Setting the Public Sentiment: Examining the Relationship between Social Media and News Sentiments
Abstract
:1. Introduction
1.1. Agenda-Setting Theory and Emotions
1.2. Social Media and Opinion Mining
2. Research Question
3. Methods
3.1. Data Collection
3.1.1. Twitter Data
3.1.2. News Data
3.2. Data Analysis
3.2.1. Sentiment Analysis
3.2.2. Granger Causality Test
4. Results
4.1. Correlation Test
4.2. Granger Causality Test
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Varnelis, K. Networked Publics; MIT Press: London, UK, 2012. [Google Scholar]
- Pond, P.; Lewis, J. Riots and Twitter: Connective politics, social media and framing discourses in the digital public sphere. Inf. Commun. Soc. 2019, 22, 213–231. [Google Scholar] [CrossRef]
- Choi, S. The Two-Step Flow of Communication in Twitter-Based Public Forums. Soc. Sci. Comput. Rev. 2015, 33, 696–711. [Google Scholar] [CrossRef]
- El Barachi, M.; AlKhatib, M.; Mathew, S.; Oroumchian, F. A Novel Sentiment Analysis Framework for Monitoring the Evolving Public Opinion in Real-Time: Case Study on Climate Change. J. Clean. Prod. 2021, 312, 127820. [Google Scholar] [CrossRef]
- González-Bailón, S.; Banchs, R.E.; Kaltenbrunner, A. Emotions, public opinion, and US presidential approval rates: A 5-year analysis of online political discussions. Hum. Commun. Res. 2012, 38, 121–143. [Google Scholar] [CrossRef]
- Kim, D.; Chung, C.J.; Eom, K. Measuring online public opinion for decision making: Application of deep learning on political context. Sustainability 2022, 14, 4113. [Google Scholar] [CrossRef]
- Murphy, J.; Link, M.W.; Childs, J.H.; Tesfaye, C.L.; Dean, E.; Stern, M.; Pasek, J.; Cohen, J.; Callegaro, M.; Harwood, P. Social media in public opinion research: Executive summary of the AAPOR task force on emerging technologies in public opinion research. Public Opin. Q. 2014, 78, 788–794. [Google Scholar] [CrossRef]
- Russell Neuman, W.; Guggenheim, L.; Mo Jang, S.A.; Bae, S.Y. The Dynamics of Public Attention: Agenda-Setting Theory Meets Big Data. J. Commun. 2014, 64, 193–214. [Google Scholar] [CrossRef]
- Daou, H. Sentiment of the Public: The Role of Social Media in Revealing Important Events. Online Inf. Rev. 2021, 45, 157–173. [Google Scholar] [CrossRef]
- Coromina, Ò.; Prado, E.; Padilla, A. The Grammatization of Emotions on Facebook in the Elections to the Parliament of Catalonia 2017. Prof. Inf. 2018, 27, 1004–1012. [Google Scholar] [CrossRef]
- Suárez Estrada, M.; Juarez, Y.; Piña-García, C.A. Toxic social media: Affective polarization after feminist protests. Soc. Media+ Soc. 2022, 8, 20563051221098343. [Google Scholar] [CrossRef]
- Stieglitz, S.; Dang-Xuan, L. Emotions and information diffusion in social media—Sentiment of microblogs and sharing behavior. J. Manag. Inf. Syst. 2013, 29, 217–248. [Google Scholar] [CrossRef]
- McCombs, M.E.; Shaw, D.L. The evolution of agenda-setting research: Twenty-five years in the marketplace of ideas. J. Commun. 1993, 43, 58–67. [Google Scholar] [CrossRef]
- McCombs, M.; Stroud, N.J. Psychology of agenda-setting effects: Mapping the paths of information processing. Rev. Commun. Res. 2014, 2, 68–93. [Google Scholar] [CrossRef]
- Coleman, R.; Wu, H.D. Proposing Emotion as a Dimension of Affective Agenda Setting: Separating Affect into Two Components and Comparing Their Second-Level Effects. J. Mass Commun. Q. 2010, 87, 315–327. [Google Scholar] [CrossRef]
- Wang, H.; Can, D.; Kazemzadeh, A.; Bar, F.; Narayanan, S. A system for real-time twitter sentiment analysis of 2012 US presidential election cycle. In Proceedings of the ACL 2012 System Demonstrations, Jeju, Republic of Korea, 9–11 July 2012; pp. 115–120. [Google Scholar]
- Shaw, E.F. Agenda-Setting and Mass Communication Theory. Gazette 1979, 25, 96–105. [Google Scholar] [CrossRef]
- McCombs, M.; Lee, J.K. Continuing Evolution of Agenda-Setting Theory. In Media Effects/Media Psychology; Wiley-Blackwell: Boston, MA, USA, 2013; pp. 41–62. [Google Scholar]
- Maniou, T.A.; Bantimaroudis, P. Hybrid salience: Examining the role of traditional and digital media in the rise of the Greek radical left. Journalism 2021, 22, 1127–1144. [Google Scholar] [CrossRef]
- Miller, J.M. Examining the Mediators of Agenda Setting: A New Experimental Paradigm Reveals the Role of Emotions. Political Psychol. 2007, 28, 689–717. [Google Scholar] [CrossRef]
- Valenzuela, S.; Chernov, G. Explicating the Values-Issue Consistency Hypothesis through Need for Orientation. Can. J. Commun. 2016, 41, 49–64. [Google Scholar] [CrossRef]
- McCombs, M. Personal Involvement with Issues on the Public Agenda. Int. J. Public Opin. Res. 1999, 11, 152–168. [Google Scholar] [CrossRef]
- Young, J.R. The Role of Fear in Agenda Setting by Television News. Am. Behav. Sci. 2003, 46, 1673–1695. [Google Scholar] [CrossRef]
- Pantti, M. The Value of Emotion: An Examination of Television Journalists’ Notions on Emotionality. Eur. J. Commun. 2010, 25, 168–181. [Google Scholar] [CrossRef]
- Conover, M.D.; Gonçalves, B.; Ratkiewicz, J.; Flammini, A.; Menczer, F. Predicting the Political Alignment of Twitter Users. In Proceedings of the Third IEEE Conference on Social Computing, Bethesda, MD, USA, 9–11 October 2011; pp. 192–199. [Google Scholar]
- Gilardi, F.; Gessler, T.; Kubli, M.; Müller, S. Social media and political agenda setting. Political Commun. 2022, 39, 39–60. [Google Scholar] [CrossRef]
- Kochuieva, Z.; Borysova, N.; Melnyk, K.; Huliieva, D. Usage of Sentiment Analysis to Tracking Public Opinion. In Proceedings of the CEUR Workshop Proceedings, Barcelona, Spain, 7–9 July 2021; pp. 272–285. [Google Scholar]
- Ekman, P. An Argument for Basic Emotions. Cogn. Emot. 1992, 6, 169–200. [Google Scholar] [CrossRef]
- Gray, E.K.; Watson, D. Assessing Positive and Negative Affect via Self-Report. In Handbook of Emotion Elicitation and Assessment; Oxford University Press: New York, NY, USA, 2007; pp. 171–183. [Google Scholar]
- Massumi, B. Parables for the Virtual: Movement, Affect, Sensation; Duke University Press: Durham, NC, USA, 2002. [Google Scholar]
- Pang, B.; Lee, L. Opinion Mining and Sentiment Analysis. Found. Trends® Inf. Retr. 2008, 2, 1–135. [Google Scholar] [CrossRef]
- Park, H.; Biddix, P.; Park, H.W. Discussion, News Information, and Research Sharing on Social Media at the Onset of COVID-19. Prof. Inf. 2021, 30, e300405. [Google Scholar] [CrossRef]
- Park, H.W.; Lee, Y. How are Twitter activities related to top cryptocurrencies performance? Evidence from social media network and sentiment analysis. Drus. Istraz. 2019, 28, 435–460. [Google Scholar] [CrossRef]
- Kwon, K.H. Rumors That Move People to Action: A Case of the 2019 Hong Kong Protests. J. Contemp. East. Asia 2022, 21, 1–12. [Google Scholar]
- Eslen-Ziya, H. Humour and Sarcasm: Expressions of Global Warming on Twitter. Humanit. Soc. Sci. Commun. 2022, 9, 240. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Q.; Albaradei, S.; Lyu, X.; Alamro, H.; Salhi, A.; Ma, C.; Alshehri, M.; Jaber, I.I.; Tifratene, F.; et al. Rise and fall of the global conversation and shifting sentiments during the COVID-19 pandemic. Humanit. Soc. Sci. Commun. 2021, 8, 120. [Google Scholar] [CrossRef]
- Tkácová, H.; Pavlíková, M.; Stranovská, E.; Králik, R. Individual (Non) Resilience of University Students to Digital Media Manipulation after COVID-19 (Case Study of Slovak Initiatives). Int. J. Environ. Res. Public Health 2023, 20, 1605. [Google Scholar] [CrossRef]
- Ceron, A.; Curini, L.; Iacus, S.M.; Porro, G. Every Tweet Counts? How Sentiment Analysis of Social Media Can Improve Our Knowledge of Citizens’ Political Preferences with an Application to Italy and France. New Media Soc. 2014, 16, 340–358. [Google Scholar] [CrossRef]
- Lindsay, R. Predicting Polls with Lexicon. Available online: https://languagewrong.tumblr.com (accessed on 29 June 2023).
- O’Connor, B.; Balasubramanyan, R.; Routledge, B.; Smith, N. From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series. In Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, Washington, DC, USA, 23–26 May 2010. [Google Scholar]
- Franch, F. (Wisdom of the Crowds) 2: 2010 UK Election Prediction with Social Media. J. Inf. Technol. Politics 2013, 10, 57–71. [Google Scholar] [CrossRef]
- Bermingham, A.; Smeaton, A.F. On using Twitter to monitor political sentiment and predict election results. In Proceedings of the Workshop on Sentiment Analysis Where AI Meets Psychology (SAAIP 2011), Chiang Mai, Thailand, 13 November 2011; pp. 2–10. [Google Scholar]
- Feezell, J.T. Agenda setting through social media: The importance of incidental news exposure and social filtering in the digital era. Political Res. Q. 2018, 71, 482–494. [Google Scholar] [CrossRef]
- Yang, F.; Sun, T. Who has set whose agenda on social media? A dynamic social network analysis of Tweets on Paris attack. Commun. Q. 2021, 69, 341–363. [Google Scholar] [CrossRef]
- Marchetti, R.; Ceccobelli, D. Twitter and television in a hybrid media system: The 2013 Italian election campaign. J. Pract. 2016, 10, 626–644. [Google Scholar] [CrossRef]
- Takeshita, T. Current critical problems in agenda-setting research. Int. J. Public Opin. Res. 2006, 18, 275–296. [Google Scholar] [CrossRef]
- Murthy, D.; Petto, L.R. Comparing Print Coverage and Tweets in Elections: A Case Study of the 2011–2012 US Republican Primaries. Soc. Sci. Comput. Rev. 2015, 33, 298–314. [Google Scholar] [CrossRef]
- Blood, D.J.; Phillips, P.C. Recession headline news, consumer sentiment, the state of the economy, and presidential popularity: A time series analysis 1989–1993. Int. J. Public Opin. Res. 1995, 7, 2–22. [Google Scholar] [CrossRef]
- Ren, J.; Dong, H.; Padmanabhan, B.; Nickerson, J.V. How does social media sentiment impact mass media sentiment? A study of news in the financial markets. J. Assoc. Inf. Sci. Technol. 2021, 72, 1183–1197. [Google Scholar] [CrossRef]
- Golan, G.; Wanta, W. Second-Level Agenda Setting in the New Hampshire Primary: A Comparison of Coverage in Three Newspapers and Public Perceptions of Candidates. J. Mass Commun. Q. 2001, 78, 247–259. [Google Scholar] [CrossRef]
- Lopez-Escobar, E.; Llamas, J.P.; McCombs, M.; Lennon, F.R. Two levels of agenda setting among advertising and news in the 1995 Spanish elections. Political Commun. 1998, 15, 225–238. [Google Scholar] [CrossRef]
- Sheafer, T. How to Evaluate It: The Role of Story-Evaluative Tone in Agenda Setting and Priming. J. Commun. 2007, 57, 21–39. [Google Scholar]
- Boyd, D.; Golder, S.; Lotan, G. Tweet, tweet, retweet: Conversational aspects of retweeting on twitter. In Proceedings of the 2010 43rd Hawaii International Conference on System Sciences, Honolulu, HI, USA, 5–8 January 2010. [Google Scholar]
- Small, T.A. What the hashtag? A content analysis of Canadian politics on Twitter. Inf. Commun. Soc. 2011, 14, 872–895. [Google Scholar]
- Cho, J.; Boyle, M.P.; Keum, H.; Shevy, M.D.; McLeod, D.M.; Shah, D.V.; Pan, Z. Media, Terrorism, and Emotionality: Emotional Differences in Media Content and Public Reactions to the September 11th Terrorist Attacks. J. Broadcast. Electron. Media 2003, 47, 309–327. [Google Scholar]
- Coe, K.; Tewksbury, D.; Bond, B.J.; Drogos, K.L.; Porter, R.W.; Yahn, A.; Zhang, Y. Hostile News: Partisan Use and Perceptions of Cable News Programming. J. Commun. 2008, 58, 201–219. [Google Scholar]
- Mitchell, A.; Gottfried, J.; Bartel, M.; Shearer, E. The 2016 Presidential Campaign—A News Event That’s Hard to Miss. Pew Res. Cent. 2016, 4. [Google Scholar]
- Stryker, J.E.; Wray, R.J.; Hornik, R.C.; Yanovitzky, I. Validation of database search terms for content analysis: The case of cancer news coverage. J. Mass Commun. Q. 2006, 83, 413–430. [Google Scholar] [CrossRef]
- Chong, M.; Chang, H.C. Social Media Analytics. In Analytics and Knowledge Management; Auerbach Publications: Boca Raton, FL, USA, 2018; pp. 195–219. [Google Scholar]
- Pennebaker, J.W.; Boyd, R.L.; Jordan, K.; Blackburn, K. The Development and Psychometric Properties of LIWC2015; The University of Texas at Austin: Austin, TX, USA, 2015. [Google Scholar]
- Tausczik, Y.R.; Pennebaker, J.W. The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods. J. Lang. Soc. Psychol. 2010, 29, 24–54. [Google Scholar] [CrossRef]
- Walgrave, S.; Soroka, S.; Nuytemans, M. The mass media’s political agenda-setting power: A longitudinal analysis of media, parliament, and government in Belgium (1993 to 2000). Comp. Political Stud. 2008, 41, 814–836. [Google Scholar] [CrossRef]
- Schelter, B.; Winterhalder, M.; Maiwald, T.; Brandt, A.; Schad, A.; Schulze-Bonhage, A.; Timmer, J. Testing statistical significance of multivariate time series analysis techniques for epileptic seizure prediction. Chaos Interdiscip. J. Nonlinear Sci. 2006, 16, 013108. [Google Scholar]
- Freeman, J.R. Granger causality and the times series analysis of political relationships. Am. J. Political Sci. 1983, 27, 327–358. [Google Scholar] [CrossRef]
- Bressler, S.L.; Seth, A.K. Wiener–Granger Causality: A Well-Established Methodology. Neuroimage 2011, 58, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Fording, R.C.; Schram, S.F. The cognitive and emotional sources of Trump support: The case of low-information voters. New Political Sci. 2017, 39, 670–686. [Google Scholar] [CrossRef]
- Pavlíková, M. The concept of anxiety and its reflection in Auden’s work ‘the age of anxiety. Eur. J. Sci. Theol. 2016, 12, 111–119. [Google Scholar]
- Roberts, M.; Wanta, W.; Dzwo, T.H. Agenda setting and issue salience online. Commun. Res. 2002, 29, 452–465. [Google Scholar] [CrossRef]
- Harder, R.A.; Sevenans, J.; Van Aelst, P. Intermedia agenda setting in the social media age: How traditional players dominate the news agenda in election times. Int. J. Press/Politics 2017, 22, 275–293. [Google Scholar] [CrossRef]
- Flaounas, I.; Ali, O.; Lansdall-Welfare, T.; De Bie, T.; Mosdell, N.; Lewis, J.; Cristianini, N. Research methods in the age of digital journalism: Massive-scale automated analysis of news-content—Topics, style and gender. Digit. J. 2013, 1, 102–116. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Park, H.W. Development of a COVID-19 Web Information Transmission Structure Based on a Quadruple Helix Model: Webometric Network Approach Using Bing. J. Med. Internet Res. 2021, 23, e27681. [Google Scholar] [CrossRef] [PubMed]
- Conway, M.; Patterson, J.R. Today’s Top Story? An Agenda-Setting and Recall Experiment Involving Television and Internet News. Southwest. Mass Commun. J. 2008, 24, 31–48. [Google Scholar]
- Teng, S.; Jiang, N.; Khong, K.W. Using Big Data to Understand the Online Ecology of COVID-19 Vaccination Hesitancy. Humanit. Soc. Sci. Commun. 2022, 9, 158. [Google Scholar] [CrossRef]
- Murthy, D. Twitter: Social Communication in the Twitter Era, 2nd ed.; Polity Press: Cambridge, MA, USA; Medford, MA, USA, 2018. [Google Scholar]
- Papacharissi, Z. Affective publics and structures of storytelling: Sentiment, events and mediality. Inf. Commun. Soc. 2016, 19, 307–324. [Google Scholar] [CrossRef]
- Lee, C. The Influence of SNS and Podcasts on the Political Participation of Korean Youth: A Case Study of the Candle Light Rallies and the 2017 Impeachment of the Korean President. J. Contemp. East. Asia 2021, 20, 1–18. [Google Scholar]
- Auxier, B.; Anderson, M. Social media use in 2021. In Pew Research Center: Internet and Technology; Pew Research Center: Washington, DC, USA, 2021. [Google Scholar]
- Park, S.; Strover, S.; Choi, J.; Schnell, M. Mind Games: A Temporal Sentiment Analysis of the Political Messages of the Internet Research Agency on Facebook and Twitter. New Media Soc. 2023, 25, 463–484. [Google Scholar] [CrossRef]
- Jiang, K.; Barnett, G.A.; Taylor, L.D. Dynamics of culture frames in international news coverage: A semantic network analysis. Int. J. Commun. 2016, 10, 27. [Google Scholar]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1. Positive Emotion_Hillary | 1 | |||||||
2. Positve Emotion_Trump | −0.04 | 1 | ||||||
3. Positive Emotion_CNN | 0.08 | −0.09 | 1 | |||||
4. Positive Emotion_Fox | 0.11 | 0.10 | 0.67 ** | 1 | ||||
5. Negative Emotion_Hillary | 0.19 | −0.30 * | 0.32 | 0.07 | 1 | |||
6. Negative Emotion_Trump | 0.29 # | −0.12 | −0.10 | −0.06 | 0.19 | 1 | ||
7. Negative Emotion_CNN | 0.03 | −0.02 | 0.07 | 0.08 | 0.29 ## | 0.34 * | 1 | |
8. Negative Emotion_Fox | 0.22 | −0.33 * | 0.01 | 0.00 | 0.27 | 0.46 ** | 0.48 ** | 1 |
Time-Lag | Positive Emotion | Negative Emotion | Anxiety | Anger | Sadness |
---|---|---|---|---|---|
1 | 0.13 | 3.54 | 0.134 | 3.92 ## | 1.05 |
2 | 6.23 ** | 1.65 | 0.46 | 3.75 * | 0.51 |
3 | 5.21 ** | 1.09 | 0.42 | 2.48 | 0.4 |
4 | 3.91 * | 1.6 | 0.42 | 3.92 * | 0.36 |
5 | 3.04 * | 1.45 | 0.32 | 2.31 | 0.27 |
6 | 2.44 # | 1.33 | 0.24 | 1.7 | 0.25 |
7 | 2.51 * | 1.44 | 0.19 | 1.44 | 0.69 |
8 | 2.55 * | 1.80 | 0.19 | 1.38 | 0.84 |
Time-Lag | Positive Emotion | Negative Emotion | Anxiety | Anger | Sadness |
---|---|---|---|---|---|
1 | 0.00 | 0.07 | 0.18 | 0.02 | 0.87 |
2 | 0.03 | 1.65 | 0.57 | 0.45 | 0.51 |
3 | 0.34 | 1.09 | 0.33 | 0.26 | 0.34 |
4 | 0.46 | 1.6 | 0.32 | 0.15 | 0.26 |
5 | 0.55 | 1.45 | 0.25 | 0.49 | 0.41 |
6 | 0.06 | 1.33 | 0.26 | 0.79 | 0.58 |
7 | 0.51 | 1.44 | 0.23 | 0.95 | 0.81 |
8 | 1.04 | 0.78 | 1.26 | 0.77 | 1.57 |
Time-Lag | Positive Emotion | Negative Emotion | Anxiety | Anger | Sadness |
---|---|---|---|---|---|
1 | 1.42 | 0.83 | 0.3 | 0.01 | 0.82 |
2 | 0.75 | 0.39 | 0.14 | 0.26 | 1.75 |
3 | 0.40 | 1.18 | 1.87 | 0.80 | 2.48 |
4 | 0.48 | 0.95 | 1.07 | 1.5 | 1.77 |
5 | 0.70 | 0.8 | 0.78 | 2.01 | 1.48 |
6 | 0.52 | 0.4 | 1.4 | 1.37 | 1.2 |
7 | 0.81 | 0.63 | 1.04 | 1.5 | 0.85 |
8 | 0.65 | 0.71 | 1.26 | 1.78 | 0.77 |
Time-Lag | Positive Emotion | Negative Emotion | Anxiety | Anger | Sadness |
---|---|---|---|---|---|
1 | 0.46 | 6.52 * | 0.90 | 4.82 * | 0.50 |
2 | 0.19 | 2.8 | 0.18 | 2.71 | 0.52 |
3 | 0.15 | 2.22 | 0.82 | 1.68 | 1.46 |
4 | 0.29 | 2.12 | 0.84 | 1.90 | 1.12 |
5 | 0.35 | 2.11 | 2.58 * | 2.04 | 0.95 |
6 | 0.31 | 1.50 | 2.06 | 0.68 | 0.69 |
7 | 0.26 | 1.39 | 1.88 | 0.97 | 0.46 |
8 | 0.18 | 1.81 | 2.04 | 0.64 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huh, C.U.; Park, H.W. Setting the Public Sentiment: Examining the Relationship between Social Media and News Sentiments. Systems 2024, 12, 105. https://doi.org/10.3390/systems12030105
Huh CU, Park HW. Setting the Public Sentiment: Examining the Relationship between Social Media and News Sentiments. Systems. 2024; 12(3):105. https://doi.org/10.3390/systems12030105
Chicago/Turabian StyleHuh, Catherine U., and Han Woo Park. 2024. "Setting the Public Sentiment: Examining the Relationship between Social Media and News Sentiments" Systems 12, no. 3: 105. https://doi.org/10.3390/systems12030105
APA StyleHuh, C. U., & Park, H. W. (2024). Setting the Public Sentiment: Examining the Relationship between Social Media and News Sentiments. Systems, 12(3), 105. https://doi.org/10.3390/systems12030105