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Abstract: In cloud manufacturing environments, the scheduling of multi-user manufacturing tasks
often fails to consider the impact of service supply on resource allocation. This study addresses this
gap by proposing a bi-objective multi-user multi-task scheduling model aimed at simultaneously min-
imising workload and maximising customer satisfaction. To accurately capture customer satisfaction,
a novel comprehensive rating index is introduced, integrating the actual completion cost, time, and
processing quality against customer expectations. Furthermore, vehicle constraints are incorporated
into the model to accommodate potential delays in transport vehicle availability, thereby enhancing
its alignment with real-world manufacturing settings. The proposed mathematical model is solved
using an improved three-stage genetic algorithm, which integrates the k-means algorithm and a
real-time sequence scheduling strategy to optimise solution quality. Validation against alternative
algorithms across various case scales demonstrates the efficacy of the approach in providing practical
scheduling solutions for real-case scenarios.

Keywords: ISGA; workload; scheduling optimisation; satisfaction

1. Introduction

Cloud manufacturing is a new customer-oriented manufacturing model based on
cloud computing and advanced manufacturing technology. It uses a cloud computing
platform to provide manufacturing enterprises with support for resource sharing, ser-
vice collaboration, information integration, etc. It realises the dynamic organisation and
scheduling of manufacturing resources through network connection and data interaction,
so as to realise the flexible, efficient, and intelligent development of the manufacturing
industry and thus better serve customers. The cloud manufacturing platform is composed
of the cloud platform, users, and manufacturers. The selection and scheduling of cloud
services from the perspective of the cloud platform, in addition to meeting user needs and
improving user satisfaction, also need to consider the needs of the cloud service supply
side, such as load balancing, in order to avoid the manufacturer’s idle resources from being
not reasonably utilised. Therefore, it is meaningful to study how to ensure load balancing
on the service provider side while ensuring customer satisfaction.

In most studies, cloud manufacturing scheduling [1] primarily focuses on objectives,
such as the time, cost, and service quality. However, in supply chain management, due to
customer irrationality, satisfaction cannot be calculated through a simple linear relationship.
Therefore, to better enhance customer satisfaction, this paper proposes a comprehensive
evaluation index that compares the actual completion cost, time, and processing quality
with customer expectations. Additionally, to safeguard the manufacturer’s interests, we set
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a workload balancing objective to prevent resource overload or idleness among manufac-
turing service providers. Consequently, a novel multi-objective scheduling optimisation
model is introduced, encompassing both service supply and demand sides, with objectives
of minimising workload and maximising customer satisfaction. Notably, unlike tradi-
tional manufacturing models, the transportation aspect is crucial in cloud manufacturing
due to the geographical dispersion of manufacturing service providers. In reality, service
providers submit their remaining manufacturing capacity to the platform, and due to their
own orders, transport vehicles may not be available immediately after sub-task completion,
thereby affecting the processing time of subsequent sub-tasks. Hence, vehicle constraints
are incorporated to better reflect real-world scenarios. Finally, an Improve 3-Stage Genetic
Algorithm (ISGA) is proposed for this scheduling problem, which integrates the adaptive
Pareto population method and k-means algorithm, and it adopts a real-time sequential
scheduling strategy, which is capable of obtaining a better set of Pareto solutions compared
with the other four algorithms.

The rest of the paper is structured as follows: Section 2 reviews the scheduling studies
on cloud manufacturing, Section 3 describes, in detail, the multi-task multi-objective
scheduling optimisation mathematical model proposed in this paper; the multi-objectives
include satisfaction and workload. Section 4 details the improved three-stage genetic
algorithm, and Section 5 presents the results of simulation experiments and validation
of the effectiveness of the algorithm performance. Section 6 states the conclusions and
discusses future research.

2. Literature Review
2.1. Cloud Manufacturing Scheduling Problems

In recent years, with the development of related theories and technologies, manu-
facturing service allocation and scheduling under cloud manufacturing have attracted
the attention of a wide range of scholars [2], and in the face of large-scale manufacturing
tasks from multiple users, how to optimise resource allocation and scheduling to satisfy
users’ needs has become a research hotspot. Zhang et al. [3] proposed a synergistic el-
ementary service-group-based service composition (SESG-SC) approach, which allows
multiple functionally equivalent elementary services to be freely combined into one SESG
to jointly perform each subtask, improving the overall service quality. E.V. Goodarzi
et al. [4] proposed a mathematical model of the manufacturer’s portfolio based on game
theory and proved that in the cooperative game model, the profit and the quality of service
gained by the manufacturing service provider are greater than those in the non-cooperative
game model. Qian et al. [5] designed a collaborative cloud platform to provide an opti-
mal production schedule by considering the cost, time, quality, and energy issues in the
manufacturing process. Omid Fatahi Valilai et al. [6] performed scheduling optimisation
based on the customised requirements of dentistry by considering the completion time
and total completion time as the optimisation objectives. Jian et al. [7] developed relevant
mathematical optimisation models based on the dynamic implementation of the tasks in
the cloud manufacturing to save the shop floor production time and cost. Liu et al. [8]
developed a multi-objective mathematical model to minimise the total cost, carbon emis-
sion, and water resources from economic and environmental perspectives while meeting
time, cost, and quality requirements. Mehdi Zeynivand et al. [9] used the concept of
alternative process routing for task decomposition, which enhances the flexibility of the
system to complete resource allocation, and task delivery at the lowest cost. Hu et al. [10]
established a scheduling metric assessment based on five aspects, task loadability, task
reliability, manufacturing efficiency, manufacturing resource richness, and IoT matching,
and used the AHP method to determine the relative weights of each factor at each level
to transform the multi-objective optimisation into a single-objective problem, improving
timeliness of the cloud manufacturing platform. Li et al. [11] studied the task scheduling
of industrial robots under different enterprises under cloud manufacturing and proposed
three sub-task scheduling strategies based on the three optimisation objectives of balanced
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robot load, lowest total cost, and shortest total processing time, which were realised by
genetic algorithms. Tong et al. [12], based on the irrational characteristics of the users, used
the prospect theory in psychology to compute the user’s satisfaction level for the tasks
corresponding to advancement or delay satisfaction.

In previous studies, as shown in Table 1, most of the studies used the total completion
time, total completion cost, and service quality as objectives, some studies used cost, time,
and service quality as constraints, and some studies used a hybrid approach. Similar to
the hybrid approach, we use customer satisfaction as an objective and time, cost, and
processing quality as objective components and constraints. At the same time, we study
the scheduling problem from two perspectives, the service demand side and the service
supply side, and set two objectives, maximum satisfaction and workload balance.

Table 1. Summary of research objectives.

Demand Side Supply Side

Author Year Cost Time Quality of
Service

Customer
Satisfaction

Energy
Consumption Workloads

Li et al. [11] 2017
√ √ √

Akbaripour et al. [13] 2017
√ √ √

Zhou et al. [14] 2017
√ √

Delaram et al. [15] 2018
√

Zhang et al. [16] 2019
√ √ √ √

Zheng et al. [17] 2019
√ √ √

Qian et al. [5] 2019
√ √ √

Zhou et al. [18] 2020
√

Li et al. [19] 2020
√ √ √

Zhou et al. [20] 2021
√

Wu et al. [21] 2022
√

Tong et al. [12] 2022
√

2.2. Scheduling Optimisation Algorithm Problem

Multi-objective scheduling problems in cloud manufacturing are mostly solved by
obtaining Pareto solution sets, and meta-heuristic algorithms are one of the commonly used
tools for optimisation problems. Helo et al. [22] built a cloud-based production scheduling
system for sheet metal manufacturing and developed a genetic-algorithm-based scheduling
application to serve distributed manufacturing lines in the form of cloud manufacturing.
Gilseung Ahn [23] developed a mathematical model to minimise latency, cost, quality,
and reliability and proposed a multi-objective genetic algorithm for real-time scheduling.
Ghomi et al. [24] proposed a queuing network for the parallel scheduling of multi-tasks
and solved the model using a particle swarm algorithm based on the processing time of the
tasks. Li et al. [25] proposed a two-level multi-task scheduling model and found the optimal
solution using an improved ant colony algorithm based on two different scheduling levels.
Li et al. [19] considered the hierarchical relationship of sub-tasks within a task, taking time,
cost, and service quality as the optimisation objectives. A multi-objective algorithm based
on a swarm algorithm and multi-objective algorithm based on NSGA-II were designed to
solve the scheduling problem. Yuan et al. [26] established an optimal scheduling model
for dynamic service resources in the CMfg environment, with the objectives of time, cost,
quality, and capacity, and proposed a genetic-ant optimisation fusion algorithm to solve the
model. Shi et al. [27] established an optimisation model with the objectives of cost minimisa-
tion and time minimisation and proposed a new algorithm combining a bat algorithm and
a metacellular automaton for a cloud manufacturing resource scheduling new algorithm,
which transforms the continuous scheduling problem into a discrete problem to obtain the
optimal solution. Wu et al. [21] studied the integrated cross-supplier order and logistics
scheduling problem, and developed a strategy based on the improved mix-and-shuffle frog
jumping algorithm to solve the model.
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Therefore, an improved multi-objective genetic algorithm is designed in this paper to
solve the multi-task scheduling problem. In order to improve the comprehensiveness of
the scheduling solution in the initial population, a three-stage genetic algorithm is used
to consider the service allocation and subtask ordering in stages, which improves the
operation efficiency by gradually reducing the search space. Meanwhile, the K-means
algorithm is combined with the real-time sequence scheduling strategy, which makes the
quality of the solution improve during the iteration process.

3. Multi-Task Scheduling Optimisation Model for Supply and Demand Sides
3.1. Description of the Problem

The diagram of the cloud manufacturing model is shown in Figure 1; users contin-
uously provide manufacturing task requirements to the cloud manufacturing platform
through the Internet, and manufacturing service providers submit manufacturing services
and capabilities to the cloud manufacturing platform system. The cloud manufacturing
platform virtualises and services manufacturing resources, generates a set of optimal ser-
vice scheduling solutions based on user task requirements, and finally sends them to each
enterprise manufacturing workshop to complete the execution of specific tasks.
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Figure 1. Cloud manufacturing flowchart.

Suppose that under the current cloud manufacturing platform consists of manufac-
turing service enterprises, denoted as E = E1, E2, E3 . . . Em, which the enterprise Em can
provide i types of manufacturing services, which the type of services provided by the enter-
prise is denoted as Mm,r. The time, cost, and quality of processing vary from enterprise to
enterprise for the same type of processing. Demand tasks from the cloud manufacturing
platform user order decomposition, assuming different customers in the cloud manufac-
turing platform under the submission of single or multiple orders, the cloud platform to
receive the allocation for the task processing.

The cloud platform receives the allocation for I tasks to process, denoted as
T = T1, T2, T3, . . . , TI , each task includes single or multiple sub-tasks, which may require
one or more types of services, and Ti can be decomposed into j sub-tasks, denoted as
Si,1,Si,2, Si,3 . . . Si,j, where the corresponding attributes of each subtask are different and
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the attributes of the subtasks are denoted by the symbols Ri,j. The decomposed subtasks
are performed by manufacturing resource providers in the CMfg system by providing
manufacturing services. The following assumptions are made for the model.

(1) Tasks are all available and have the same priority at the beginning;
(2) That storage buffers are infinite;
(3) Manufacturers have unlimited manufacturing resources;
(4) A service provider can handle different types of subtasks, but can only service one

subtask at a time;
(5) Different service providers process the same type of subtask with different costs and times;
(6) That the quality of service for completing different types of subtasks is different;
(7) That all subtasks cannot be interrupted once processing has begun.

The relevant parameters involved in the mathematical model are as shown in Table 2:

Table 2. Related symbols and meanings.

Notation Hidden Meaning

Ti Task i = 1, 2, 3. . .I
I Total number of tasks

JTi Number of subtasks in task i
STi,j Subtask j of task i,j = 1, 2, 3. . .J
Ri,j Attributes of the jth subtask of task i
Em Manufacturer m = 1, 2, 3. . .M

Mm,r Attributes of services provided by manufacturer Em
PCm

i,j Processing cost of sub-task j of task i at manufacturer m
SCm

i,j Installation cost of subtask j of task i at manufacturer m
CCm

i,j Manufacturing cost of sub-task j of task i at manufacturer m
PTm

i,j Processing time of task i’s subtask j at manufacturer m
STm

i,j Subtask j of task i’s installation time at manufacturer m
Qm

i,j Quality of sub-task j of task i at manufacturer m
TC Cost per unit distance travelled
TT Time per unit distance travelled

dm,n Distance from manufacturer m to manufacturer n
ASTm

i,j Start time of subtask j of task i at manufacturer m
CTm

i,j Completion time of sub-task j of task i at manufacturer m
ATm Available time at manufacturer m

PSTm
i,j Preset start time of task i’s subtask j at manufacturer m

αm
i,j Whether sub-task j of task i is processed at manufacturer m or not

Ccont,i Maximum acceptable cost for task i
Tcont,i Latest acceptable time for task i
ABp Earliest available time for vehicle at Ep

Qcont,i Minimum acceptable product quality for task i
W Total average workload
RC Weighted cost satisfaction
RT Weighted time satisfaction
RS Weighted quality satisfaction
wi Weights of different attributes in satisfaction
αm

i,j 1 if subtask STi,j is processed by Em; 0 otherwise

3.2. Multi-Task Scheduling Model

In this paper, the objective function of the multi-objective optimisation model is
established as follows with the optimisation objectives of minimising the workload on
the service supply side and maximising the satisfaction on the service demand side in the
cloud manufacturing process:

Minimum workload:
f1 = minW (1)
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Maximum demand-side satisfaction:

f2 = maxSA (2)

Based on the perspective of service providers, it aims to avoid the overloading of
some service providers or idling of some service providers, thus improving the resource
utilisation. Load balancing is controlled by calculating the sum of the absolute value of
the difference between the working time and the average working time of each service
provider, thus protecting the interests of the service providers. The calculation method is
shown in Equation (3).

W =
M

∑
m=1

|
I

∑
i=1

J

∑
j=1

PTm
i,j ∗ αm

i,j−
1
M

M

∑
m=1

I

∑
i=1

J

∑
j=1

PTm
i,j ∗ αm

i,j| (3)

Cloud manufacturing is the embodiment of the manufacturing-as-a-service concept,
and customer satisfaction reflects the degree of customer satisfaction with the resource
scheduling service provided by the cloud manufacturing platform, which is one of the
key factors in evaluating the success of the cloud manufacturing model. In this paper, we
investigate the comprehensive impact of the three dimensions of time, cost, and service
quality on customer satisfaction SA.

Customer satisfaction with the total completion cost is expressed as the ratio of the
actual completion cost to the maximum acceptable cost to the customer. Since the number
of subtasks varies from task to task, for a more accurate representation of satisfaction, a
weighted summation is used, with the size of the weight depending on the number of
subtasks. When the value is smaller, it represents the lower actual total completion cost
required, i.e., the higher the cost satisfaction of the customer. The formula is shown in
Equation (4).

RC =
I

∑
i=1

((
M

∑
m=1

J

∑
j=1

(
CCi,j+ LC(i,j),(i,j−1))/Ccont,i ) ∗

JTi

∑I
i=1 JTi

) (4)

where the total cost consists of the manufacturing cost CC and the transport cost LC; the
manufacturing cost CC consists of the installation cost SC and the processing cost PC, which
are calculated in Equations (5) and (6).

CCi,j =
(

SCm
i,j + PCm

i,j

)
∗ αm

i,j (5)

LC(i,j),(i,j−1) = TC ∗ dm,n ∗ αm
i,j ∗ αn

i,j−1 (6)

Customer satisfaction with the total completion time is expressed as the ratio of the
actual total cost of completion to the customer’s maximum acceptable cost. The smaller the
value, the shorter the actual total completion time required, i.e., the higher the customer’s
time satisfaction. Total completion time includes the manufacturing time and logistics time.
The calculation is shown in Equation (7).

RT =
I

∑
i=1

((
M

∑
m=1

I

∑
i=1

J

∑
j=1

αm
i,j ∗ CTm

i,j/Tcont,i ) ∗
JTi

∑I
i=1 JTi

) (7)

In this paper, transport time TT, installation time ST, and processing time PT are
considered, and the time required for different sub-tasks and selected service combinations
is different. The specific calculations are shown in Equations (8)–(13).

PSTm
i,j =

{
STm

i,j No pilot mission
STm

i,j−1 + CTi,j−1 + LT(i,j),(i,j−1) otherwise
(8)
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LT(i,j),(i,j−1) = TT ∗ dm,n ∗ αm
i,j ∗ αn

i,j−1 (9)

where PSTm
i,j represents the predicted start time of sub-task STi,j when it is processed by

service provider m, and LT(i,j),(i,j−1) is the time required to transport sub-task STi,j, which
is processed by service provider n to service provider m. If service providers m and n are
in the same company, then LT(i,j),(i,j−1) = 0.

CTm
i,j = ASTm

i,j + PTm
i,j ∗ αm

i,j (10)

ASTm
i,j = max

(
PSTm

i,j, ATm

)
(11)

ATm = max
(

max(CT m
i,j

)
, AAi,j−1

)
, ∀i, j ∈

{
αm

i,j = 1
}

(12)

Equation (10) represents the completion time of the subtask at service provider m. The
actual start time of the subtask ASTm

i,j depends on the actual start time of the task, while
the actual start time of the subtask depends on the completion time of the previous subtask
CTm

i,j and the current service provider’s available time ATm, the earliest time at which the
service M can handle the current request for the subtask.

Since each manufacturing service provider in cloud manufacturing is geographically
dispersed, the transport time required by the vehicles is non-negligible, so we consider two
cases of the number of vehicles, which are finite and infinite. And if the manufacturing
service provider completes the sub-tasks if they cannot be transported immediately, they
are put into the warehouse for storage. When sub-task Si,j is processed at manufacturing
service provider Em, whether its subsequent sub-task Si,j+1 can start immediately depends
on the processing progress of another manufacturing service provider En, on the one hand,
and on the transport time of sub-task Si,j. And when the available time of the vehicle under
the manufacturing service provider Em is less than the completion time of the subtask, the
subtask is put into the storage area until a free vehicle is available. As shown in Figure 2.
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Consequently, a priority transport strategy is considered to minimise transport time.
This strategy includes the following: (1) transporting subtasks with services assigned by
subsequent subtasks first if immediate initiation is not possible; (2) prioritising subtasks for
transportation based on their completion time when either both sub-tasks can start imme-
diately or neither can; (3) otherwise, placing them in the storage area to await transport.{

AAi,j = CTi,j−1 + LT(i,j),(i,j−1) Infinitely
AAi,j = max

(
ABp, CTi,j−1

)
+ LT(i,j),(i,j−1) Limited

(13)
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Customer satisfaction with total service quality is expressed as the ratio of the actual
total quality of completion to the minimum acceptable service to the customer. A higher
value means a higher level of satisfaction. The formula is shown in (14).

RS =
I

∏
i=1

 M

∏
m=1

J

∏
j=1

αm
i,j ∗ Qm

i,j

Qm
i,j

 ∗
JTi

∑I
i=1 JTi

 (14)

By assigning appropriate weights to different factors affecting customer satisfaction, a
composite value of SA is calculated to better represent customer satisfaction. The calculation
is shown in Equation (15).

SA = min
(
w1 ∗ RC + w2 ∗ RT + w3 ∗ RS

)
(15)

In order to better determine the share of the cost, time, and service quality in customer
satisfaction, hierarchical analysis is used. Hierarchical analysis allows for the layering
of problems. Depending on the nature of the problem and the objectives to be achieved,
the problem is broken down into different components. The interactions and connections
between the factors will form an ordered hierarchical model. The relative importance
of the hierarchical factors in the model is then expressed quantitatively based on one’s
judgement of the objective reality. A comparative judgement matrix was constructed,
and the weights for ranking the relative importance of each factor at each level were
mathematically determined. Finally, the weights of the relative importance of each factor
were comprehensively calculated as the basis for evaluation and selection.

The values of w1, w2, and w3 were obtained through the calculation as 0.63, 0.26, and
0.11, and since the evaluation index of service quality is the bigger the better, the value
of w3 is negative for the purpose of unifying the indexes, and the values of w3 in the final
mathematical model are 0.63, 0.26, and −0.11.

3.3. Constraints

(1) The total cost of completion of the assignment cannot be higher than the maximum
acceptable cost to the customer.

M

∑
m=1

I

∑
i=1

J

∑
j=1

CCm
i,j ∗ αm

i,j + LC(i,j),(i,j−1) ∗ αm
i,j ∗ αn

i,j−1 ≤ Ccont,i (16)

(2) The total sub-task completion time under each task cannot exceed the latest cus-
tomer acceptance time.

max
(

CTm
i,j

)
+

M

∑
m=1

I

∑
i=1

J

∑
j=1

LC(i,j),(i,j−1) ∗ αm
i,j ∗ αn

i,j−1 ≤ Tcont,i (17)

(3) A sub-task can be served by only one enterprise.

M

∑
m=1

αm
i,j = 1 (18)

(4) The total cost of quality of the assignment cannot be lower than the maximum
acceptable quality to the customer.

M

∑
m=1

I

∑
i=1

J

∑
j=1

Qm
i,j ∗ αm

i,j

JTi

≥Qcont,i (19)

(5) The service attributes that the manufacturing service provider can provide are
matched one-to-one with the sub-task attributes in the customer’s order.
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Ri,j = Mm,r i, j, mϵ (α m
i,j = 1

)
(20)

4. Improved Three-Stage Genetic Algorithm Design Based on Clustering Algorithm

The model developed in this paper is designed to ensure workload balance while
maximising customer satisfaction, so an improved three-stage genetic algorithm is proposed
to solve the model. The framework of this research method consists of the Improve 3-
Stage Genetic Algorithm (ISGA), which improves the operational efficiency by gradually
reducing the search space.

In the first stage, only service allocation and cost constraints are considered. The
initial population p is randomly generated based on the attribute consistency principle,
and based on the k-means algorithm, the individuals are selected at different clustering
centres, and then, the service vectors of each individual are cross-mutated to update the
Pareto non-dominated solution set, as well as the non-dominated solution set, according to
the Pareto method.

Before starting the second stage, the RTSS heuristic is used to initialise the subtask
ordering vectors based on the final population obtained in the first stage, aiming to minimise
the idle time based on the progress time of the services and the slack of the subtasks. When
iteration η* is the maximum number of iteration times, the success rate of the population is
lower than ζ in consecutive iterations, or when the number of iterations reaches θ1*, the
maximum number of iterations, the first stage is ended and the second stage is started. If
both the parent and their descendants either satisfy or do not satisfy the time constraints,
then the optimal solution is retained; otherwise, solutions that satisfy the time constraints
are retained.

When iterating a maximum of η* maximum iterations, the population’s success rate
remains consistently below ζ in consecutive iterations, or when the number of iterations
reaches θ1 + θ2* maximum iterations, the third stage begins. The parameters ζ, η, θ1, and
θ2 are constant values between 0 and 1, with their specific values detailed in Section 5.
Furthermore, in both the first and third stages, a Pareto adaptive method is employed
to maintain population diversity and enhance the convergence speed by adjusting the
population size based on the performance of descendants. The flow of the improved
three-stage genetic algorithm is shown in Figure 3.

4.1. Adaptive Population Size

Pareto introduced the concept of non-dominated solutions for multi-objective prob-
lems in 1986. It is defined as follows: suppose for all objectives, f1 is superior to f2; in that
case, we say that f1 dominates f2. If f1 is not dominated by any other solution, then it is
referred to as a non-dominated solution (also known as a non-dominated Pareto optimal
solution). Achieving at least one better objective without making any other objective worse
is known as Pareto improvement. The Pareto optimal state represents a condition where it
is not possible to have more Pareto improvements. Cui et al. [28] proposed the Adaptive
Method for Population Size (AMPS) and designed an external archive to store inferior
individuals, and the individuals in the external archive still have a chance to enter the
next generation. In this paper, we propose a Pareto adaptive population size method; the
population size is adjusted according to the dynamic retention of individuals in the current
population, which involves the following parameters: minimum population size SNmin,
maximum population size SNmax, and the current population size SN. The population P
consists of a Pareto non-dominated set M and a Pareto dominated set G. The set of Pareto
non-dominated solutions includes all Pareto solutions and is continuously updated with
each iteration.
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In order to maintain the diversity and quality of the population, individuals that are
dominant in their parents or offspring will be retained into the next generation. If the
parents and offspring do not mutually dominate, the retention rule will change based on
the population’s success rate, calculated as SR = SS − SN, where SS represents the number
of successful searches by individuals in the current population. Generally, if the offspring
dominate their parents, the search for offspring is considered successful. If the population’s
success rate is high, the population contracts. The success rate of an individual is calculated
using the formula

SRi = SCi − iteri (21)

where SCi is the number of successful searches for individual Xi, and iteri is the number
of iterations for Xi. If an individual Xi has a low success rate, Xi belonging to set G and
its descendants X′

i are often not retained for the next generation; otherwise, Xi will be
retained. Conversely, if the population’s success rate is low, the population tends to expand.
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Non-dominated offspring are retained for the next generation. Of course, all population
contraction or expansion is based on not exceeding the population size limit. The specific
pseudocode is shown in Appendix A.

4.2. Genetic Algorithm
4.2.1. Modes of Coding

For the scheduling optimisation problem, service allocation and subtask sequencing
are involved simultaneously. The service allocation problem is to select the appropriate
manufacturing service for each subtask, and subtask sequencing is to confirm the processing
order of the subtasks from the manufacturing service provider. Therefore, a two-tier coding
approach is used. If there are M users, each with I tasks and each with J subtasks, the
calculation of the sum of subtasks S can be performed according to Equation (22).

S =
M

∑
m=1

I

∑
i=1

J

∑
j=1

stmnj (22)

The chromosome is encoded in an integer, and the length of the chromosome string is
2 × S. The first part indicates the service assignment, and the change service can process
the corresponding subtasks. The second part indicates the processing order of all subtasks.
For example, in MS = (2 3 1 2 1 1 3 3 1), the first ‘2’ indicates that the first subtask of task 1
is assigned to the second manufacturing service provider for processing. The second layer
is the subtask ordering, where each element represents a subtask of the corresponding task,
and the nth occurrence of the same number indicates the nth subtask in the sequence of
tasks. For example, for sequences = (1 1 2 1 3 3 2 3), the first ‘1’ represents the first subtask
of the first task. The second ‘1’ represents the second subtask of the first task, and the length
of the encoding is determined by the number of subtasks. The length of the encoding is
determined by the subtask’s. The encoding is 2312133111213323, The service sequence is
{(T1,1, MS2), (T1,2, MS3), (T2,1, MS2), (T1,3, MS1), (T3,1, MS3), (T3,2, MS3), (T2,2, MS1),
(T3,3, MS1)} which represents the scheduling scheme as shown in Figure 4.
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Figure 4. Modes of coding.

4.2.2. Binary Tournament Selection Method Based on k-Meas Algorithm

Binary tournaments usually randomly select two competitors in the population, and
the winner goes to the next generation. However, since there is a probability of selecting
similar individuals during the selection process, the k-mean algorithm is combined to
improve the diversity of the population. To facilitate the calculation, the objective function
value of each individual is standardised, k individuals are randomly selected as the cluster-
ing centre, divided into different clusters according to the Euclidean distance between each
individual and the cluster, and the clustering centre is constantly updated according to the
squared error until it reaches the satisfaction condition. Then, two clusters are randomly
selected, and an individual with a minimum Pareto rank and larger crowding distance
is selected from any two individuals in each cluster for the next step. The flow of the
algorithm is as follows in Appendix B.

4.2.3. Cross-Variation

For service allocation sequences, a two-point crossover operator is used. Two different
parents from the current population are selected as the basis for crossover, two crossover
points are randomly selected on the chromosomes of the parents, and the segment between
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the crossover points is copied from one parent to the offspring individual, and the segment
outside the crossover points from the other parent is copied to the offspring individual, as
shown in Figure 5. Blue numbers indicate genes from parent 1 and red numbers indicate
genes from parent 2 in Figure 5.
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Figure 5. Two-point crossover.

For subtask ordering sequences, order-based priority-preserving crossover is used.
Two different parent individuals from the current population were selected as the basis
for crossover, and one or more crossover points were randomly selected in the aligned
sequence of parent individuals. The gene segments between the crossover points were
copied from one parent individual to the corresponding positions in the offspring, and the
remaining blank positions were sequentially complemented by the remaining elements of
the other parent individual, as shown in Figure 6. Blue numbers indicate genes from parent
1 and red numbers indicate genes from parent 2 in Figure 6.
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Figure 6. Order-based priority-preserving crossover.

For the service assignment sequence, a single point of mutation is used, where an
individual from the current population is randomly selected as the subject of the mutation
operation to be performed. A randomly selected mutation point in the chromosome
of the selected individual, i.e., the location of the gene for which the mutation is to be
performed, is re-scheduled to another service based on the mutation rate MR to produce a
new offspring. If any infeasible offspring is generated, the available service closest to the
currently unavailable service will be reselected and assigned to the corresponding subtask,
as shown in Figure 7. Bolded text represents mutated genes and red text represents mutated
genes in Figure 7.
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Figure 7. Single-point mutation.

For the subtask sequencing sequence, the mutation process will be carried out on
the basis of the crossover operator by using the two-point mutation, where an individual
is randomly selected from the current population as the object to carry out the mutation
operation. Two mutation points, i.e., the gene positions where the mutation is to be
performed, will be randomly selected in the chromosome of the selected individual and the



Systems 2024, 12, 133 13 of 24

two mutation points will be exchanged. The above mutation method avoids the generation
of infeasible offspring, as shown in Figure 8. The blue and red numbers in Figure 8 represent
the two different mutant genes that were selected.
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4.3. Real-Time Task Sequence Scheduling

The purpose of real-time task sequence scheduling is to obtain an initial sub-task
sequence based on the first-stage service allocation schedule. This sequence ensures that
once the current sub-task processing order is determined, the subsequent sub-tasks become
immediately available. During the scheduling process, newly available sub-tasks are sorted
based on their slackness, and the sub-task sequencing sequence is updated until all sub-
tasks are completed. If the selected sub-tasks have the same slackness, they are sorted
randomly. The slackness of sub-tasks represents their urgency, and the calculation method
is outlined in Formula (23):

Li,j = TTi,j − rti (23)

where rti is the total time required to complete the remaining subtasks of the current task
according to the given service assignment. To avoid time constraints that cannot be satisfied,
all selected subtasks are sorted in ascending order based on their slackness values. Subtasks
with the smallest slack value are scheduled first, and subtasks with the same slack value
are randomly ordered. The pseudo-code is shown in Appendix C.

5. Case Study
5.1. Description of the Problem

In order to obtain effective parameter combinations and evaluate the performance of
the T-SGA, a series of computational experiments was carried out based on four instances.
The computer configuration used for these experiments was 8 GB RAM and an Intel(R)
Core(TM) i7 CPU @ 1.80 GHz.

In order to test the efficiency of ISGA in multi-objective optimisation solving, six test
instances were generated based on different numbers of tasks, sub-tasks, and manufacturing
services, shown in Table 3. The ranges of different parameters in the test instances were
collected from the company based on the stochastic nature of task execution in the CMfg
system. The processing unit time and cost ranged from 10 min to 30 min and $10 to $40,
and based on real applications, the unit time and cost were set to range from 10 min to
30 min and $10 to $30. Therefore, considering the confidentiality reasons, the values of
these parameters were randomly generated from the scope of the survey. The distance
between manufacturing service providers is taken between 100 and 400 km. The average
unit logistics cost lc is 5 The average unit logistics time LT is 0.004 days/km.

Table 3. Test case information.

Case Total Number
of Tasks

Range of Number of
Subtasks

Total Number
of Subtasks

Number of
Manufacturing Services

1 5 1–5 18 3
2 10 1–7 49 5
3 15 3–7 76 5
4 20 4–8 127 10
5 40 4–8 254 15
6 60 4–8 381 20
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5.2. Algorithm Parameters and Performance Metrics
5.2.1. Setting Parameters

To obtain a higher-quality solution set with ISGA, it is necessary to determine the
values of parameters, such as the population size, ζ, η, θ1, and θ2. Considering four factor
levels and four parameters, a Taguchi orthogonal experiment was employed to determine
the optimal parameter combinations. An orthogonal array L16 (44) was used, and the
experiments were conducted using the medium-sized case #03 for comparison. In order to
better judge the merits of the parameters, Wang et al. [29] proposed the average response
variable (ARV). In each repeated experiment, multiple Pareto nondominated sets were
obtained based on different parameter combinations, all Pareto solutions were combined,
and Pareto solutions were selected from them to form a new Pareto nondominated set M*.
The ratio of the number of solutions belonging to the new nondominated solution set M*
under different parameter combinations is calculated; the larger the value, the better the
parameter combination. In order to determine the effective initial population size, the ISGA
is run independently 20 times on the basis of other parameters with constant values, for
which the variation rate is 0.2, the maximum number of iterations is 500, and the difference
in each population size is 50. And based on the suggestion of Han et al. [30], the clustering
number K is set to 10 to run the ISGA independently 20 times. The ARVs for different
parameter combinations are shown in Table 4.

According to the data in the table, the following changes in the ARV for different
values of the four parameters are derived, and to better see the changes in the data, the
data are represented in Figure 9.
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Table 4. ARVs under orthogonal experiments.

Serial Number ξ η θ1 θ2 ARV

1 1 1 1 1 5.06%
2 1 2 2 2 9.61%
3 1 3 3 3 12.64%
4 1 4 4 4 3.55%
5 2 1 2 3 8.09%
6 2 2 1 4 12.04%
7 2 3 4 1 9.61%
8 2 4 3 2 9.61%
9 3 1 3 4 11.12%

10 3 2 4 3 9.61%
11 3 3 1 2 8.09%
12 3 4 2 1 12.64%
13 4 1 4 2 5.06%
14 4 2 3 1 12.64%
15 4 3 2 4 9.61%
16 4 4 1 3 6.58%

5.2.2. Pareto Front

This paper establishes a multi-objective optimisation model of minimising workload
and minimising energy consumption, due to these two optimisation objectives belong
to the non-linear relationship, so this paper adopts the method of solving the Pareto-
optimal solution set for its calculation, and the image of the Pareto-optimal solution set
plotted on the axes of the objective function is the Pareto frontier. In order to better verify
the effectiveness of the SGA algorithm, it is compared with the Hybrid Artificial Bee
Colony Algorithm (TABC) [31], Modified Genetic Algorithm (MGA) [19], Pareto-based
Grouping Discrete Harmony Search algorithm (PGDH) [32], and Multi-objective Particle
Warm Optimisation algorithm (MOPSO) [33]

The results of the six random instances are shown in Table 5. From the data in the
table, it can be seen that among the solution results of the five algorithms under different
algorithms, ISGA takes the best value. Additionally, Figure 10 illustrates that the Pareto
frontiers achieved by the ISGA algorithm are superior in comparison to those obtained by
the other algorithms. That is, the Pareto solutions obtained by the other four algorithms are
almost dominated by the solution set obtained by ISGA.

Table 5. Pareto-optimal solutions for different algorithms.

Workload Satisfaction

ISGA MGA MOPSO ABC HS ISGA MGA MOPSO ABC HS

1 28 43.2 46.8 41.6 56.8 0.636 0.639 0.647 0.653 0.724
2 8.8 12 7.6 11.2 26.4 0.555 0.577 0.574 0.578 0.701
3 5.6 32.4 20 10 60 0.526 0.592 0.562 0.582 0.632
4 21.2 91.6 140 41.2 240 0.588 0.642 0.67 0.592 0.700
5 103 256.1 230 137 428 0.621 0.719 0.713 0.671 0.765
6 545.3 703.9 549.1 628.6 841 0.724 0.868 0.8473 0.7631 0.901
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Figure 10. Pareto frontiers for different algorithms under different arithmetic cases.
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5.2.3. Evaluation Indicators

In order to verify the effectiveness of the improved algorithm proposed in this paper,
the distance with the Lower Bound (DLB), the proximity of the Pareto bound to the Lower
Bound, for which the smaller value represents the better solution set, is introduced, adapted
from Mansouri et al. [34], and the calculation method is shown in Equations (24) and (25):

DLBW =
∑(Wi − Wmin/Wmin)

Ω
(24)

DLBSA =
∑(SAi − SAmax/SAmax)

Ω
(25)

Here, Ω denotes the set of all Pareto solutions obtained by the algorithms after 20
runs, and Wmin and SAmax denote the minimum workload and maximum satisfaction, i.e.,
the lower bounds of the model solutions obtained by the five algorithms, respectively. Wi
and SAi denote the ith solution in the algorithms’ Pareto frontiers, where i belongs to Ω.
For different problem sizes, the smaller the value of the DLB, the better the set of Pareto
solutions obtained by the ISGA. Under different problem sizes, the smaller the value of
DLB, the better the set of Pareto solutions it obtains, so it is obvious that ISGA always
outperforms the other four algorithms in solving the model, as shown in Table 6.

Table 6. DLB of different algorithms in different cases.

Workload Satisfaction

ISGA MGA MOPSO ABC HS ISGA MGA MOPSO ABC HS

1 1.784 64.07 89.49 66.8 119.101 0.064 0.079 0.08 0.094 0.205
2 3.059 2.256 7.806 5.159 6.956 0.049 0.09 0.11 0.083 0.313
3 3.728 10.765 7.431 11.889 17.263 0.021 0.149 0.067 0.059 0.213
4 3.144 7.298 16.024 6.026 19.207 0.031 0.134 0.137 0.039 0.21
5 1.625 3.084 3.769 2.0522 6.3729 0.017 0.198 0.146 0.090 0.267
6 0.9910 1.8905 2.0524 0.8118 2.9320 0.0931 0.2913 0.2298 0.2090 0.2830

Due to the non-compliance of the data distribution with the assumptions of a standard
t-test, a Robust t-test, also known as the Wilcoxon Signed-Rank Test, was employed. It
assesses the differences between our proposed algorithm and the other four algorithms in
terms of experimental results. If a p-value is less than 0.05, the differences are considered
significant. Table 7 presents the results of the Robust t-test, displaying the corresponding
p-values. For most instances, the p-values are below 0.05, indicating significant differences
between the ISGA and the other four algorithms. Thus, the effectiveness of the ISGA is
further confirmed.

Table 7. Robust t-test results.

#01 #02 #03 #04 #05 #06

MGA 1.249 × 10−5 0.0028089 0.01 2.558 × 10−5 0.0199 2.58 × 10−5

MOPSO 0.00122 0.001289 0.002 0.01198 0.0199 3.25 × 10−5

ABC 0.0061 0.01551 0.010 5.01 × 10−6 0.0013 0.0009
HS 0.0146 0.01469 0.0250 1.104 × 10−5 3.14 × 10−8 1.91 × 10−8

To further assess the efficacy of the ISGA algorithm, this section additionally employs
the Inverted Generational Distance (IGD) metric. This metric considers not only the
proximity of the generated solutions to the true Pareto front but also the uniformity in
the distribution of these solutions. According to the data presented in Table 8, the ISGA
significantly outperforms other algorithms in terms of IGD metrics.
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Table 8. IGD values under different algorithms.

IGD #01 #02 #03 #04 #05 #06

ISGA 0.0227 0.0124 0.8860 3.4819 0.0059 0.01079
MGA 2.6211 0.0132 5.1583 9.9330 8.3972 6.90664

MOPSO 5.9394 0.0444 2.7335 25.1119 23.5035 0.68788
ABC 0.0217 0.0438 1.2324 5.2528 0.5877 0.0230
HS 10.8718 0.7701 9.5462 25.3649 76.5652 28.71873

5.3. Results Analysis and Discussion

In this subsection, we examine the Pareto solution for the ISGA in ten order tasks. De-
tailed manufacturing resource information is shown in Tables 9 and 10. The processing and
manufacturing sequences corresponding to partial orders, and the required manufacturing
services are shown in Figure 11.

Table 9. Manufacturer and manufacturing resource information.

Manufacturers Service Time/min Processing Cost/$ Set Cost/$ Quality (%)

1 turn 12 29 15 92
drilling 33 17 24 86

soldered 28 18 19 95
planning 19 20 16 94

2 bores 23 23 20 82
soldered 17 18 22 95

turn 35 15 19 92
3 punch 18 18 17 89

mill 26 17 23 95
soldered 34 17 21 94

4 planning 12 27 16 92
turn 26 11 22 83

drilling 38 20 25 94
5 bores 36 23 24 95

planning 16 18 23 98
soldered 20 24 19 92

Table 10. Distance between manufacturers.

km 1 2 3 4 5 6 7 8 9 10

1 0 355.4 245.5 272.3 20.2 126.2 55.2 10.8 19.3 170.3
2 355.4 0 100.2 21.5 153.9 200.2 24.5 15.4 148.9 298.1
3 245.5 100.2 0 292.6 60.2 28.7 73.2 22.2 21.1 18.4
4 272.3 21.5 292.6 0 113.5 175.8 178.1 301.6 156.9 279.3
5 20.2 153.9 60.2 113.5 0 41.6 16.5 121 18.6 16
6 126.2 200.2 28.7 175.8 41.6 0 19.6 63.1 92.4 186.2
7 55.2 24.5 73.2 178.1 16.5 19.6 0 16.6 48.9 32.5
8 10.8 15.4 22.2 301.6 121 63.1 16.6 0 102.7 64.3
9 19.3 148.9 21.1 156.9 18.6 92.4 48.9 102.7 0 136.1

10 170.3 298.1 18.4 279.3 16 186.2 32.5 64.3 136.1 0

Different automotive parts require different processing services for combined manufac-
turing. According to the execution process of the cloud platform, after receiving the order
information, the cloud platform will pre-process the order, decompose each manufacturing
task into multiple sub-tasks with different granularities, and determine its candidate service
set. Table 11 shows the processing information after decomposition.
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Table 11. Scheduling task information.

Task Number of Subtasks Subtask

1 4 Valve/Crankcase/Connecting rod/Oil pan
2 3 Gear housing/Oil pan/EGR passage
3 4 Connecting rod/Oil pan/Gear housing/EGR passage
4 6 Gear housing/Oil pan/EGR passage/Valve/Crankcase/Clutch housing
5 4 Gear housing/Clutch housing/EGR passage/Valve
6 7 Gear housing/Oil pan/Valve/Crankcase/Clutch housing/Connecting rod
7 3 Crankcase/Connecting rod/Oil pan
8 6 Gear housing/Clutch housing/EGR passage/Valve/Crankcase/Oil pan
9 5 Gear housing/Connecting rod/Valve/Crankcase/Clutch housing
10 7 Crankcase/Clutch housing/EGR passage/Valve/Gear housing/Oil pan

Figure 12 shows the Pareto frontier for cloud manufacturing scheduling optimisation
for both the supply and demand sides.

The solution closest to the origin in the Pareto frontier is taken, and its corresponding
subtask processing order and the corresponding processing and manufacturing service
scheduling scheme are shown in Figure 13. Based on the Pareto solution set, it can be
concluded that the range of workloads is between 7.2 and 99.2 min and customer satisfaction
is between 0.59 and 0.66. From the manufacturing service provider’s point of view, at the
expense of customer satisfaction, the manufacturer can achieve a minimum workload of
7.2 min, which is a 92% reduction in the minimum workload and a significant improvement
in resource utilisation. At the same time, every solution in the set of Pareto solutions is
satisfying the customer. That is to say, the manufacturing service provider can choose
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the scheduling solution according to the amount of free resources under the condition of
satisfying the demand side of manufacturing services.
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Similarly, to better illustrate the necessity of scheduling optimisation research for both
supply and demand sides, the ISGA is used for solving the problem, and the optimisation
objectives are set to o total completion time, total cost, and total quality, while using the case
data. The results of 20 scheduling optimisation solutions are summarised, from which the
optimal solution is taken out and a Gantt chart is drawn based on the obtained scheduling.
As shown in Figure 14, the blank space between processes indicates that the manufacturer’s
processing machine is in an idle state, and comparing the two Gantt charts, it can be seen
that the workload is more balanced under the resource scheduling optimisation model
oriented towards the supply and demand sides; the resource utilisation rate under the
two scenarios is shown in Table 12, and when load balancing is taken into account, the
lowest resource utilisation rate of the manufacturing service provider is 71.20%, the highest
reaches 93.94%, and the average resource utilisation rate is 76%, while the highest resource
utilisation rate of the manufacturer is only 72.56% when load balancing is not considered,
and the resource utilisation rate of some manufacturers is less than half, with an average
resource utilisation rate of 62.83%. This shows that resource utilisation can be improved
when load balancing is considered.
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Table 12. Whether to consider load balancing resource utilisation comparison.

Consider Load Balancing Do Not Consider Load Balancing
Task 1 2 3 4 5 1 2 3 4 5

Load Time 148 107 144 148 146 155 100 134 142 165
Total Boot Time 157.5 180.4 202.2 203 176.6 234.7 243.7 185.4 228 227.4

Resource Utilisation 93.9% 59.3% 71.2% 72.9% 82.6% 66.% 41.% 72.2% 62.3% 72.5%
Average Utilisation 76.00% 62.83%

6. Conclusions and Outlook

The research objective of this paper is to solve the optimisation of resource scheduling
to satisfy both the supply and demand sides of the service in a cloud manufacturing
environment and then to achieve better resource utilisation. Firstly, the demand and supply
sides are considered, and the optimisation objectives of minimising load balancing and
maximising customer satisfaction are taken as the optimisation objectives, so that the
scheduling scheme can meet the demands of both supply and demand sides. Secondly, an
improved genetic algorithm is designed, which adopts a staged solution method, while
the k-means algorithm is integrated into the selection operator to improve the diversity
of the population; a real-time sequential scheduling strategy is adopted, which improves
the quality of the understanding. Finally, by comparing and analysing with the other four
heuristic algorithms, the effectiveness and efficiency of the ISGA in solving the supply-
demand dual-issue coordinated scheduling problem is verified.

This paper lays theoretical foundations and provides empirical insights for multi-
objective multi-task scheduling optimisation in cloud manufacturing environments. Never-
theless, given the diversity of cloud manufacturing scenarios, substantial research opportu-
nities remain. Future efforts should encompass a broader array of scheduling objectives,
including carbon emissions, water usage, labour costs, and order batching, to address the
cloud manufacturing multi-task scheduling challenge more holistically. Additionally, incor-
porating dynamic factors, such as machine breakdowns, rush orders, and schedule changes,
into the scheduling process is crucial, enabling rapid task reassignment and flexible priority
adjustments to accommodate evolving production demands.
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Appendix A. Pseudo-Code for Adaptive Population Size Algorithm

Algorithm A1: Pareto-based adaptive population size method

For i = 1: SN
If Xi dominated by X′

i
Reserve X′

i into the next generation
If X′

i is dominated by Xi
Reserve Xi into the next generation

Else
Calculate success rate SR of all individuals
If SR > rand // shrink the population

Calculate success rate sri of the ith individual
If XiϵG && sri < rand && SN> SNmin

SN = SN − 1
End if

Else // expand the population
If SN < SNmax

Reserve X′
i into the next generation and SN = SN + 1

End if
End for

Update M and G

Appendix B. Clustering Algorithm Kmeans Pseudo-Code

Algorithm A2: Procedure of k-means cluster in selection operator

Begin
Normalised the objective function of each individual p
Choose Kindividuals randomly as the centre of clusters, set iter = 1, E0 = 0
While iter ≤ Cmaxiter

Calculate the Euclidean distance between the individuals and K centres
Assign each individual to a cluster based on the smallest Euclidean distance.

Calculate the sum of the squared errors Eiter = ∑
sop
p=1 ∑K

k=1 zpk

∣∣∣ fp − µk

∣∣∣2,

Where µk denotes objective function vector of the kth cluster centre and sop =
size of population. zpk = 1, if individual p in the cluster Ck, else zpk = 0.

If iter > 1
If Eiter= Eiter−1

break.
Else

Update its centre µk.
Endif

Endif
iter = ter + 116.
Endwhile

End
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Appendix C. Real-Time Task Sequence Scheduling Pseudo-Code

Algorithm A3: Real-Time sequence scheduling

While h ≤ ∑U
u=1 Ku // h is the total number of sequenced subtasks

If the subtasks are newly available at the current time
Select the newly available subtasks
Calculate the laxity of the selected subtasks
Sequence the selected subtasks according to the laxity value
If two or more selected subtasks have the same laxity value

Sequence the selected subtasks that have the same laxity value randomly
End if
Add the sequence record to the subtask sequence vector

h = h + δ // δ is the number of selected subtasks at each time
End while
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