manual assembly
process? (Yes or No)

If Yes, how much does the variable influence human error in
the manual assembly process?

NL LI MI HI OI

Lack of experience □ □ □ □ □

Misunderstanding □ □ □ □ □

Lack of knowledge □ □ □ □ □

Poor perception □ □ □ □ □

Risk-taking behavior □ □ □ □ □

Memory issues □ □ □ □ □

Fatigue □ □ □ □ □

Stress □ □ □ □ □

Unknown roles and
responsibilities

□ □ □ □ □

Unintentional errors □ □ □ □ □

Rushed work □ □ □ □ □

Health problems □ □ □ □ □

Intelligence quotient □ □ □ □ □

Determine the impact of the tool factors concerning manual assembly errors.

Tool Factors
Does a variable influence human
error in the manual assembly
process? (Yes or No)

If Yes, how much does the variable influence human error in
the manual assembly process?

NL LI MI HI OI

Using the wrong
equipment

□ □ □ □ □

Equipment shortages □ □ □ □ □

Determine the impact of the task factors concerning manual assembly errors.

Task Factors
Does a variable influence human
error in the manual assembly
process? (Yes or No)

If Yes, how much does the variable influence human error in
the manual assembly process?

NL LI MI HI OI

Poor instructions and
procedures

□ □ □ □ □

Task complexity □ □ □ □ □

Time pressure □ □ □ □ □

Workload □ □ □ □ □

Multitasking □ □ □ □ □

Determine the impact of the organizational factors concerning manual assembly errors.

Organizational Factors
Does a variable influence human
error in the manual assembly
process? (Yes or No)

If Yes, how much does the variable influence human error in
the manual assembly process?

NL LI MI HI OI

Poor training □ □ □ □ □

Lack of supervision □ □ □ □ □

Problem to address error □ □ □ □ □
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Determine the impact of the environmental factors concerning manual assembly errors.

Environmental Factors
Does a variable influence human
error in the manual assembly
process? (Yes or No)

If Yes, how much does the variable influence human error in
the manual assembly process?

NL LI MI HI OI

Inappropriate lighting □ □ □ □ □

Noise □ □ □ □ □

Ergonomics problems □ □ □ □ □

Poor layout □ □ □ □ □

Appendix B. The Fuzzy AHP Questionnaire

Study Title: Evaluating the Most Important Factors Affecting Human Errors in
Manual Assembly Processes Using Fuzzy AHP Method

Thank you for taking the time to help us. Your feedback will help us to evaluate the
most important factors which affect human errors in manual assembly processes. The
outputs of this questionnaire will be for academic research and will be published in scientific
journals while keeping your personal information.

I. Demographic information
Please indicate to the answer by placing X or check mark.
1. Gender: □male □female
2. Age: □35 years old (inclusive) under; □36 to 40 years old; □41 to 45 years old; □46

to 50 years old; □51 years old (inclusive) or older.
3. Education level: □Bachelor; □Master; □Doctoral; □Other: _____________________
4. Experience in industry/academia: □10 to15 years; □16 to20; □21 to25; □More than

25 years.
5. Service sector (Industry): _____________________________________
6. Job title: _____________________________________
II. Pairwise comparisons scenarios
Judgment scale

Importance Degree Linguistic Terms Fuzzy Numbers ( a, b, c)

1 Equally influential (1, 1, 1)
3 Weakly influential (2, 3, 4)
5 Strongly influential (4, 5, 6)
7 Very strongly influential (6, 7, 8)
9 Extremely influential (9, 9, 9)

2, 4, 6, 8 Intermediate levels (1, 2, 3), (3, 4, 5), (5, 6, 7), (7, 8, 9)

Please compare criteria based on judgment scale and place only one circle or check
mark for each row during comparing criteria.

Compare the importance of the main factors concerning manual assembly errors.

Main Factors Individual Factors Tool Factors Task Factors
Organizational

Factors
Environment

Factors

Individual Factors (1, 1, 1)

Tool Factors (1, 1, 1)

Task Factors (1, 1, 1)

Organizational Factors (1, 1, 1)

Environment Factors (1, 1, 1)
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Compare the importance of the individual factors concerning manual assembly errors.

Individual
Factors
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Lack of
experience

(1, 1,
1)

Misunderstanding
(1, 1,

1)

Lack of
knowledge

(1, 1,
1)

Poor perception
(1, 1,

1)

Risk-taking
behavior

(1, 1,
1)

Memory issues
(1, 1,

1)

Fatigue
(1, 1,

1)

Stress
(1, 1,

1)

Unknown roles
and
responsibilities

(1, 1,
1)

Unintentional
errors

(1, 1,
1)

Rushed work
(1, 1,

1)

Health problems
(1, 1,

1)

Intelligence
quotient

(1, 1,
1)

Compare the importance of the tool factors concerning manual assembly errors.

Tool Factors Using the wrong equipment Equipment shortages

Using the wrong equipment (1, 1, 1)

Equipment shortages (1, 1, 1)
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Compare the importance of the task factors concerning manual assembly errors.

Task Factors
Poor instructions
and procedures

Task complexity Time pressure Workload Multitasking

Poor instructions
and procedures

(1, 1, 1)

Task complexity (1, 1, 1)

Time pressure (1, 1, 1)

Workload (1, 1, 1)

Multitasking (1, 1, 1)

Compare the importance of the organizational factors concerning manual assem-
bly errors.

Organizational Factors Poor training Lack of supervision Problem to address error

Poor training (1, 1, 1)

Lack of supervision (1, 1, 1)

Problem to address error (1, 1, 1)

Compare the importance of the environmental factors concerning manual assem-
bly errors.

Environmental Factors Inappropriate lighting Noise Ergonomics problems Poor layout

Inappropriate lighting (1, 1, 1)

Noise (1, 1, 1)

Ergonomics problems (1, 1, 1)

Poor layout (1, 1, 1)
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automotive industry. MATEC Web Conf. 2019, 290, 12001. [CrossRef]

52. Ishikawa, A.; Amagasa, M.; Shiga, T.; Tomizawa, G.; Tatsuta, R.; Mieno, H. The max-min Delphi method and fuzzy Delphi
method via fuzzy integration. Fuzzy Sets Syst. 1993, 55, 241–253. [CrossRef]

53. Häder, M.; Häder, S. Delphi und kognitionspsychologie: Ein zugang zur theoretischen fundierung der Delphi-Methode. ZUMA
Nachrichten 1995, 19, 8–34.

54. Skulmoski, G.J.; Hartman, F.T.; Krahn, J. The Delphi method for graduate research. J. Inf. Technol. Educ. Res. 2007, 6, 1–21.
[CrossRef] [PubMed]

55. Boulkedid, R.; Abdoul, H.; Loustau, M.; Sibony, O.; Alberti, C. Using and reporting the Delphi method for selecting healthcare
quality indicators: A systematic review. PLoS ONE 2011, 6, e20476. [CrossRef]

56. Alghawli, A.S.A.; Al-khulaidi, A.A.; Nasser, A.A.; AL-Khulaidi, N.A.; Abass, F.A. Application of the Fuzzy Delphi Method to
Identify and Prioritize the Social-Health Family Disintegration Indicators in Yemen. Int. J. Adv. Comput. Sci. Appl. 2022, 13,
680–691. [CrossRef]

57. Roth, C.; Brewer, M.; Wieck, K.L. Using a Delphi method to identify human factors contributing to nursing errors. Nurs. Forum
2017, 52, 173–179. [CrossRef]

58. Van Laarhoven, P.J.; Pedrycz, W. A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 1983, 11, 229–241. [CrossRef]
59. Saaty, T.L. The analytic hierarchy process (AHP). J. Oper. Res. Soc. 1980, 41, 1073–1076.
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