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Abstract: Supplier selection is a multi-attribute decision-making (MADM) problem that is affected
by often-conflicting factors (e.g., price, quality, and delivery performance). If a supplier selection
problem (SSP) is solved by different MADM methods, different solutions are likely to be obtained.
This can be advantageous for decision makers because they have a good choice of alternative solutions.
However, it brings about the need for a comparison approach for choosing the solution that best fits
the decision maker’s purchasing strategy. So, decision makers may have two needs: (1) a good choice
of alternative solutions and (2) a comparison approach. To help decision makers with the first need,
we make two contributions to the literature on SSPs. For one, we formulate an integer nonlinear
optimization model that evaluates and sorts the suppliers based on similarity to the ideal solution.
For another, we make enhancements to the existing Factor Rating (FR) method. For the second need,
we propose a comparison procedure to rank different solutions by measuring their relative closeness,
both Rectilinear and Euclidean, to the ideal solution. The first two proposed methods along with the
existing FR and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) methods
are applied to a set of test SSPs, and then, the comparison procedure is used to identify the ‘superior’
method for each test problem.

Keywords: multi-attribute decision-making; supplier selection problem; integer nonlinear optimiza-
tion model; ranking of solutions procedure

1. Introduction

Supplier selection is a MADM problem involving a number of quantitative and qual-
itative factors such as price, quality, and environmental impact. Dickson [1] sent a ques-
tionnaire to 273 purchasing agents and managers in the United States and Canada, and
subsequently identified and ranked 23 factors for SSPs. Some factors might conflict with
one another, meaning a supplier that is favorable in one factor might not be favorable
in another. The relative weight or importance of these factors can differ among decision
makers in the supply chain depending on their purchasing strategies [2]. The consideration
of numerous factors with different weights contributes to the complexity of SSPs [3,4]. In
addition, the cost of component parts and raw materials in manufacturing can be up to 70%
of product cost [5]. In such circumstances, supplier selection is a strategic decision and one
of the most important functions of purchasing management [6].

There exist two scenarios in SSPs: single sourcing and multiple sourcing. In the first
scenario, all candidate suppliers are individually capable of meeting a buyer’s needs, and
therefore, it would suffice for the buyer to select a single supplier. In the second scenario,
supplier constraints (e.g., production capacity) force a buyer to purchase the same item
from more than one supplier. Also, multiple sourcing is a practical way of ensuring the
reliability of a buyer’s supply stream [7]. For example, Toyota, Honda, and Nissan were
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affected by the devastating Japan earthquake and tsunami in March 2011, partly due to the
disruptions faced by their Japanese parts suppliers. In this case, a buyer might prefer to split
its orders among multiple suppliers who are, for example, geographically scattered even
though single sourcing is possible. Typically, in multiple sourcing, the buyer can first rank
the suppliers by an MADM method and then split the order among the ranked suppliers,
with greater quantities ordered from the higher-ranked suppliers as capacities permit.

2. Literature Review

The various solution methods that have been applied to SSPs include the analytic
hierarchy process or AHP [8,9], analytic network process or ANP [10], linear weighting
methods [11,12], total cost approach [13], TOPSIS [14,15], machine learning algorithms [16],
and mathematical programming techniques [4,17].

Among these methods, TOPSIS is one of the widely used techniques that evaluates and
ranks suppliers based on the concept that the chosen alternative should have the shortest
distance from the positive ideal solution (PIS) and the longest distance from the negative
ideal solution (NIS). It is worth noting that TOPSIS is a variation of the classical Hellwig’s
method [18] that dates back to 1968. TOPSIS considers distances to the ideal and anti-ideal,
while Hellwig’s method considers only distances to the ideal.

Modibbo et al. [19] performed a multi-criteria decision analysis for pharmaceutical
supplier selection using Fuzzy TOPSIS. Memari et al. [20] used Fuzzy TOPSIS for sus-
tainable supplier selection. Junior et al. [21] developed a comparative analysis of Fuzzy
TOPSIS and Fuzzy AHP methods in the context of supplier selection decision-making.
Singh et al. [22] proposed a hybrid model of Fuzzy AHP and Fuzzy TOPSIS to evaluate and
select an appropriate third-party logistics (3PL). Yu et al. [23] developed a novel integrated
supplier selection approach incorporating a buyer’s risk attitude using the artificial neural
network, AHP, and TOPSIS methods. Venkatesh et al. [24] applied integrated fuzzy AHP
and TOPSIS methods to evaluate and rank supply partner alternatives. Leong et al. [25] in-
tegrate GRA (Grey Relational Analysis), BWM (Best Worst Model), and TOPSIS for resilient
supplier selection.

Luan et al. [26] combined a genetic algorithm and ant colony optimization to solve a
supplier selection problem. Zakeri et al. [27] proposed a method of evaluating suppliers
based on optimal points and win–loss–draw decision-making. Stević et al. [28] present
a method for sustainable supplier selection in healthcare industries they call MARCOS,
for measurement of alternatives and ranking according to compromise solution. FR, also
known as the simple additive weighting method, is another MADM method that has
been used for facility location, scholarship applicant, and IT-project selection problems by
researchers such as Sharma et al. [29] and Rizana and Soesanto [30].

Awasthi et al. [31] studied a multi-tier, global supplier selection problem using a
fuzzy AHP-VIKOR-based approach. VIKOR is a Serbian acronym that translates to multi-
criteria optimization and compromise solution. VIKOR uses vector normalization of
criterion units, whereas TOPSIS uses linear normalization. Rajesh and Ravi [32], as well as
Golmohammadi and Mellat-Parast [33], developed Grey relational analysis-based models
for supplier selection. Hashemi et al. [34] combined the analytic network process and
Grey relational analysis for supplier selection. Tsai et al. [35] developed a fuzzy data
envelopment analysis model, while Wang et al. [36] combined DEA and Grey’s, for supplier
selection and plant site selection, respectively.

We summarize the literature review in Table 1 where LWM is linear weighting methods;
TCA is total cost approach; MLA is machine learning algorithms; MP is mathematical
programming; and OM is other methods.
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Table 1. The literature review.

Research Paper
Solution Method Type

AHP ANP TOPSIS VIKOR FR LWM GRA DEA MLA MP OM

Jadidi et al. [4] *
Ghodsypour and O’Brien [5] * *
Dweiri et al. [8] *
Barbarosoglu and Yazgac [9] *
Sarkis and Talluri [10] *
Thompson [11] *
Soesant et al. [12] *
Smytka and Clemens [13] *
Jadidi et al. [14] *
Kumar et al. [15] *
Kiran et al. [16] *
Chaudhry et al. [17] *
Modibbo et al. [19] *
Memari et al. [20] *
Junior et al. [21] * *
Singh et al. [22] * *
Yu et al. [23] * *
Venkatesh et al. [24] * *
Leong et al. [25] * * *
Luan et al. [26] *
Zakeri et al. [27] *
Stević et al. [28] *
Sharm et al. [29] *
Rizana and Soesanto [30] *
Awasthi et al. [31] * *
Rajesh and Ravi [32] *
Golmohammadi and Mellat-Parast [33] *
Hashemi et al. [34] * *
Tsai et al. [35] *
Wang et al. [36] * *

Note: * indicates the solution method is used in the research paper.

3. Research Focus

SSPs are akin to, say, forecasting problems in the sense that different methods can
be used to generate solutions. As these methods produce different forecasts, alternate
measures (e.g., mean absolute deviation and mean squared error) can be used to evaluate
the forecast methods and select the one that best meets the forecaster’s overall strategy. The
same can be said for MADM problems like SSPs: they can be solved by different MADM
methods, resulting in different alternative solutions. Having a good choice of alternative
solutions may be advantageous for the decision maker but a comparison approach is needed
for picking the solution that best fits the desired purchasing strategy. So, decision makers
may have two needs: (1) a good selection of alternative solutions and (2) a comparison
approach for identifying the ‘best’ solution.

To help decision makers with the first need, we propose two new methods to evaluate
and rank suppliers. The first new method involves the formulation of an integer nonlinear
optimization model that evaluates and sorts the suppliers based on similarity to the ideal
solution. We call the model INOSIS (Integer Nonlinear Optimization by Similarity to the
Ideal Solution). The INOSIS method is based on the TOPSIS concept. For the second new
method, we make enhancements to the existing Factor Rating (FR) method and call it the
Modified Factor Rating (MFR) method. Our main objective of proposing the INOSIS and
MFR methods is to complement the methods mentioned in the literature review and to
provide more alternative solutions for decision makers. In this study, we show that no
method consistently provides the most preferred/desirable solution.

For the second need, we propose a procedure referred to as ROS, for Ranking-of-
Solutions, to rank different solutions by measuring their relative closeness, both rectilinear
and Euclidean, to the ideal solution. The ROS procedure assumes that the decision maker
would prefer a supplier that is closer to (or more resembles) the best-possible supplier
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compared to the other suppliers. It is believed to be the first of its kind that helps the
decision maker identify which solution is most preferred.

In Section 4 of this paper, the single-source problem under study is defined, the
proposed MFR and INOSIS solution methods and proposed ROS selection procedure are
described. In Section 5, the FR, MFR, INOSIS, and TOPSIS methods are applied to a set of
test SSPs, and the ROS procedure is used to rank their solutions. In Section 6, conclusions
are drawn and suggested future research is discussed.

4. Methods

The two proposed SSP solution procedures, MFR and INOSIS, as well as the proposed
ROS procedure are described in detail next. The following notations are used in the
proposed methods:

S = {S1, . . ., Sj, . . . Sm} discrete set of m possible suppliers
Q = {Q1, . . ., Qi , . . . Qn} discrete set of n factors
W = {W1, . . ., Wi , . . . Wn} vector of n factor weights
Wi weight assigned to factor Qi ∀i
NWi normalized weight calculated for factor Qi ∀i
Rij rating of supplier j for factor i ∀ij

D decision matrix containing Rij ∀ij
NRij normalized rating of supplier j for factor i ∀ij
ND normalized decision matrix containing NRij ∀ij
CNRij converted normalized rating of supplier j for factor i ∀ij
CND converted normalized decision matrix containing CNRij ∀ij
Oj overall score of supplier j ∀j
S+ positive ideal solution
Ej weighted distance of supplier j from S+

f+i best-possible rating
f−i worst-possible rating
αij rating’s relative closeness to the best-possible rating ∀ij
SCSj weighted relative closeness score of supplier j ∀j
OCS overall closeness score

4.1. Preliminary Steps

The four SSP solution methods (FR, MFR, TOPSIS, and INOSIS) employed in this
paper all start with the seven steps described below.

Step i. Decide on the set of candidate suppliers, where S = {S1, . . ., Sj, . . . Sm} is a
discrete set of m possible supplier alternatives.

Step ii. Decide the supplier factors (e.g., price, quality, and location) to be considered,
where Q = {Q1, . . ., Qi, . . . Qn} is a discrete set of n factors. It is assumed there are i = 1
to n′ positive (or benefit) factors like reputation and i = n′+ 1 to n negative factors like
wholesale price.

Step iii. Decide the factor weights to be used, where W = {W1, . . ., Wi, . . . Wn} is
a vector of n factor weights and Wi is the weight assigned to factor Qi ∀i. Decision
makers usually use linguistic variables to express the factor weights. For example, the
environmental impact of a supplier can be very low, low, moderate, high, or very high. In
such a case, the factor weights can be expressed by the 5-level scale shown in Table 2.

Table 2. Scale of factor weights.

Level Weight, w

Very low 0.00
Low 0.25
Moderate 0.50
High 0.75
Very high 1.00

Step iv. Normalize the factor weights. The sum of the weights should equal one, and
thus they are normalized by Equation (1), getting NWi:
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NWi =
Wi

∑n
i=1 Wi

; ∀i (1)

Example: Assume that a buyer is evaluating three suppliers against two factors: Q1 is
service level that is a positive, qualitative factor; Q2 is wholesale price that is a negative,
quantitative factor. Based on the buyer’s strategy, the importance of Q1 is “Very High”
meaning W1 = 1. Or the importance of Q2 is slightly lower than “Moderate” which means
somewhere between “Moderate” and “Poor” but closer to “Moderate”. So, from Table 2,
the weight can be a number between 0.25 and 0.50 but close to 0.50. How much closer
this is to or far from “Moderate” (or 0.50) depends on the decision makers’ discretion.
So, the decision makers may set W2 to 0.43. Table 2 is intended to show five discrete
reference points on a continuous zero-to-one scale. By applying Equation (1), the resulting
normalized weights, NW1 and NW2, are 1.00/1.43 = 0.7 and 0.43/1.43 = 0.3, respectively.

Step v. Decide on the quantitative scale to be used for the rating values of the m
suppliers on the n factors. Decision makers often start with linguistic variables to express the
scale for supplier factor ratings. The linguistic variables are then converted to quantitative
values. Table 3a,b are two examples of how conversion can be accomplished, the former for
monotonic variables and the latter for non-monotonic variables.

Table 3. (a) Scale of supplier factor ratings for a factor with monotonic levels. (b) Scale of supplier
factor ratings for a factor with non-monotonic levels.

(a)

Level Rating, R

Very poor 0
Poor 25

Medium 50
Good 75

Very good 100

(b)

Sufficiency Level Rating, R Excessiveness Level

Extremely Insufficient 0 Extremely Excessive
Very Insufficient 25 Very Excessive

Moderately Insufficient 50 Moderately Excessive
Slightly Insufficient 75 Slightly Excessive

Optimal 100 Optimal

A monotonic factor, such as product quality, has strictly increasing or strictly de-
creasing levels. The optimal level is the minimum or maximum level. In contrast, a
non-monotonic factor, such as supplier capacity utilization, has both increasing and de-
creasing levels. A non-monotonic supplier variable is analogous to a concave or convex
utility function. The optimal level is not necessarily the maximum or minimum level. The
classic Economies/Diseconomies of Scale concept that arises in operations management is
an example of a non-monotonic scale.

Keep in mind, both Table 3 (a,b) happen to show just five discrete reference points on
a continuous 0 to 100 scale.

Step vi. Decide rating values Rij, where Rij ∀ij is the rating of Supplier j for factor i.
For qualitative factors, use Table 3 to identify the factor rating values for each supplier.
Quantitative factors are scaled using their own real numbers.

Step vii. Construct decision matrix D as shown in Equation (2).

D =


R11
R21

R12
R22

· · ·
· · ·

R1m
R2m

... ...
. . .

...

Rn1 Rn2 · · · Rnm

 (2)
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4.2. Modified Factor Rating (MFR) Method

The MFR method is like the Factor Rating (FR) method in that it is used for evaluating
and ranking alternatives against multiple factors. As the factors may have different scales
or units, they need to be normalized. Furthermore, all the factors need to be converted to
the same classification of either positive or negative. In the FR method used by Rizana
and Soesanto [30], normalization and conversion are performed in one step (which is
presented in Appendix A). However, in the MFR method, normalization and conversion
are performed differently and separately. The difference between FR and MFR has a
considerable impact on the solution and is discussed in the numerical analysis section. We
explain the MFR method in this subsection, while the FR method is covered in Appendix A.

MFR Procedure

We continue with the example problem introduced in Section 4.1 involving three
candidate suppliers and two factors, service level (a positive factor) and wholesale price
(a negative factor). The execution of Steps i through vii, described above, resulted in the
following decision matrix D:

S1 S2 S3

D =

[
0.25 0.75 0.25
$100 $110 $95

]
Q1
Q2

Here, one can see that Supplier 2 is offering the highest service level, 0.75, and Supplier
3 is offering the lowest wholesale price, $95.

Step 1. Normalize the ratings to get NRij using Equation (3) and construct the normal-
ized decision matrix ND in Equation (4):

NRij =
Rij

∑m
j=1 Rij

, ∀ij (3)

ND =


NR11
NR21

NR12
NR22

· · ·
· · ·

NR1m
NR2m

... ...
. . .

...

NRn1 NRn2 · · · NRnm

 (4)

Note: The factor ratings are normalized to transform the different factor scales into a
common measurable scale to allow comparisons across the factors.

Applying Equation (3) to the service factor Q1 ratings: NR11 = 0.25/1.25,
NR12 = 0.75/1.25, and NR13 = 0.25/1.25. Applying it to the price factor Q2 ratings:
NR21 = 100/305, NR22 = 110/305, and NR23 = 95/305. The resulting normalized decision
matrix ND is:

S1 S2 S3

ND =

[
0.2000 0.6000 0.2000
0.3279 0.3607 0.3115

]
Q1
Q2

Step 2. If any factor is negative, as is the case with wholesale price factor Q2, the
factor’s ratings must be converted to positive by means of Equation (5). The resulting
converted normalized decision matrix CND is denoted by Equation (6).

CNRij =

{
NRij i = 1, . . . , n′; ∀j for n′ positive factors
1−NRij

m−1 i = n′ + 1, . . . , n; ∀j for n − n′ negative factors
(5)

CND =


CNR11
CNR21

CNR12
CNR22

· · ·
· · ·

CNR1m
CNR2m

... ...
. . .

...

CNRn1 CNRn2 · · · CNRnm

 (6)
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Q2 is a negative factor, so the complements of the three suppliers’ normalized ratings
are found to be 0.672, 0.639, and 0.689. In this instance, the complementary ratings sum to
2 (i.e., ∑3

j=1
(
1 − NRij

)
= 2, ∀i), so if each complementary rating is divided by 2, we have

∑3
j=1

(
1−NRij

2

)
= 1, ∀i. Q2’s normalized ratings are CNR21 = 0.3360, CNR22 = 0.3195, and

CNR23 = 0.3445. The resulting converted normalized decision matrix, CND, is:

S1 S2 S3

CND =

[
0.2000 0.6000 0.2000
0.3360 0.3195 0.3445

]
Q1
Q2

If a fourth supplier were added, the sum of the complementary ratings for the four sup-
pliers would be ∑4

j=1
(
1 − NRij

)
= 3 ∀i. To generalize, we always have ∑m

j=1
(
1 − NRij

)
=

m − 1 ∀i. Therefore, we can normalize the complementary ratings by dividing them by

m − 1, i.e., ∑m
j=1

(
1−NRij

m−1

)
= 1 ∀i.

Step 3. Calculate each supplier’s overall score Oj by Equation (7):

Oj = ∑n
i=1 NWi × CNRij (7)

Continuing with the example and using Equation (7), the resulting overall scores of
the three suppliers are:

O1 = 0.241, O2 = 0.516, and O3 = 0.243

Step 4. Rank the suppliers in decreasing order of their overall scores. The supplier
with the highest overall score is the best-choice supplier. In this example, Supplier 2 is the
best choice, Supplier 3 is the second best, and Supplier 1 is the third best.

4.3. Integer Nonlinear Optimization (INOSIS) Model

For the INOSIS model, we formulate an integer nonlinear optimization model to
evaluate and sort the suppliers. The model does so based on the TOPSIS concept that
the chosen alternative should have the shortest Euclidean distance from the positive ideal
solution, PIS. The INOSIS model maximizes the sum of the products of the suppliers’
ranking and the suppliers’ distance from the PIS. A larger rank is assigned to a longer
distance, and conversely, because it is a maximization model. So, the suppliers are sorted
in the increasing order of the rankings obtained by the INOSIS method.

The INOSIS model requires execution of Steps 1 and 2 described in Section 4.2 for the
MFR method. Thus, our discussion of the INOSIS model assumes the ratings have been
normalized and negative-factor ratings have been converted to positive ratings (i.e., the
CND matrix is completed).

Step 3. Determine the PIS, denoted S+, from the converted normalized decision matrix
CND. S+ =

(
Q+

1 , Q+
2 , . . . ., Q+

n
)
, where Q+

i = maxj
(
CNRij

)
∀i.

Step 4. Compute the weighted distance of Supplier j from S+, denoted Ej, using
Equation (8).

Ej =
k
√

∑n
i=1 NWi ×

(
CNRij − Q+

i
)k ∀j (8)

where k = 1 and 2 are used for rectilinear and Euclidean distances, respectively.
Step 5. Formulate and solve the following integer nonlinear optimization model

represented by Equation (9) through (12).

Z = ∑m
j=1

(
Pj × Ej

)
(9)

subject to
Pj ∈ Z>0 ∀j (10)
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Pj ̸= Pl ∀j ̸= l; i, l ∈ {1, 2, . . . , m} (11)

∑m
j=1 Pj = ∑m

m′=0

(
m − m′) (12)

Equation (9) makes sure that Pj = 1 is assigned to the smallest Ej, Pj = 2 to the second
smallest Ej, . . . and Pj = m to the largest Ej. Let us assume there are two suppliers (j = 1,
2), where Pj is an integer decision variable and represents supplier j’s ranking. E2 ≤ E1
indicates that Supplier 2 is superior to Supplier 1, and thus, P2 = 1 and P1 = 2. Since
E2 ≤ E1 and P2 < P1, we have (P2 × E2) < (P1 × E1). So, the largest possible value for
Z = (P2 × E2) + (P1 × E1) results when we assign the largest Pj (i.e., P1 = 2) to the largest
Ej (i.e., E1) and the second largest Pj (i.e., P2 = 1) to the second largest Ej (i.e., E2). Therefore,
the ranking of the suppliers, Pj ∀j, can be obtained by maximizing Equation (9), subject to
the constraints represented by Equations (10)–(12).

Equation (10) indicates that Pj ∀j are strictly positive integer values. Equation (11)
ensures that no two suppliers have the same ranking.

Equation (12) prevents Pj ∀j from becoming infinite as Equation (9) is maximized.
To see how Equation (12) works, assume that there are four suppliers (i.e., m = 4), where

E1 < E2 < E3 < E4. For m = 4, we have ∑4
j=1 Pj =

4︷ ︸︸ ︷
(4 − 0) +

3︷ ︸︸ ︷
(4 − 1) +

2︷ ︸︸ ︷
(4 − 2) +

1︷ ︸︸ ︷
(4 − 3) +

0︷ ︸︸ ︷
(4 − 4) = 10 for Equation (12). Here, one can see that, since each supplier’s ranking
must be unique and strictly positive integer, the only possible values for Pj ∀j to make
∑4

j=1 Pj = 10, are 1, 2, 3, and 4.
Step 6. Rank the suppliers in the increasing order of the Pj ∀j (since the smallest Pj is

assigned to the smallest Ej, the second smallest Pj to the second smallest Ej, etc.).

4.4. Ranking of Solutions (ROS) Procedure

Here, it is assumed a buyer prefers a supplier that is closest to (or most resembles)
the theoretical best supplier and supplier rankings are based on this preference. (In the
example introduced in Section 4.1, the ratings of the theoretical best supplier for Q1 and
Q2 are 0.75 and $95, respectively.) To be general as well as consistent with the TOPSIS and
INOSIS methods, the proposed ROS procedure measures the weighted relative closeness
(in both rectilinear and Euclidean distance) of a solution to the ideal solution.

Step 1. We express the suppliers’ ratings, Rij ∀ij, in the decision matrix D, by fuzzy
sets whose membership function increases linearly from 0 to 1 as shown in Equation (13)
and Figure 1. The membership function is 1 for the best-possible rating, f+i , and 0 for the
worst-possible one, f−i . For positive factors, f+i = maxj

(
Rij
)

and f−i = minj
(

Rij
)
∀i, and

for negative factors, f+i = minj
(

Rij
)

and f−i = maxj
(

Rij
)
∀i.

(Rij) =


1 Rij ≥ f+i
f+i −Rij

f+i − f−i
f−i < Rij < f+i

0 Rij ≤ f−i

(13)
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Figure 1. Membership function for supplier rating, Rij.
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Step 2. Compute each rating’s relative closeness, αij, to the best-possible rating, using
Equation (14):

αij =

(
f+i − Rij

f+i − f−i

)
∀ij (14)

Step 3. Compute each supplier’s weighted relative closeness score, SCSj, by Equation (15):

SCSj = Gj ×
k
√

∑n
i=1

(
Wi × αij

)k ∀j (15)

where k = 1 for rectilinear and k = 2 for Euclidean, relative closeness.
The supplier’s ranking, obtained by the evaluation method in question, must be

included in this calculation by means of a Gj score. Score Gj is assigned to Supplier j, ∀j, so
that an inferior supplier cannot be scored greater than its superior. For example, Gj = m
if Supplier j is the best supplier, Gl = m − 1 if Supplier l is the second-best supplier, and
so on.

Step 4. Compute the overall closeness score, OCS, by Equation (16):

OCS = ∑m
j=1 SCSj (16)

In Equation (16), one can see that smaller values of OCS are desirable because when
Rij gets closer to f+i , OCS gets smaller.

Step 5. Rank the supplier selection methods in increasing order of their overall
closeness scores. The method with the smallest OCS is the one preferred by the buyer.

5. Numerical Analysis

The FR, MFR, INOSIS, and TOPSIS methods, as well as the ROS procedure, were
applied to a supplier selection problem involving 7 suppliers and 12 factors. The steps
of the MFR method are presented, but only the results of the FR, INOSIS, and TOPSIS
methods are shown to keep this paper concise. Then, we present a summary of the results
of applying the four solution methods and ranking-of-solutions procedure to 100 test
problems whose parameters were generated randomly in MS Excel.

5.1. Single Test Problem
5.1.1. Preliminary Steps

Step i. It is assumed there are seven suppliers (m = 7).
Step ii. It is assumed there are twelve factors (n = 12). The first six factors are assumed

to be positive (n′ = 6) and the other six (n − n′ = 6) are negative. The positive factors might
include supplier production capacity and product-option variety because higher values for
these factors would likely be more appealing to buyers. The negative factors might include
supplier wholesale price and product defective rate, for which buyers would likely prefer
lower values.

Step iii. In practice, the weight of each of the twelve factors is decided by the buyer.
For this demonstration, the weights were randomly generated in MS Excel using “RAND-
BETWEEN(0, 100)/100”.

Step iv. The weights are normalized by Equation (1) and appear in Table 4.

Table 4. Normalized factor weights.

Factors Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

NWi 0.186 0.132 0.108 0.043 0.024 0.002 0.182 0.126 0.098 0.067 0.029 0.004

Steps v and vi. In practice, the supplier ratings for each factor are decided by the
buyer. For this demonstration, the suppliers’ ratings for the twelve factors were randomly
generated by the “RANDBETWEEN” function in MS Excel. For example, the suppliers’
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ratings for the first factor was generated by “=RANDBETWEEN(8, 10)”. For the remaining
eleven factors, the values “(0, 100)”, “(0, 1)”, “(0, 1)”, “(8, 10)”, “(5, 12)”, “(5, 20)”, “(0,
1)”, “(0, 1)”, “(0, 1)”, “(0, 1)”, and “(20, 50)” were used as the lower and upper bounds,
respectively, in the “RANDBETWEEN” function.

Step vii. The resulting decision matrix D containing the supplier ratings for the
12 factors appears in Table 5.

Table 5. Decision matrix D containing Rij values and each factor i’s ∑j Rij.

Factor S1 S2 S3 S4 S5 S6 S7 ∑j Rij

Q1 9.00 10.00 9.00 8.00 10.0 10.00 9.00 65.00
Q2 53.00 53.00 84.0 22.00 23.0 37.00 19.00 291.00
Q3 0.76 0.74 0.95 0.18 0.53 0.89 0.80 4.85
Q4 0.27 0.35 0.85 0.97 0.64 0.50 0.39 3.97
Q5 10.00 8.00 10.0 8.00 8.00 8.00 8.00 60.00
Q6 10.00 9.00 12.0 7.00 7.00 11.00 12.00 68.00
Q7 5.00 7.00 8.00 18.00 10.0 20.00 13.00 81.00
Q8 0.79 0.37 0.84 0.58 0.66 0.43 0.44 4.11
Q9 0.18 0.57 0.18 0.33 0.80 0.32 0.62 3.00
Q10 0.60 1.00 0.85 0.73 0.66 0.60 0.07 4.51
Q11 0.99 0.52 0.17 0.00 0.43 0.81 0.74 3.66
Q12 27.00 22.00 33.0 48.00 29.0 49.00 38.00 246.00

Note: The last column in Table 5 shows the sum of the suppliers’ ratings for each factor that is used in the next
step to normalize the decision matrix.

5.1.2. MFR Procedure

Steps 1 and 2. Using Equations (3) and (5), the converted normalized decision matrix
CND in Table 6 is computed.

Table 6. Converted normalized decision matrix, CND.

Factor S1 S2 S3 S4 S5 S6 S7

Q1 0.138 0.154 0.138 0.123 0.154 0.154 0.138
Q2 0.182 0.182 0.289 0.076 0.079 0.127 0.065
Q3 0.157 0.153 0.196 0.037 0.109 0.184 0.165
Q4 0.068 0.088 0.214 0.244 0.161 0.126 0.098
Q5 0.167 0.133 0.167 0.133 0.133 0.133 0.133
Q6 0.147 0.132 0.176 0.103 0.103 0.162 0.176
Q7 0.156 0.152 0.150 0.130 0.146 0.126 0.140
Q8 0.135 0.152 0.133 0.143 0.140 0.149 0.149
Q9 0.157 0.135 0.157 0.148 0.122 0.149 0.132
Q10 0.144 0.130 0.135 0.140 0.142 0.144 0.164
Q11 0.122 0.143 0.159 0.167 0.147 0.130 0.133
Q12 0.148 0.152 0.144 0.134 0.147 0.133 0.141

Step 3. The suppliers’ overall scores for the MFR method are computed by Equation (7)
and shown, along with their subsequent rankings, in Table 7. Table 7 also shows the results
of the other three methods.

Table 7. Overall score and ranking of each supplier for the four methods.

Methods S1 S2 S3 S4 S5 S6 S7

MFR Oj 0.148 0.150 0.172 0.122 0.132 0.144 0.133

MFR Ranking 3 2 1 7 6 4 5

TOPSIS Oj 0.650 0.611 0.702 0.315 0.405 0.409 0.436

TOPSIS Ranking 2 3 1 7 6 5 4
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Table 7. Cont.

Methods S1 S2 S3 S4 S5 S6 S7

FR Oj 0.814 0.834 0.916 0.728 0.794 0.854 0.776

FR Ranking 4 3 1 7 5 2 6

INOSIS Ranking 2 4 1 7 6 3 5

The INOSIS model was formulated in MS Excel and solved by Solver and finds only
the supplier rankings, not the scores. For the FR, MFR, and TOPSIS methods, the supplier
with the highest overall score is the best supplier. For example, for the MFR method
Supplier 3’s overall score is the highest (i.e., O3 = 0.172), and thus it has a ranking of “1”.

5.1.3. ROS Procedure

For this particular problem, all four solution methods ranked Supplier 3 as “1”, but
the methods differed in their other supplier rankings, which would be meaningful if this
was a multiple-source SSP and prompts the application of the proposed ROS procedure.

Steps 1. From Table 5, we obtain the best-possible rating, f+i , and the worst-possible
one, f−i , shown in Table 8. For positive factors, f+i = maxj

(
Rij
)

and f−i = minj
(
Rij
)
∀i, and

for negative factors, f+i = minj
(
Rij
)

and f−i = maxj
(
Rij
)
∀i.

Table 8. The best- and the worst-possible ratings.

Factor Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Best-possible rating 10.0 84.0 0.95 0.97 10.0 12.0 5.00 0.37 0.18 0.07 0.00 22.0
Worst-possible rating 8.00 19.0 0.18 0.27 8.00 7.00 20.0 0.84 0.80 1.00 0.99 49.0

Step 2. Using Equation (14), the ratings’ relative closeness, αij, to the best-possible
ratings are calculated and shown in Table 9.

Step 3. Using Equation (15) and k = 1, each supplier’s weighted relative closeness
score, SCSj, is computed and shown in Table 10.

Step 4. Using Equation (16), the overall closeness score, OCS, is computed to be 11.35.
The overall closeness score, OCS, for the other three methods was found to be (in

ascending order) 11.44 for FR, 11.51 for TOPSIS, and 11.56 for INOSIS. In this instance, the
MFR method is superior because its overall closeness score is the lowest. When k = 2, the
OCS scores were 0.94 for MFR, 0.96 for FR, 0.95 for TOPSIS, and 0.99 for INOSIS, again
resulting in the MFR method being superior.

Table 9. The relative closeness, αij, to the best-possible ratings.

Factor S1 S2 S3 S4 S5 S6 S7

Q1 0.50 0.00 0.50 1.00 0.00 0.00 0.50
Q2 0.48 0.48 0.00 0.95 0.94 0.72 1.00
Q3 0.25 0.27 0.00 1.00 0.55 0.08 0.19
Q4 1.00 0.89 0.17 0.00 0.47 0.67 0.83
Q5 0.00 1.00 0.00 1.00 1.00 1.00 1.00
Q6 0.40 0.60 0.00 1.00 1.00 0.20 0.00
Q7 0.00 0.13 0.20 0.87 0.33 1.00 0.53
Q8 0.89 0.00 1.00 0.45 0.62 0.13 0.15
Q9 0.00 0.63 0.00 0.24 1.00 0.23 0.71
Q10 0.57 1.00 0.84 0.71 0.63 0.57 0.00
Q11 1.00 0.53 0.17 0.00 0.43 0.82 0.75
Q12 0.19 0.00 0.41 0.96 0.26 1.00 0.59
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Table 10. The suppliers’ weighted relative closeness scores.

Factor S1 S2 S3 S4 S5 S6 S7

Q1 0.09 0.00 0.09 0.19 0.00 0.00 0.09
Q2 0.06 0.06 0.00 0.13 0.12 0.10 0.13
Q3 0.03 0.03 0.00 0.11 0.06 0.01 0.02
Q4 0.04 0.04 0.01 0.00 0.02 0.03 0.04
Q5 0.00 0.02 0.00 0.02 0.02 0.02 0.02
Q6 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q7 0.00 0.02 0.04 0.16 0.06 0.18 0.10
Q8 0.11 0.00 0.13 0.06 0.08 0.02 0.02
Q9 0.00 0.06 0.00 0.02 0.10 0.02 0.07
Q10 0.04 0.07 0.06 0.05 0.04 0.04 0.00
Q11 0.03 0.02 0.00 0.00 0.01 0.02 0.02
Q12 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.2. Set of 100 Test Problems

To have a robust analysis, random numbers were generated in MS Excel to produce the
supplier factor ratings and factor weights for 100 cases involving 7 suppliers and 12 factors.
For each case, the four methods were used to score and rank the suppliers. Then, the
ROS procedure was employed to measure their effectiveness and determine the superior
method. Table 11 shows the number of times each of the four methods was, or tied for, the
superior method.

Table 11. Number of times each of the four methods is superior.

MFR TOPSIS FR INOSIS

k = 1 17 25 57 13

k = 2 13 40 42 15

The results show that the FR method provided superior (most preferred) solutions far
more frequently than the other three methods when k = 1. However, when k = 2, TOPSIS
provided superior solutions nearly as frequently (40 times) as did the top-performing FR
method (42 times). No method tested was consistently superior, which is why the decision
maker can benefit from using a number of methodologies and picking the solution that
best fits their purchasing strategy.

6. Conclusions and Suggestions for Future Research

A host of different methods for evaluating and ranking suppliers has appeared in
the literature. When a SSP is solved by those methods, different solutions are likely to be
obtained. This can be advantageous for decision makers because they have a good choice
of alternative solutions. However, this may bring a question that what solution can be
the superior/most-preferred one. In other words, decision makers need a comparison
approach for choosing the solution that best fits their purchasing strategy or that is the
superior/most-preferred solution. To help the decision makers with this need, a ROS
procedure was proposed here.

In this study, we applied four SSP solution methods, two proposed (MFR and INOSIS)
and two established (FR and TOPSIS) ones, to 100 test problems whose parameters were
generated randomly in MS Excel. As expected, the solutions (i.e., supplier rankings)
determined by the four solution methods often varied in the case of each test problem. Then,
we used the proposed ROS method to determine the superior/most-preferred solutions.
The analysis on the 100 test problems showed no method was consistently superior or
provided the superior/most-preferred solution. Therefore, our main objective of proposing
the INOSIS and MFR methods is to provide a good choice of alternative solutions for
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the decision makers. And the reason for proposing the ROS method is to determine the
superior/most-preferred solutions.

Based on the analysis, it is suggested that different methods be used to solve a problem
and that the ROS procedure be used to realize which solution is preferred. More robust
testing of solution methods and the proposed ROS procedure would be worthwhile.

There might still be methods, new or modified, that can be developed for the multi-
attribute supplier selection problem defined in this study. In addition, the proposed ROS
procedure is but one way to evaluate the solutions of the different MADM methods; the
development of other approaches could be beneficial.

For future research, it might be worthwhile to investigate how the uncertainty of, or
changes in, suppliers’ performance on the various evaluation criteria can be considered in
the supplier ranking process. For example, the quality of a raw material purchased from
Supplier 1 is currently better than Supplier 2. However, the quality of Supplier 1 is getting
worse over time while that of Supplier 2 is getting better. A stochastic approach to scoring
supplier performance might be a realistic consideration. Going further, sensitivity (i.e.,
what-if) analysis could be conducted to determine the change in supplier rankings that
results from changes in performance criteria weights or scores.
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Appendix A

In this subsection, it is shown how the FR and TOPSIS methods can be used for a
supplier selection problem. For more about these two methods, the reader is referred to
Singh et al. [22], Yu et al. [23], and Venkatesh et al. [24] for TOPSIS, and to Rizana and
Soesanto [30] for FR. To compare the FR and TOPSIS methods with the MFR method, we
also show the steps of the MFR method here.

FR and TOPSIS Procedures
The first seven steps in these two procedures are the same as those in MFR.
Step 1A. Normalize the ratings by the following formulas:

TOPSIS FR MFR

NRij =
Rij√
∑j Rij

, ∀ij
NRij =

Rij

maxj(Rij)
, i = 1, . . ., n′; ∀j

NRij =
minj(Rij)

Rij
, i = n′+ 1, . . ., n; ∀j

NRij =
Rij

∑m
j=1 Rij

, ∀ij

Note: For FR method, normalization and conversion are performed together.

Step 2A. Construct the converted normalized decision matrix by the following formulas:

TOPSIS FR MFR

Do nothing for TOPSIS
method.

Do nothing for FR method.
CNRij = NRij, i = 1, . . ., n′; ∀j

CNRij =
1−NRij

m−1 , i = n′+ 1, . . ., n; ∀j

Step 3A. Construct the weighted normalized decision matrix by the following formulas:

TOPSIS FR MFR

NRw
ij = NRij × Wi, ∀ij Do nothing for FR method. Do nothing for MFR method.
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Step 4A. Find the best (PIS)-, Sb, and the worst (NIS)-, Sw, possible solutions as follows:

TOPSIS FR MFR

Sb = {B1, B2, · · · , Bm}
Sw = {N1, N2, · · · , Nm}

Do nothing for FR method. Do nothing for MFR method.

where Bi = (NRw
i1, . . . , NRw

im)∀i and Ni = (NRw
i1, . . . , NRw

im)∀i for cost attributes;
Bi = (NRw

i1, . . . , NRw
im)∀i and Ni = (NRw

i1, . . . , NRw
im)∀j for benefit attributes.

Step 5A. Calculate the separation of each weighted normalized score from the PIS and
NIS as follows:

TOPSIS FR MFR

∆+
j =

√
∑m

j=1

(
NRw

ij − Bi

)2
, ∀i

∆−
j =

√
∑m

j=1

(
NRw

ij − Ni

)2
, ∀i

Do nothing for FR method. Do nothing for MFR method.

Step 6A. Calculate the supplier’s overall score as follows:

TOPSIS FR MFR

Oi =
∆−

j

∆+
j +∆−

j
, ∀j Oj = ∑n

i=1 NWi × NRij, ∀j Oj = ∑n
i=1 NWi × CNRij, ∀j

Step 7A. For the three methods, the suppliers are ranked in decreasing order of their
overall scores.

Table A1 better shows all the steps that these three techniques should take in order to
evaluate the suppliers.

As one can observe here, for TOPSIS, there are five steps to ranking the suppliers
while FR and MFR methods have three and two steps, respectively. Hence, FR and MFR
have less computational complexity compared to TOPSIS. However, as was demonstrated
in the numerical analysis section, there is no superior method that always gives the
preferable solution.

Table A1. The difference in the three techniques.

Steps FR MFR TOPSIS

Step 1A. Constructing the normalized decision matrix * * *

Step 2A. Constructing the converted decision matrix * Do Nothing Do Nothing

Step 3A. Constructing the weighted normalized decision matrix Do Nothing Do Nothing *

Step 4A. Find the PIS and the NIS Do Nothing Do Nothing *

Step 5A. Calculate the distance of each weighted normalized score from the PIS
and the NIS Do Nothing Do Nothing *

Step 6A. Calculate the suppliers’ overall score * * *

Note: * indicates the procedural step applies to the solution method.
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