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Abstract

:

Effective emergency logistics facility site selection is vital for ensuring prompt and fair food supply during crises. This study tackles the intricate task of choosing optimal sites for emergency food logistics facilities by considering varying urgency levels of needs, uncertain demands, and potential facility interruptions. A novel weighted Mahalanobis distance–gray relational analysis–TOPSIS method is devised to evaluate demand urgency and guide site selection decisions. The proposed location model aims to minimize total cost and unmet demand while integrating discrete scenario strategies to address interruption events. Leveraging the Social Network Search (SNS) algorithm, the model is solved, and its effectiveness is validated through a case study analysis. The results highlight the accuracy of the urgency level determination method in capturing demand characteristics and the model’s provision of an objective and practical framework for formulating rational facility location strategies. This approach holds significant promise for enhancing the promptness and fairness of food supply assurance during emergencies.
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1. Introduction


Frequent sudden events worldwide have a profound impact on residents, economies, and social development. Post disasters, there is a surge in food demand in affected regions, requiring swift supply under resource constraints [1,2,3]. Optimizing the spatial layout of emergency logistics facilities is a widely employed and effective strategy to reduce material distribution time, manage costs, and enhance material supply efficiency [4,5,6]. It serves as a crucial practical foundation for emergency logistics system operations and has the potential to significantly enhance the effectiveness of material supply efforts. The optimization process should adhere to the principle of prioritizing urgent demands first. Facilities should be strategically located near areas with high demand urgency, and their capacity should align with the urgency of material requirements. By accounting for demand variations and fully acknowledging the urgency’s impact, the development of scientifically driven site selection strategies for emergency logistics facilities can facilitate the establishment of a robust and efficient emergency logistics system. This, in turn, can enhance allocation efficiency, bolster material supply operations during crises, and ensure reliable support [7,8,9,10,11,12,13,14].



Various research endeavors have been pursued to tackle this challenge. Ye Feng et al. introduced an Emergency Warehouse Location Problem (EWLP) model, prioritizing effectiveness in emergency management over efficiency, to investigate the site selection problem for national emergency warehouses in China [15]. Liu Jin et al. advocated emergency material reserve warehouse site selection based on coverage satisfaction and cost-effectiveness [16]. Mansoor et al. presented a comprehensive bilateral location model considering center and customer utilities to enhance service quality and center density [17]. Naranjo et al. proposed a hierarchical facility location model for multi-category facilities, emphasizing storage capacity and coverage rate to optimize overall coverage satisfaction [18]. Regis-Hernández et al. assert that combining location and allocation factors can strengthen the scientific foundation of location decisions [19]. To capture the intricacies and uncertainties of emergencies, Michael et al. developed a multi-capability P-median facility location model that accounts for the diverse needs of individuals following disasters [20]. Guo et al. addressed the intermittent unavailability of established emergency logistics facilities due to capacity constraints or disaster impact in their research on emergency logistics facility location issues [21]. Several groups of researchers have extensively investigated the effects of uncertain demand on location problems [22,23,24,25]. Several groups of scholars emphasize the significance of transportation and transit costs in location problems [26,27,28,29]. In contrast, other groups of scholars advocate incorporating humanitarian considerations into site selection decisions [30,31,32,33].



These studies have given less emphasis to variations in demand urgency. To tackle this gap, Pamucar et al. introduced the fuzzy FUCOM-D’Bonferroni model to prioritize transportation demand management (TDM) issues [34]. Song et al. introduced a novel material dispatching model that accounts for distinct disaster severity levels, ensuring prioritization and concentration on emergency material dispatching in severely affected areas while also considering equity in emergency material distribution across all levels [35]. Furthermore, Song et al. recommended that scheduling decisions should factor in rescue time window constraints across different urgency levels [36]. Zhang et al. proposed a dynamic optimization model that considers demand urgency, arguing that conventional emergency material supply models focus on meeting quantity requirements but overlook the subjective urgent needs of diverse emergency materials and disaster victims, hindering the fair and rational maximization of limited resources’ utility [37]. For complex location models, Mišković et al. proposed a variable neighborhood search method to tackle practical problems that the CPLEX solver cannot handle [38]. Filippi et al. introduced a kernel search heuristic to improve the effectiveness of model solutions [39]. Presently, research on emergency material dispatch primarily focuses on medical supplies and specialized rescue equipment, often overlooking the importance of food provision. Emergency food plays a crucial role in not only sustaining life but also maintaining social order, facilitating swift responses, preventing diseases, supporting long-term rescue efforts, and catering to vulnerable populations. Unlike medical supplies that have specific usage guidelines, various types of food can address basic survival requirements. Additionally, food presents distinct challenges like perishability and specific transportation needs. Therefore, in situations with limited resources, it is essential to prioritize various food requirements and make strategic decisions regarding facility locations.



This paper explores the problem of food emergency logistics facility location by fully considering the impact of demand urgency and determining the optimal layout and configuration of these facilities. Firstly, it designs a method for assessing demand urgency and establishes a location model aimed at minimizing total cost and unmet demand, with considerations for potential facility disruptions. Secondly, it develops a solution method for the model and verifies it through case analysis. Finally, this paper summarizes the findings, aiming to improve China’s crisis management capabilities and enhance emergency response effectiveness.




2. Model Establishment


2.1. Problem Description and Assumptions


Within an emergency logistics system, emergency logistics facilities primarily comprise emergency logistics centers and distribution centers. The material demand points, representing the disaster-affected areas, can be fulfilled directly by the emergency logistics centers or indirectly through the distribution centers. Emergency logistics centers are divided into permanent and temporary types, with permanent ones established during the prevention and preparation phase. In the aftermath of a sudden incident, the emergency response phase may witness substantial casualties and losses, rendering existing logistics centers inadequate to meet the demand. Hence, it becomes imperative at this juncture to address the two-tier food emergency logistics facility location problem encompassing “logistics centers–distribution centers”. The model integrates uncertain demand and demand urgency to formulate the location model for food emergency logistics facilities. To streamline the model, it focuses solely on domestic logistics and considers a single mode of transportation, be it road, waterway, or air transport. Furthermore, the model operates under the following assumptions:




	(1)

	
The positions of potential emergency logistics facilities and demand points are predetermined.




	(2)

	
Each emergency logistics facility can cater to multiple demand points, and conversely, demand points can be serviced by multiple facilities.




	(3)

	
Factors such as demand, damage rate, and damage cost of various material types are not taken into account.




	(4)

	
The capacity of emergency logistics facilities is restricted, and can be adjusted as needed, in proportion to construction and operational expenses.









Following a sudden disaster, uncertainty parameters may not exhibit randomness due to information scarcity, and the outcomes of diverse disasters can differ. It is plausible that uncertainty parameters cannot be deduced from historical data or conform to a probability distribution. In such instances, the prerequisites for employing stochastic programming are not fulfilled, prompting the creation of a robust optimization model. To tackle uncertainty parameters in the location selection issue, uncertainty sets are employed to represent demand uncertainty. We devise a food emergency logistics facility location model centered on demand urgency. The symbols utilized in the model are elucidated below:



 I : a set of demand points,   I = 1 , 2 , … ,  | I |   .



 M : a set of established and candidate logistics centers,   M =  {  1 , 2 , … ,  | M |   }   .



 N : a set of candidate distribution centers,   N =  {  1 , 2 , … ,  | N |   }   .



 k : the total categories of emergency food.



   q i   ,      q i k   ¯   : these, respectively, represent the expected demand of the demand point (   I i   ) and the actual demand of the demand point (   I i   ) for materials ( k ),   k ∈ K  .



   λ i   ,    λ i k   : these denote the urgency of emergency demand and the urgency of emergency food ( k ) demand at the demand point (   I i   ).



  F  C M   ,   F  C N   : the unit construction cost of the logistics center and distribution center,   F  C M  > F  C N   .



  V  C M   ,   V  C N   : the unit operating cost of the logistics center and distribution center,   V  C M  > V  C N   .



  S C  : the unit transportation cost refers to the cost of transporting goods per unit distance.



  T C  : the unit transit cost is the charge for moving each unit of goods from the logistics center to the demand point through the distribution center.



   v  N max    ,    ν  N max    : the maximum and minimum construction capacity (i.e., the volume of materials they can handle) of logistics centers.



   s  m i    ,    s  n i    ,    s  m n    : the distance from the demand point to the logistics center, the distance from the demand point to the distribution center, and the distance from the logistics center to the distribution center.



   w M   ,    w N   : the decision variable, i.e., the number of emergency logistics centers and distribution centers opened.



   x m M  ∈  {  0 , 1  }   ,    x n N  ∈  {  0 , 1  }   : The decision variable signifies the opening status of a logistics center (   M m   ) or distribution center (   N n   ). A value of 1 indicates that the center is open, while any other value indicates closure.   m ∈ M  ,   n ∈ N  .



   v m M   ,    v n N   : The decision variable. The capacity of a logistics center and distribution center denotes the volume of goods they can hold.



   z  m n  k   ,    z  m i  k   ,    z  n i  k   : the decision variable representing the allocation quantity of food supply ( k ) among logistics centers, distribution centers, and demand points.




2.2. Determination of Demand Urgency


Following a sudden event, the urgency of demand for emergency food varies across demand points due to factors like the severity of the disaster, economic conditions, and population demographics. The urgency of demand is influenced by factors such as food importance, production capabilities, transportation challenges, and emergency response efficiency. As a result, demand points exhibit varying levels of urgency for different food types. Therefore, the analysis of demand urgency should consider two aspects: the urgency at demand points and the urgency across food categories. Priority should be given to meeting the needs of high-urgency demand points while also addressing those with lower urgency. This approach allows for centralized coordination by emergency material management centers, rational selection of emergency logistics sites, and efficient resource utilization. It enhances decision-making precision, ensures timely food supply during emergencies with limited resources, reduces management expenses, and boosts rescue effectiveness.



To assess the urgency of food demand at various points, we consider the following indicators: degree of disaster (X1), extent of building or road damage (X2), energy demand density (X3), primary industry GDP (X4), population density (X5), and ratio of elderly and young population (X6). For evaluating the urgency of food demand itself, we choose the following indicators: demand level (Y1), nutritional demand (Y2), demand frequency (Y3), transportation temperature and humidity index (Y4), lead time (Y5), demand price elasticity (Y6), self-sufficiency capacity (Y7), edible days (Y9), food energy (Y9), shelf life (Y10), and convenience of consumption (Y11). To ensure objectivity, we first construct an initial decision matrix and preprocess it. Then, we use the entropy weight method to assign weights. Next, we apply the weighted Mahalanobis distance–gray relational–TOPSIS method to obtain urgency coefficients. Finally, we use hierarchical clustering to determine the urgency levels of demand. The steps are as follows:



Step 1: Interval number type conversion. Liu et al. introduced a method for converting attribute values represented as interval numbers [40].


   x   i e    =  x −  +  i e  (  x +  −  x −  )  



(1)




where    i e    are expected indicative values, and the general value is 0.5;  x  between [   x −   ,    x +   ]    x −    and    x +    belongs to  ℜ ;    x −    is less than    x +   .



Step 2: Normalization of indicator values. Define set  n  as the evaluation objects, associated with set  m  as the evaluation indicators, and create an initial evaluation indicator matrix   A =   (  a  i j   )   n × m    , where    a  i j     represents the  j -th indicator of the  i -th object,   1 ≤ i ≤ n  ,   1 ≤ j ≤ m  . Matrix  A  is normalized using the min–max method, resulting in matrix   B =   (  b  i j   )   n × m    .



Step 3: Calculate the information entropy    H j   :


   H j  = −     ∑  i = 1  n    c  i j   ln  c  i j      /  ln n    



(2)




where    c  i j   =    b  i j    /    ∑  i = 1  n    b  i j         represents the specific gravity of the indicator. To prevent calculation errors in cases where it equals zero, the lower limit of the normalization interval is set to 0.002.



Step 4: Use    w j  =   1 −  H j   /  n −   ∑  j = 1  n    H j        to calculate index entropy weight    w j   .



Step 5: Calculate the positive ideal solution    A +    and negative ideal solution    A −   :


   A +  =  {   a 1 +  ,  a 2 +  , … ,  a m +   }  =  (    max  x  i j     1 ≤ i ≤ n    |  j ∈  J +  ,   min  x  i j     1 ≤ i ≤ n    |  j ∈  J −       )   



(3)






   A −  =  {   a 1 −  ,  a 2 −  , … ,  a m −   }  =  (    min  x  i j     1 ≤ i ≤ n    |  j ∈  J +  ,   max  x  i j     1 ≤ i ≤ n    |  j ∈  J −       )   



(4)




where    J +    and    J −    are benefit-type and cost-type index sets, respectively.



Step 6: Calculate the dimensionless Markov distance     D j  +    between each evaluation scheme and the positive ideal solution,    d i +  = d (  a i  ,  A +  ) =   (  a i  −  A +  ) Ω  Σ   − 1     Ω T    (  a i  −  A +  )  T     ,    D i +  =    d i +      max   1 ≤ i ≤ n    d i +     . Similarly, the dimensionless Markov distance from the negative ideal solution    D i −  =    d i −      max   1 ≤ i ≤ n    d i −     ,   Ω = diag (    w 1    ,    w 2    , … ,    w m    )  ;  Σ  is the covariance matrix of matrix  A ; and    d i +    is the Mahalanobis distance with dimension.



Step 7: Calculate the dimensionless gray correlation degree    R i +    and    R i −    of each scheme with positive and negative ideal solutions.



Firstly, calculate the weighted normalized matrix   C =   (   (  b  i j   ∗  w j  )   n × m   )  Τ   . Then, calculate the gray correlation coefficient matrix    r +  =   (  r  i j  +  )   n × m     of each scheme and positive ideal solution, where    r  i j  +  =     min  i    min  j   |   c j +  −  c  i j    |  + ρ   max  i    max  j   |   c j +  −  c  i j    |     |   c j +  −  c  i j    |  + ρ   max  i    max  j   |   c j +  −  c  i j    |     . Finally, the gray correlation degree    R i +  =    r i +      max   1 ≤ i ≤ n    r i +      with the positive ideal solution is calculated. Here,    r i +  =  1 m    ∑  j = 1  m    r  i j  +      and  ρ  are the resolution coefficients, and   ρ = 0.5   is generally selected;    c j +  = max (  c j  )  ;    r  i j  +    represents the gray coefficient of the  i  scheme and the positive ideal solution with respect to the  j  index; and    r i +    is the gray correlation degree with dimension.



Similarly, the dimensionless gray correlation degree between each scheme and the negative ideal solution is    R i −  =    r i −      max   1 ≤ i ≤ n    r i −     .



Step 8: Combine the Mahalanobis distance and the gray correlation degree. The larger    D i −    and    R i +    are, the closer they are to the positive ideal scheme; conversely, the larger    D i +    and    R i −    are, the closer they are to the ideal solution.


   H i +  = α  D i −  + β  R i +   



(5)






   H i −  = α  D i +  + β  R i −   



(6)




where   1 ≤ i ≤ n  ;   α + β = 1  , generally 0.5;    H i +    and    H i −    are the weighted synthetic values of    D i −    and    R i +    and the weighted synthetic values of    D i +    and    R i −   , respectively.



Step 9: Utilize    H i *  =    H i +     H i +  +  H i −      to compute the urgency value    H i *   . A higher proximity value indicates a more urgent demand, correlating to a heightened level of demand urgency.



Step 10: Use the hierarchical clustering method    H i *    to cluster urgent values.




2.3. Construction of Site Selection Model Considering the Urgency of Demand


2.3.1. Location Model


Utilizing the maximum coverage model, a food emergency logistics facility location model, denoted as   S A M  , is developed with the aim of minimizing total cost and unmet demand while considering demand urgency.



Total construction cost:   T F C =   ∑  m ∈ M     x m M   v m M  F  C M    +   ∑  n ∈ N     x n N   v n N  F  C N     .



Total operating cost:   T V C =   ∑  m ∈ M     x m M   v m M  V  C M    +   ∑  n ∈ N     x n N   v n N  V  C n     .



Total transportation cost:


  T S C =   ∑  m ∈ M     (    ∑  i ∈ I      ∑  k ∈ K     z  m i  k   s  m i   S C     +   ∑  n ∈ N      ∑  k ∈ K     z  m n  k   s  m n   S C      )    +   ∑  n ∈ N      ∑  i ∈ I      ∑  k ∈ K     z  n i  k   s  n i   S C       .  











Total transit cost:   T T C =   ∑  n ∈ N      ∑  i ∈ I      ∑  k ∈ K     x n N   z  n i  k  T C        .


    ( S A M ) :   min  f 1  = T F C + T V C + T S C + T T C     =   ∑  m ∈ M     (   x m M   v m M  ( F  C M  + V  C M  ) +   ∑  i ∈ I      ∑  k ∈ K     z  m i  k   s  m i   S C   +     ∑  n ∈ N      ∑  k ∈ K     z  m n  k   s  m n   S C      )    +   ∑  n ∈ N     (   x n N   v n N   (  F  C N  + V  C N   )  +   ∑  i ∈ I      ∑  k ∈ K     (   z  n i  k   s  n i   S C +  x n N   z  n i  k  T C  )       )       



(7)






  min    f 2  =   ∑  i ∈ I      ∑  k ∈ K     λ i k   (     q i k   ¯  −   ∑  m ∈ M     z  m i  k   x m M    −   ∑  n ∈ M     z  n i  k   x m M     )      +   ∑  i ∈ I     λ i   (    ∑  k ∈ K       q i k   ¯    −   ∑  m ∈ M      ∑  k ∈ K     z  m i  k   x m M      −   ∑  n ∈ N      ∑  k ∈ K     z  n i  k   x n n       )     



(8)






  s . t .   ∑  n ∈ N     x n N  =  w N     



(9)






    ∑  m ∈ M     x m M  =  w M     



(10)






     ∑  i ∈ I      ∑  k ∈ K     z  m i  k      +   ∑  n ∈ N      ∑  k ∈ K     z  m n  k      ≤  v m M    , ∀ m ∈ M   



(11)






     ∑  m ∈ M      ∑  k ∈ K     z  m n  k      ≤  v n N    , ∀ n ∈ N   



(12)






     ∑  m ∈ M     z  m n  k    =   ∑  i ∈ I     z  n i  k      , ∀ n ∈ N   



(13)






     z  m n  k  ,  z  m i  k  =  {    ≥ 0 ,      x m M  = 1     0       ,   e l s e          z  n i  k  =  {    ≥ 0 ,      x n N  = 1     0       ,   e l s e        



(14)






   x m M  ,  x n N  ∈  {  0 , 1  }   



(15)






   v m M  ≥  v  M min   , 0 ≤  v n N  ≤  v  N max    



(16)






  ∀ i ∈ I , m ∈ M , n ∈ N , k ∈ K  



(17)







Objective function (7) aims to minimize the total cost, encompassing construction, operating, operating, transportation, and transit costs. Objective function (8) focuses on minimizing the material shortage at demand points based on their urgency, considering both total demand shortfall and specific material deficiencies. Constraint (9) restricts the number of allowable distribution centers. Constraint (10) limits the number of new logistics centers that can be established. Constraints (11) and (12) ensure that material supply at logistics and distribution centers, respectively, does not exceed their capacities. Constraint (13) enforces flow conservation at distribution centers. Constraint (14) mandates that supplies are only provided if the facility is operational. Constraints (15) to (17) define variable type limitations.



In the model   S A M  , the objective function (8) incorporates an uncertain parameter related to uncertain demand      q i k   ¯    for food supply  k . This paper utilizes the robust counterpart optimization method, employing a “box” uncertainty set to characterize the uncertainty level in demand      q i k   ¯   . It integrates the robust counterpart model introduced by Bertsimas and Sim to convert the objective function (8) into a robust equivalent model.



Assume      q i k   ¯  ⊆  [   q i k  −  a i k   u i k  ,  q i k  +  a i k   u i k   ]   ,   ∀ i ∈ I  , where    q i k    is the nominal demand of demand point  I ,    a i k  =  ε i k   q i k    is the demand perturbation,    ε i k    is the perturbation ratio, and    u i k    is the uncertainty factor. In uncertainty set    U k  =  {   u k  :   ∑  i ∈ I     u i k    ≤  Γ u k  , ∀ i ∈ I    , the parameter    Γ u k    signifies the level of uncertainty within the demand set. This parameter quantifies the conservatism of the constraints, mirroring the decision-maker’s risk preference. A higher value of    Γ u k    indicates a more conservative approach. Here,    Γ u k    is a subset of [0,  I ], while  I  denotes the count of demand points, suggesting that not all demand points will encounter fluctuations in material ( k ) requirements. This implies that the demands of up to    ⌊   Γ i k   ⌋    demand points can fluctuate within their intervals, with each demand perturbation being    (   Γ i k  −  ⌊   Γ i k   ⌋   )     q i k   ¯   , while the demands for the remaining demand points remain at their nominal level    q i k   . Under this condition, the resulting robust solution remains viable [41]. Part     ∑  i ∈ I      ∑  k ∈ K     λ i k     q i k   ¯    +     ∑  i ∈ I      ∑  k ∈ K     λ i     q i k   ¯        of objective function (8) containing uncertain demand is sorted out to obtain     ∑  i ∈ I      ∑  k ∈ K     (   λ i  +  λ i k   )     q i k   ¯       . After applying the method described above,     ∑  i ∈ I      ∑  k ∈ K     (   λ i  +  λ i k   )         (  q i k  +  a i k   u i k  )   is derived. According to the Bertsimas and Sim equivalent model, the inner maximization problem is denoted as    max  ∑  i ∈ I    ∑  k ∈ K   (  λ i  +  λ i k  )  a i k   u i k    , and its constraints are represented as     ∑  i ∈ I     u i k    ≤  Γ u k  , ∀ i ∈ I , k ∈ K , 0 ≤  u i k  ≤ 1   [42].



Applying duality theory involves introducing dual variables    φ k    and    γ  i k     to address this maximization problem, resulting in the following outcome:


  min   ∑  i ∈ I      ∑  k ∈ K     (   λ i  +  λ i k   )   q i k      +   ∑  k ∈ K     Γ u k   φ k    +   ∑  i ∈ I      ∑  k ∈ K     γ  i k        



(18)






   φ k  +  γ  i k   ≥  (   λ i  +  λ i k   )   ε i k   q i k   



(19)






   φ k  ,  γ  i k   ≥ 0 , ∀ i ∈ I , k ∈ K  



(20)







Ultimately, Equation (8) is converted into Equation (21).


  min    f 2  =   ∑  i ∈ I      ∑  k ∈ K     λ i k   (   q i k  −   ∑  m ∈ M     z  m i  k   x m M    −   ∑  n ∈ M     z  n i  k   x m M     )      +   ∑  i ∈ I     λ i   (    ∑  k ∈ K     q i k    −   ∑  m ∈ M      ∑  k ∈ K     z  m i  k   x m M      −   ∑  n ∈ N      ∑  k ∈ K     z  n i  k   x n n       )    +   ∑  k ∈ K     Γ u k   φ k    +   ∑  i ∈ I      ∑  k ∈ K     γ  i k        



(21)








2.3.2. Site Selection Model Considering Facility Interruption


In light of potential sudden events, particularly natural disasters, that could damage infrastructure, established emergency facilities may face interruptions. When a facility is disrupted, it may lose partial or complete functionality, leading to unmet demands at various points. This necessitates the construction of new facilities or the reassignment of existing ones to address the situation. However, the temporary facilities may be distant and lack sufficient inventory capacity, causing delays in the supply of emergency food materials and impacting rescue operations. A new assumption is introduced, considering the risk of facility interruptions in both emergency logistics centers and distribution centers, with interruptions only considered in cases of complete functional loss. Discrete random scenarios are employed to depict facility interruption events [43]. In addition to the current site selection model, new variables are introduced based on the characteristics of reliability site selection issues. The symbols’ meanings are as follows:



 Ξ : the scenario set for facility disruptions,   Ξ =  {  1 , 2 , … ,  | Ξ |   }   ,   ξ ∈ Ξ  .



   p ξ   : the probability of occurrence of scenario  ξ ,    p ξ  ∈  [  0 , 1  ]   .



   y m  M ξ    ,    y n  N ξ      ∈  {  0 , 1  }   : In scenario  ξ , whether logistics center (   M m   ) and distribution center (   N n   ) is interrupted. If it is 1, it is interrupted.



   z  m n   k ξ    ,    z  m i   k ξ    ,    z  n i   k ξ    : the decision variable, denoted as, signifies the allocation of food material ( k ) among logistics centers, distribution centers, and demand points within scenario  ξ .



Building upon model   S A M  , a location selection model based on discrete scenarios is developed and denoted as model   I S A M  .



Total construction cost:   T F C =   ∑  m ∈ M     x m M   v m M  F  C M    +   ∑  n ∈ N     x n N   v n N  F  C N     



Total operating cost:   T V C =   ∑  ξ ∈ Ξ      ∑  m ∈ M     p ξ   x m M   y m  M ξ    v m M  V  C M      +   ∑  ξ ∈ Ξ      ∑  n ∈ N     p ξ   x n N   y n  N ξ    v n N  V  C N       



Total transportation cost:


  T S C =   ∑  ξ ∈ Ξ      ∑  m ∈ M     p ξ   (    ∑  i ∈ I      ∑  k ∈ K     z  m i   k ξ    s  m i   S C     +   ∑  n ∈ N      ∑  k ∈ K     z  m n   k ξ    s  m n   S C      )      +   ∑  ξ ∈ Ξ      ∑  n ∈ N      ∑  i ∈ I      ∑  k ∈ K     p ξ   z  n i   k ξ    s  n i   S C          











Total transit cost:   T S C =   ∑  ξ ∈ Ξ      ∑  n ∈ N      ∑  i ∈ I      ∑  k ∈ K     p ξ   x n N   y  n   N ξ    z  n i   k ξ   T C          


    ( I S A M ) :   min  f 1  = T F C + T V C + T S C + T T C     =   ∑  m ∈ M     x m M   v m M  F  C M    +   ∑  n ∈ N     x n N   v n N  F  C N    +   ∑  ξ ∈ Ξ      ∑  n ∈ N     p ξ   x n N   y n  N ξ    v n N  V  C N      +   ∑  ξ ∈ Ξ      ∑  m ∈ M     p ξ   (   x m M   y m  M ξ    v m M  V  C M  +   ∑  i ∈ I      ∑  k ∈ K     z  m i   k ξ    s  m i   S C     +   ∑  n ∈ N      ∑  k ∈ K     z  m n   k ξ    s  m n   S C      )          +   ∑  ξ ∈ Ξ      ∑  n ∈ N      ∑  i ∈ I      ∑  k ∈ K     p ξ   z  n i   k ξ    (   s  n i   S C +  x n N   y n  N ξ   T C  )             



(22)






  min    f 2  =   ∑  ξ ∈ Ξ      ∑  i ∈ I      ∑  k ∈ K     P ξ   λ i k  (    q i k   ¯  −   ∑  m ∈ M     z  m i   k ξ    x m M   y m  M ξ     −   ∑  n ∈ N     z  n i   k ξ    x m M   y m  M ξ     )       +   ∑  ξ ∈ Ξ      ∑  i ∈ I     P ξ   λ i  (   ∑  k ∈ K       q i k   ¯    −   ∑  m ∈ M      ∑  k ∈ K     z  m i   k ξ    x m M   y m  M ξ     −   ∑  n ∈ N      ∑  k ∈ K     z  n i   k ξ    x m M   y m  M ξ             )  



(23)






  s . t .   ∑  n ∈ N     x n N  =  w N     



(24)






    ∑  m ∈ M     x m M  =  w N     



(25)






     ∑  i ∈ I      ∑  k ∈ K     z  m i   k ξ       +   ∑  n ∈ N      ∑  k ∈ K     z  n i   k ξ       ≤  v m M    , ∀ m ∈ M , ξ ∈ Ξ   



(26)






     ∑  m ∈ M      ∑  k ∈ K     z  m n   k ξ       ≤  v n N    , ∀ n ∈ N , ξ ∈ Ξ   



(27)






     ∑  m ∈ M     z  m n   k ξ     =   ∑  i ∈ I     z  n i   k ξ       , ∀ n ∈ N , ξ ∈ Ξ   



(28)






    ∑  m ∈ M     x m M   y m M    +   ∑  n ∈ N     x n N   y n N    ≥ 1  



(29)






     z  m n   k ξ   =  {    ≥ 0 ,      x m M   y m  M ξ    x n N   y n  N ξ   = 1     0       ,   e l s e          z  m i   k ξ   =  {    ≥ 0 ,      x m M   y m  M ξ   = 1     0       ,   e l s e          z  n i   k ξ   =  {    ≥ 0 ,      x n N   y n  N ξ   = 1     0       ,   e l s e        



(30)






   x m M  ,  x n N  ∈  {  0 , 1  }   



(31)






   v m M  ≥  v  M min   , 0 ≤  v n N  ≤  v  N max    



(32)






  ∀ i ∈ I , m ∈ M , n ∈ N , ξ ∈ Ξ  



(33)







Constraint (29) guarantees the availability of at least one operational emergency facility to deliver emergency supplies to the point of need in all scenarios. The remaining objective functions and constraints convey the same meaning as those in the model   S A M  .



For the part     ∑  ξ ∈ Ξ      ∑  i ∈ I      ∑  k ∈ K     p ξ   (   λ i  +  λ i k   )     q i k   ¯          of the objective function (23) that contains uncertain parameter      q i k   ¯   , the uncertain set description of “box” is adopted, which is robust and transformed by introducing dual variables. The dual variables    θ k    and    ρ  i k     are introduced and converted into Equations (34)–(36), which are put into the objective function, and finally the final form (37) of the objective function (23) is obtained.


  min   ∑  ξ ∈ Ξ      ∑  i ∈ I      ∑  k ∈ K     p ξ   (   λ i  +  λ i k   )   q i k        +   ∑  k ∈ K     Γ u k   θ k    +   ∑  i ∈ I      ∑  k ∈ K     ρ  i k        



(34)






   θ k  +  ρ  i k   ≥  (   λ i  +  λ i k   )   ε i k   q i k    ∑  ξ ∈ Ξ     p ξ     



(35)






   θ k  ,  ρ  i k   ≥ 0 , ∀ i ∈ I , k ∈ K  



(36)






  min  f 2  =   ∑  ξ ∈ Ξ      ∑  i ∈ I      ∑  k ∈ K     P ξ   λ i k  (  q i k  −   ∑  m ∈ M     z  m i   k ξ    x m M   y m  M ξ     −   ∑  n ∈ N     z  n i   k ξ    x m M   y m  M ξ     )       +   ∑  ξ ∈ Ξ      ∑  i ∈ I     P ξ   λ i  (   ∑  k ∈ K     q i k    −   ∑  m ∈ M      ∑  k ∈ K     z  m i   k ξ    x m M   y m  M ξ     −   ∑  n ∈ N      ∑  k ∈ K     z  n i   k ξ    x m M   y m  M ξ             ) +   ∑  k ∈ K     Γ u k   θ k    +   ∑  i ∈ I      ∑  k ∈ K     ρ  i k        



(37)










3. Location Model Solving


3.1. Multiobjective Processing


Balancing cost and unmet value as dual objectives poses challenges in real rescue operations due to differing units of measurement, making the traditional linear weighting method impractical. This paper adopts a method to address multi-objective decision-making, where    f 1 *    and    f 2 *    represent the optimal values for the respective sub-problems, and  α  denotes the cost preference weight determined by the decision-maker [44,45].


  min f = α    f 1     f 1 *    + ( 1 − α )    f 2     f 2 *     



(38)








3.2. Algorithm Design


This paper employs a novel meta-heuristic algorithm, the Social Network Search (SNS), to tackle the model. The SNS algorithm, introduced by SIAMAK TALATAHARI et al. in 2021, mimics user behaviors in social networks to gain recognition, replicating actions like imitation, dialog, argument, and innovation [46]. These behaviors serve as optimization operators, mirroring how users are influenced and driven to share fresh perspectives. The algorithm accounts for interpersonal relationships, incorporates additional random elements and population diversity, and boasts low computational overhead and rapid convergence speed.



	(1)

	
Encoding







The facilities (logistics center, distribution center) for the supply of materials accepted by the demand point are taken as the code, that is, the emergency logistics center and the corresponding rescue provided by the distribution center are taken as the code. Assuming that there are  m  demand points, each of which can be supplied by  n  emergency facilities, a vector   m × n   dimensional vector (called user individual) is constructed using symbol coding.


  X = (  x 1  ,  x 2  , … ,  x k  , … ,  x  2 m   )  



(39)




where the value    x k  ( 1 ≤ k ≤ 2 m )   of gene location  k  represents the number of the logistics center or distribution center that provides materials to the corresponding demand point, and the location   k = n ( i − 1 ) + j   corresponds to the number of the Class  j  facility that supplies materials to the  i  demand point.



	(2)

	
SNS algorithm steps







Step 1: Initialize scale (  n U s e r  ), maximum number of evaluations (  M a x E v a l  ), maximum number of iterations (  M a x E v a l  ), and other parameters.



Step 2: Initialize individual users and evaluate them.



Step 3: Users are randomly selected to enter four behavioral modes of imitation, dialog, argument, and innovation to obtain a new solution. Since the encoded solution is discrete, the SNS algorithm needs to reprocess the solution after it is updated, and the processing method is Formula (40), where   U B   and   L B   represent the maximum and minimum values of the variable value range, and   r o u n d  ( ⋅ )    represents the nearest integer value.


   x  i   n e w   =  {    L B ,    x  i   n e w  ′  < L B     r o u n d (  x  i   n e w  ′  ) ,   L B ≤  x  i   n e w  ′  ≤ U B     U B ,   U B <  x  i   n e w  ′       



(40)







Step 4: If the new solution satisfies the condition, it replaces the old solution and updates the function value. Otherwise, return to Step 3.



Step 5: If the termination conditions are not met, which typically involve reaching the maximum number of iterations or attaining the global optimum, the process returns to Step 3.



The algorithm flowchart is depicted in Figure 1.





4. Example Analysis


4.1. Data Description


This case study delves into a region in China impacted by the novel coronavirus pneumonia event in October 2022. It involves 20 demand points, with their food demand urgency data and demand urgency analysis data detailed in Table 1 and Table 2, respectively. Table 2 specifically outlines the food demand data for demand point 14. Assuming logistics centers 1 and 2 are already operational, two additional candidate logistics centers (numbered 3 and 4) and six candidate distribution centers can be added. The food demand at demand points follows a specific distribution, with probabilities of 0.1, 0.15, and 0.19 for three scenarios. The emergency food categories required consist of Material 1, Material 2, and Material 3. The coordinates and relevant demand data for each demand point are provided in Table 3, Table 4 and Table 5, respectively. The unit construction cost for logistics centers and distribution centers is 2 and 1, respectively. The unit operating costs are 0.05 and 0.03, respectively. The unit transportation cost for goods is 0.012, with a unit transfer cost of 0.001. The minimum construction capacity for logistics centers is 800, while for distribution centers it is 200, with a maximum construction capacity of 1000. The facility interruption scenarios are detailed in Table 6.




4.2. Results and Analysis


4.2.1. Model Solution Results


	(1)

	
Solution for demand urgency







Using the above method and data for determining demand urgency, we obtained the numerical values for demand urgency and identified the emergency demand urgency level for each demand point through cluster analysis. Given that China categorizes emergency response to sudden events into four levels, we have similarly classified demand urgency into four levels, as shown in Table 7. For demand point 14, which has the highest demand urgency, detailed evaluations of demand urgency for different food categories are provided in Table 8. Additionally, the demand urgency for each demand point across different food categories is presented in Table 9.



According to Table 7, demand point number 14 has an emergency demand urgency level of Level I. This area experiences severe disasters, high per capita energy demand, weak self-supply capabilities, and high population density. There are eight demand points with Level II urgency levels, characterized by relatively lower disaster severity but high energy demand density and lower primary industry GDP. Demand point number 3, despite having a smaller population density, has a higher proportion of elderly and young populations, resulting in a relatively higher urgency level. This demonstrates that the model fully considers various scenarios. There are six demand points with Level III urgency levels, which have higher disaster severity and higher primary industry GDP, but lower demand density and population density. Lastly, there are five demand points with Level IV urgency levels. These points generally have lower disaster severity, low energy demand density, high primary industry GDP, and low population density. They can somewhat meet their own emergency requirements, justifying their classification as Level IV.



Referring to Table 8, Level I comprises 1 class, Level II includes 5 classes, Level III consists of 12 classes, and Level IV encompasses 5 classes. Through the analysis, it is observed that emergency food items sharing the same demand urgency level exhibit consistent attributes. Class I emergency food stands out as a vital resource crucial for human survival and development, representing a life-sustaining element. Class II emergency food embodies emergency characteristics fully. Class III emergency food exhibits high demand, nutritional requirements, and frequency, albeit with subpar performance, making it suitable for scenarios with specific cooking conditions. Grade IV emergency food primarily consists of less essential items with high interchangeability. Thus, it can be inferred that emergency food items with identical demand urgency levels exhibit uniform attributes.



	(2)

	
Solve the model without considering the facility interruption







According to the above model (  S A M  ), the SNS algorithm is used to solve the location problem in the prevention and preparation stage. The user group size (  n U s e r  ) is set to 10; the maximum evaluation time (  M a x E v a l  ) is 2000; the maximum iteration time (  M a x I t e r  ) is 200; the probability of constraint violation (  M a x I t e r  ) is 0.1; the stocks of three kinds of materials in the built logistics center 2 and logistics center 3 are, respectively, (1000,700, 400) and (450,400,800); the uncertainty levels of the three different food materials (   Γ u   ) were 7, 10, and 8, respectively; the disturbance proportion ( ε ) was 0.1; and the cost target weight ( α ) was 0.3. The solution results are shown in Table 10 and Table 11.



Table 10 shows that the optimal solution involves establishing one new logistics center and three distribution centers, resulting in a minimum comprehensive objective function value of 1.0588. The total cost amounts to 4238.869, with a relatively low unmet demand of 2645.678, indicating economic viability during the rescue phase. In Table 11, it is evident that the optimal solution with the minimum comprehensive objective value designates the new logistics center as number 4, with a capacity of 152. The newly opened distribution centers are numbered 6, 7, and 9, with capacities of 554.2330, 838.6398, and 412.5656, respectively. Figure 2 illustrates the layout of supply points and the supply dynamics between supply points and demand points in this scenario.



	(3)

	
Consider facility interruption model solution







According to the ISAM model, the results obtained are shown in Table 12 and Table 13.



Table 12 illustrates that with two new emergency logistics centers and two distribution centers, the minimum comprehensive target value of 1.2356 is achieved, representing the optimal outcome. At this configuration, the total cost amounts to 1934.6315, with unmet demands of 1146.8449 and dimensionless values of 1.6809 and 1.0447, respectively, where the latter is minimized. These solution outcomes effectively mirror the requirements of emergency material support operations. In Table 13, logistics centers 3 and 4 are selected with capacities set at 137.1711 and 61.1074, while distribution centers 7 and 8 have capacities of 442.7607 and 532.5178, respectively. Figure 3 depicts the location layout and the demand–supply dynamics of various materials under this scenario.




4.2.2. Impact Analysis of Cost Weight


Figure 4 depicts the correlation between cost weight (CW) and the comprehensive target value (CTV) alongside the dimensionless target value (DTV). As CW approaches 0, CTV converges to 0.9764; at CW 0.32, CTV peaks at 1.3469; conversely, as CW nears 1, CTV declines to its lowest point at 0.6829.



Distinct intervals exhibit diverse curve behaviors. Within the range of CW from 0 to 0.32, CTV rises with increasing CW; the dimensionless total cost (C-DTV) fluctuates notably but generally decreases, while the dimensionless unmet demand (D-DTV) stabilizes, narrowing the gap between them.



As CW spans from 0.32 to 0.4, CTV inversely correlates with CW; D-DTV sees a marked upsurge, while C-DTV maintains a downward trajectory at a slower rate. The disparity between them diminishes with rising CW, aligning at a certain threshold before gradually diverging.



In the CW range of 0.4 to 1, CTV sustains its decline with minor oscillations. C-DTV and D-DTV uphold their respective trends, with C-DTV’s descent decelerating as D-DTV consistently surpasses C-DTV. The gap between them widens as CW values increase.



Figure 5 illustrates the impact of facility interruption. For CW values between 0 and 0.2, CTV rises with CW, indicating a gradual decline in solution quality. Within this range, C-DTV decreases notably while D-DTV increases slowly, narrowing the gap between them until they equalize around CW 0.18 before diverging again.



In the CW range of 0.2 to 1, CTV initially rises and then falls, peaking at 0.36 for CW 0.36, representing the least favorable solution, and dropping to its minimum at CW 1. Changes in C-DTV and D-DTV follow similar patterns but with varying rates. C-DTV decreases rapidly with CW, while D-DTV increases. The rate of change accelerates beyond CW 0.72.



Comparing Figure 4 and Figure 5 reveals overall consistency with notable differences at key points. CTV’s trend is similar but peaks earlier in Graph 5. D-DTV exhibits a gradual increase followed by a sharp rise, hitting its threshold earlier than C-DTV and after their equalization, underscoring the importance of considering facility interruption in site selection models for decision-makers to grasp the impact of diverse disasters on target values.



Decision-makers can leverage these trends to select CW, factoring in the emergency response stage’s characteristics. During the response phase emphasizing demand satisfaction, this aspect should be proritized with CW between 0 and 0.72. As the situation improves, focus should be shifted to cost, opting for CW between 0.72 and 1.




4.2.3. Impact Analysis of Uncertainty Level


Figure 6 illustrates the relationship between the uncertainty level (UL) and the Critical Threshold Value (CTV) of three different emergency food supplies. The ranges between the maximum and minimum CTV values under varying ULs for these supplies are 0.1859, 0.1386, and 0.1727, respectively. Category 1 exhibits the most significant fluctuation in CTV, while Category 3 shows the least, with a gradual and steady upward trend. Category 2, however, experiences the most frequent fluctuations. Consequently, decision-makers should enhance the accuracy of their assessments for Category 1 and 2 emergency supplies prior to making decisions.



Figure 7 presents the maximum and minimum comprehensive objective values under different UL variations for categories 1, 2, and 3 as 1.4692, 1.5110, and 1.5368, and 1.2508, 1.2694, and 1.2998, respectively. The differences between the maximum and minimum values are 0.2184, 0.2416, and 0.2370. The analysis of curve changes reveals that Category 1 has the smallest difference between maximum and minimum values but shows relatively high frequency in curve fluctuations. For Category 2, a notable observation is that the CTV is generally lower in the earlier part than in the latter when dividing the graph at UL 10, suggesting that priority should be given to whether UL exceeds half of its upper limit when locating facilities for this type of supply. Category 3, with the poorest minimum comprehensive value, exhibits significant fluctuations between the maximum and minimum values, and the uncertainty in CTV increases as UL rises. Therefore, decision-makers should exercise increased caution when setting the UL for this category.



The sensitivity analysis comparing scenarios with and without facility interruptions highlights significant differences in how different types of supplies are affected, underscoring the importance of developing separate models for facility interruption occurrences.




4.2.4. Influence Analysis of Disturbance Proportion


Figure 8a shows the relationship between the disturbance proportion (DP) and the comprehensive target value (CTV). The disturbance proportion varies from 0 to 2. The change in the target value depends on the range of the disturbance proportion.



The relationship changes with DP values. When DP is between 0 and 1, the CTV rises with the DP. This rise is first rapid and then more gradual. When DP is between 1 and 2, the CTV becomes more sensitive to changes in it. CTV oscillates wildly between highs and lows in this range. So, when DP reaches this range, the decision-maker should carefully consider the parameters.



Figure 8b considers the disruption of emergency facilities. In this context, it shows the trend in the CTV with DP. When DP changes in the interval (0, 1), CTV first increases and then decreases as DP increases. The maximum value in this interval is 1.5121, which occurs when DP is 0.32.



When DP is between 1 and 2, CTV varies erratically as DP rises. The fluctuation frequency is high. CTV is more sensitive to DP in this range. The maximum value is 1.6309 when the weight is 1.58, and the minimum value is 1.3627 when the weight is 0.83. As a result, the minimum and maximum values differ by 0.2689, which is a large value.



Compare the results of the sensitivity analysis. First, look at the results in the 0–1 interval without considering facility outages. Without facility outages, CTV always maintains a upward trend. Second, look at the results with facility outages. CTV first rises and then declines. But the interval between 1 and 2 gives different results. The relationship shows large fluctuations and high frequency with or without outages. This confirms that when DP reaches this level, the parameter should be calculated precisely. Decision-makers should not rely on experience alone.






5. Conclusions


This paper presents several innovative aspects in exploring the location problem of emergency logistics facilities. Firstly, food is essential for human survival, making its demand both necessary and important. This paper treats food as emergency supplies, enriching previous studies that primarily focused on medical supplies and specialized rescue materials, thereby expanding the research scope in this field. Secondly, by recognizing the urgency of food demands, the model incorporates this critical factor and devises an effective method for its determination, enhancing the model’s realism. Thirdly, it thoroughly examines the location problem within the context of potential facility disruptions, establishing location models for various scenarios and enriching the model’s application scope. The main conclusions of this paper are as follows:




	(1)

	
Fully considering demand urgency in food emergency logistics facility location is crucial. The method proposed for determining demand urgency can identify both the numerical value and the urgency level of demand. The results are straightforward and practical. By observing that demand points or foods with the same urgency level share common attributes, decision-making in the location and configuration of emergency logistics facilities can be made more rational.




	(2)

	
The model extensively addresses the decision-making environment involving facility disruptions. Case studies highlight the importance of creating distinct location models and factoring in facility disruptions. The model’s solution algorithm can generate comprehensive objective values for different scenarios and determine the optimal decision plan, encompassing the type, number, location, and capacity of emergency logistics facilities, along with material supply. This capability aids decision-makers in promptly devising effective strategies.




	(3)

	
Analyzing variations in comprehensive objective values under different parameter settings and comparing results across various decision-making scenarios reveal distinct trends and frequencies of change for specific parameters within different intervals. Some parameters exhibit clear thresholds, and their changes vary across decision-making contexts. This insight can guide decision-makers in identifying relevant parameters effectively before making informed decisions.









The methods and models presented in this paper effectively tackle the location problem of emergency logistics facilities for food. However, there are areas that can be improved. The method for assessing demand urgency relied solely on objective weighting, overlooking subjective factors that could enhance future research. Furthermore, the model was constructed on specific assumptions without considering real-world factors such as cargo damage costs and model dynamics. Subsequent research could explore these dimensions to further improve the analysis.
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Figure 1. Algorithm flowchart. 






Figure 1. Algorithm flowchart.
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Figure 2. Location layout and material supply relationship. 
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Figure 3. Location layout and material supply relationship. 
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Figure 4. Changes in target values for different cost weights. 
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Figure 5. Changes in target values considering different cost target weights for facility outages. 
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Figure 6. Changes in comprehensive target values at different levels of uncertainty. 
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Figure 7. Changes in comprehensive target values at different levels of uncertainty. 
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Figure 8. Changes in comprehensive target values of different disturbance proportions. 
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Table 1. Urgency of food demand at demand points.






Table 1. Urgency of food demand at demand points.





	Demand Point Number
	Coordinate
	X1
	X2
	X3
	X4
	X5
	X6





	1
	(20,85)
	28.57%
	0
	2172.86
	11.27
	1460.04
	31.95%



	2
	(5,45)
	14.29%
	0
	2182.09
	5.42
	2439.82
	32.70%



	3
	(42,15)
	45.45%
	0
	2172.77
	9.11
	1416.11
	33.92%



	4
	(38,5)
	7.14%
	0
	2196.79
	6.30
	2449.44
	33.55%



	5
	(95,35)
	98.00%
	0
	2213.94
	0.20
	106.57
	25.35%



	6
	(85,25)
	89.00%
	0
	2220.31
	0
	84.76
	25.40%



	7
	(62,80)
	82.00%
	0
	2238.93
	2.70
	54.03
	22.79%



	8
	(58,75)
	83.00%
	0
	2235.85
	0.50
	93.58
	22.61%



	9
	(55,85)
	76.00%
	0
	2241.31
	5.40
	46.93
	27.96%



	10
	(18,80)
	92.00%
	0
	2236.34
	10.2
	46.77
	26.84%



	11
	(25,30)
	4.00%
	0
	2158.20
	80.87
	410.85
	40.48%



	12
	(15,10)
	5.00%
	0
	2161.98
	48.58
	375.87
	44.10%



	13
	(45,65)
	10.27%
	0
	2201.03
	38.65
	248.62
	29.68%



	14
	(65,20)
	47.37%
	0
	2178.86
	21.74
	2529.31
	32.19%



	15
	(31,52)
	32.00%
	0
	2136.60
	71.20
	315.42
	38.78%



	16
	(2,60)
	38.46%
	0
	2158.16
	23.73
	336.07
	44.75%



	17
	(5,5)
	60.00%
	0
	2116.64
	12.47
	985.87
	33.70%



	18
	(57,29)
	8.33%
	0
	2107.92
	18.29
	159.74
	40.81%



	19
	(4,18)
	11.76%
	0
	2158.06
	39.04
	202.64
	41.31%



	20
	(26,35)
	57.14%
	0
	2150.47
	25.96
	152.17
	41.93%










 





Table 2. Analysis data of food demand urgency.
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Broad Category

	
Middle Class

	
Y1

	
Y2

	
Y3

	
Y4

	
X5

	
Y6

	
Y7

	
Y8

	
Y9

	
Y10

	
Y11






	
grain

	
flour

	
2

	
250

	
3

	
0.36

	
0.5

	
0.32

	
70.63

	
4.00

	
364.00

	
270

	
2




	
rice

	
2

	
250

	
3

	
0.69

	
2.0

	
0.39

	
0.47

	
4.00

	
120.00

	
270

	
2




	
corn

	
2

	
250

	
3

	
0.64

	
0.5

	
0.30

	
57.25

	
4.00

	
112.00

	
16

	
2




	
soya bean

	
5

	
30

	
1

	
0.34

	
1.0

	
0.43

	
0.59

	
33.33

	
390.00

	
900

	
2




	
other

	
2

	
250

	
3

	
0.30

	
0.5

	
0.70

	
6.35

	
4.00

	
325.00

	
45

	
2




	
vegetable

	
fresh

	
3

	
400

	
3

	
0.56

	
1.5

	
0.42

	
194.6

	
2.50

	
43.42

	
6

	
2




	
dehydrated

	
3

	
40

	
3

	
0.13

	
0.5

	
5.34

	
4.04

	
25.00

	
273.16

	
225

	
4




	
other

	
3

	
400

	
3

	
0.58

	
0.5

	
0.85

	
10.77

	
2.50

	
40.00

	
9

	
2




	
fruit

	
fresh

	
3

	
275

	
3

	
0.46

	
1.0

	
0.65

	
41.41

	
3.64

	
85.97

	
25

	
5




	
dried

	
3

	
27.5

	
1

	
0.33

	
0.5

	
7.37

	
3.54

	
36.36

	
338.32

	
210

	
5




	
nut

	
nut

	
5

	
30

	
1

	
0.36

	
2.0

	
5.35

	
9.72

	
33.33

	
1076.4

	
300

	
5




	
poultry egg

	
egg

	
4

	
45

	
3

	
0.52

	
1.0

	
0.72

	
1.25

	
22.22

	
147.00

	
20.0

	
4




	
other

	
5

	
45

	
3

	
0.52

	
1.0

	
0.89

	
11.88

	
22.22

	
204.83

	
25.0

	
4




	
edible salt

	
edible salt

	
6

	
2.5

	
3

	
0.11

	
0.5

	
0.54

	
0.00

	
400.0

	
0.00

	
1460

	
1




	
edible oil

	
vegetable

	
6

	
27.5

	
3

	
0.04

	
0.5

	
0.63

	
10.65

	
36.36

	
829.38

	
360

	
1




	
animal

	
6

	
27.5

	
3

	
0.04

	
2.0

	
0.74

	
0.01

	
36.36

	
867.57

	
360

	
1




	
sugar

	
sugar

	
6

	
5.00

	
0.5

	
0.13

	
1.0

	
0.56

	
0.00

	
200

	
400.00

	
630

	
3




	
meat

	
livestock meat

	
4

	
55

	
2.5

	
0.53

	
1.0

	
0.79

	
7.69

	
18.18

	
236.09

	
1.5

	
1




	
poultry

	
4

	
55

	
2.5

	
0.53

	
0.5

	
0.85

	
1.90

	
18.18

	
284.90

	
2.5

	
1




	
processed food

	
convenience food

	
2

	
250

	
3

	
0.43

	
0.2

	
7.31

	
166.7

	
4.00

	
473.00

	
330

	
4




	
dairy product

	
5

	
400

	
1.5

	
0.56

	
2.0

	
2.06

	
32.82

	
2.5

	
313.25

	
14.0

	
5




	
beverage

	
1

	
160

	
8

	
0.04

	
0.2

	
0.68

	
78,505

	
0.63

	
37.15

	
405

	
5




	
processed aquatic products

	
4

	
57.5

	
0.5

	
0.88

	
2.5

	
4.48

	
7.22

	
17.39

	
310.45

	
138

	
1











 





Table 3. Information of candidate logistics centers.
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	Number of the Built Logistics Center
	x-Coordinate
	y-Coordinate
	Added Candidate Logistics Center Number
	x-Coordinate
	y-Coordinate





	1
	55
	80
	3
	20
	50



	2
	20
	50
	4
	43
	8










 





Table 4. Information of candidate distribution centers.
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	Candidate Number
	x-Coordinate
	y-Coordinate
	Candidate Number
	x-Coordinate
	y-Coordinate





	5
	17
	15
	8
	80
	21



	6
	25
	70
	9
	10
	25



	7
	45
	46
	10
	23.3
	52










 





Table 5. Food demand at each demand point.
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Demand Point Number

	
The Demand for Different Situations

	
Nominal Demand for Different Materials

	
Demand Point Number

	
The Demand for Different Situations

	
Nominal Demand for Different Materials




	
1

	
2

	
3

	
1

	
2

	
3

	
1

	
2

	
3

	
1

	
2

	
3






	
1

	
200

	
180

	
220

	
50

	
130

	
20

	
11

	
150

	
210

	
170

	
110

	
30

	
10




	
2

	
180

	
240

	
300

	
70

	
60

	
50

	
12

	
220

	
190

	
160

	
150

	
30

	
40




	
3

	
210

	
200

	
170

	
90

	
30

	
90

	
13

	
160

	
230

	
210

	
60

	
20

	
80




	
4

	
220

	
190

	
210

	
50

	
60

	
110

	
14

	
210

	
140

	
190

	
80

	
60

	
70




	
5

	
230

	
220

	
190

	
70

	
50

	
110

	
15

	
170

	
190

	
210

	
70

	
40

	
60




	
6

	
230

	
240

	
210

	
30

	
80

	
120

	
16

	
210

	
210

	
210

	
70

	
70

	
70




	
7

	
190

	
180

	
160

	
60

	
70

	
60

	
17

	
180

	
240

	
230

	
80

	
60

	
40




	
8

	
210

	
260

	
260

	
90

	
50

	
70

	
18

	
190

	
220

	
170

	
40

	
90

	
60




	
9

	
210

	
150

	
230

	
50

	
90

	
70

	
19

	
230

	
170

	
210

	
100

	
50

	
80




	
10

	
170

	
170

	
150

	
70

	
70

	
30

	
20

	
240

	
190

	
220

	
60

	
60

	
120











 





Table 6. Sets of disruption scenarios of logistics facilities.
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Situation

	
Opportunity

	
Logistics Facility Code




	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10






	
situation 1

	
0.2

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1




	
situation 2

	
0.05

	
1

	
0 *

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1




	
situation 3

	
0.1

	
1

	
1

	
1

	
1

	
0

	
1

	
1

	
1

	
1

	
1




	
situation 4

	
0.1

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
0








* 0 indicates facility interruption. Source of data.













 





Table 7. Comprehensive parameters for food demand urgency evaluation at demand points.






Table 7. Comprehensive parameters for food demand urgency evaluation at demand points.





	
Demand Point Number

	
Evaluate the Comprehensive Parameter Values

	
H*

	
Sort

	
Urgency Level




	
D+

	
D−

	
R+

	
R−

	
H+

	
H−






	
14

	
1.8072

	
2.4434

	
0.8303

	
0.6966

	
1.6369

	
1.2519

	
0.5666

	
1

	
I




	
5

	
1.7104

	
1.7563

	
0.9471

	
0.7033

	
1.3517

	
1.2069

	
0.5283

	
2

	
II




	
6

	
1.7247

	
1.9923

	
0.8152

	
0.8123

	
1.4038

	
1.2685

	
0.5253

	
3

	
II




	
2

	
2.1442

	
2.1346

	
0.7912

	
0.7322

	
1.4629

	
1.4382

	
0.5043

	
4

	
II




	
4

	
2.1624

	
2.1447

	
0.8028

	
0.7360

	
1.4738

	
1.4492

	
0.5042

	
5

	
II




	
10

	
1.4862

	
1.6830

	
0.7350

	
0.9473

	
1.2090

	
1.2167

	
0.4984

	
6

	
II




	
8

	
1.8329

	
1.8761

	
0.7487

	
0.8877

	
1.3124

	
1.3603

	
0.4910

	
7

	
II




	
7

	
1.8452

	
1.8531

	
0.7302

	
0.8877

	
1.2917

	
1.3665

	
0.4859

	
8

	
II




	
16

	
2.3692

	
2.0854

	
0.7810

	
0.7159

	
1.4332

	
1.5426

	
0.4816

	
9

	
II




	
9

	
1.9514

	
1.7347

	
0.7363

	
0.9988

	
1.2355

	
1.4751

	
0.4558

	
10

	
III




	
13

	
2.5738

	
1.8462

	
0.9829

	
0.8365

	
1.4146

	
1.7052

	
0.4534

	
11

	
III




	
20

	
2.7843

	
1.8132

	
0.7801

	
0.7368

	
1.2966

	
1.7606

	
0.4241

	
12

	
III




	
12

	
2.6218

	
1.7583

	
0.7158

	
0.8020

	
1.2371

	
1.7119

	
0.4195

	
13

	
III




	
3

	
2.7077

	
1.5804

	
0.7591

	
0.6953

	
1.1697

	
1.7015

	
0.4074

	
14

	
III




	
17

	
2.7785

	
1.5384

	
0.7513

	
0.7449

	
1.1449

	
1.7617

	
0.3939

	
15

	
III




	
18

	
3.0372

	
1.3996

	
0.6711

	
0.8513

	
1.0353

	
1.9442

	
0.3475

	
16

	
IV




	
19

	
3.1233

	
1.3375

	
0.6887

	
0.8046

	
1.0131

	
1.9639

	
0.3403

	
17

	
IV




	
1

	
3.0537

	
1.2186

	
0.7226

	
0.7451

	
0.9706

	
1.8994

	
0.3382

	
18

	
IV




	
11

	
2.9690

	
1.2881

	
0.6530

	
0.8503

	
0.9706

	
1.9097

	
0.3370

	
19

	
IV




	
15

	
2.9692

	
1.2551

	
0.6589

	
0.8044

	
0.9570

	
1.8868

	
0.3365

	
20

	
IV











 





Table 8. Comprehensive parameters of urgency evaluation of emergency food demand.
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Category

	
Evaluate the Comprehensive Parameter Values

	
H*

	
Sort

	
Urgency Level




	
D+

	
D−

	
R+

	
R−

	
H+

	
H−






	
beverage

	
7.2821

	
6.4459

	
0.7926

	
0.8075

	
3.6192

	
4.0448

	
0.4722

	
1

	
I




	
nut

	
8.7383

	
3.8761

	
0.7476

	
0.8262

	
2.3118

	
4.7822

	
0.3259

	
2

	
II




	
convenience food

	
8.6439

	
3.7371

	
0.7102

	
0.849

	
2.2237

	
4.7464

	
0.3190

	
3

	
II




	
sugar

	
8.6669

	
3.7071

	
0.7021

	
0.8374

	
2.2046

	
4.7521

	
0.3169

	
4

	
II




	
edible salt

	
8.5758

	
3.1473

	
0.7576

	
0.8512

	
1.9525

	
4.2135

	
0.3167

	
5

	
II




	
dairy product

	
8.7621

	
3.5623

	
0.7356

	
0.8382

	
2.149

	
4.8002

	
0.3092

	
6

	
II




	
rice

	
9.0211

	
3.4956

	
0.7313

	
0.8302

	
2.1134

	
4.9257

	
0.3002

	
7

	
III




	
flour

	
8.9822

	
3.3937

	
0.7048

	
0.8534

	
2.0493

	
4.9178

	
0.2941

	
8

	
III




	
other vegetables

	
8.8549

	
3.325

	
0.6942

	
0.8752

	
2.0096

	
4.8651

	
0.2923

	
9

	
III




	
fresh fruit

	
9.0802

	
3.3496

	
0.7292

	
0.8462

	
2.0394

	
4.9632

	
0.2912

	
10

	
III




	
fresh vegetable

	
8.9359

	
3.2866

	
0.7072

	
0.8584

	
1.9969

	
4.8972

	
0.2897

	
11

	
III




	
corn

	
9.0038

	
3.2249

	
0.7042

	
0.8699

	
1.9645

	
4.9368

	
0.2847

	
12

	
III




	
animal fat

	
9.1666

	
3.273

	
0.7037

	
0.8698

	
1.9884

	
5.0182

	
0.2838

	
13

	
III




	
soya bean

	
9.6582

	
3.4051

	
0.7008

	
0.8516

	
2.053

	
5.2549

	
0.2809

	
14

	
III




	
vegetable oil

	
9.1086

	
3.2161

	
0.6816

	
0.8931

	
1.9489

	
5.0008

	
0.2804

	
15

	
III




	
other grain

	
9.1321

	
3.1391

	
0.697

	
0.8711

	
1.9181

	
5.0016

	
0.2772

	
16

	
III




	
other eggs

	
9.3358

	
3.147

	
0.7044

	
0.8652

	
1.9257

	
5.1005

	
0.2741

	
17

	
III




	
egg

	
9.4011

	
3.1257

	
0.7086

	
0.8606

	
1.9172

	
5.1308

	
0.272

	
18

	
III




	
dried fruit

	
9.5242

	
2.912

	
0.7045

	
0.8662

	
1.8082

	
5.1952

	
0.2582

	
19

	
IV




	
dehydrated vegetable

	
9.5948

	
2.9074

	
0.6923

	
0.8705

	
1.7998

	
5.2327

	
0.2559

	
20

	
IV




	
processed aquatic products

	
9.4564

	
2.8358

	
0.7131

	
0.8729

	
1.7745

	
5.1647

	
0.2557

	
21

	
IV




	
poultry

	
9.4232

	
2.7813

	
0.6791

	
0.9023

	
1.7302

	
5.1627

	
0.251

	
22

	
IV




	
livestock meat

	
9.5073

	
2.6917

	
0.6837

	
0.895

	
1.6877

	
5.2011

	
0.245

	
23

	
IV











 





Table 9. Urgency of demand for different food materials.
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Demand Point

	
Different Urgency of Food Demand

	
Demand Point

	
Different Urgency of Food Demand




	
Category 1

	
Category 2

	
Category 3

	
Category 1

	
Category 2

	
Category 3






	
1

	
0.6567

	
0.6752

	
0.5786

	
11

	
0.5688

	
0.4637

	
0.4312




	
2

	
0.6599

	
0.6435

	
0.5416

	
12

	
0.6423

	
0.5381

	
0.5498




	
3

	
0.576

	
0.5173

	
0.579

	
13

	
0.5760

	
0.5718

	
0.5981




	
4

	
0.5385

	
0.5374

	
0.5971

	
14

	
0.5143

	
0.5381

	
0.5237




	
5

	
0.4693

	
0.4720

	
0.5122

	
15

	
0.5197

	
0.4420

	
0.5124




	
6

	
0.4391

	
0.4438

	
0.4685

	
16

	
0.4637

	
0.4667

	
0.4328




	
7

	
0.4599

	
0.4621

	
0.4610

	
17

	
0.6894

	
0.5973

	
0.1357




	
8

	
0.5675

	
0.5173

	
0.5578

	
18

	
0.5687

	
0.5637

	
0.5173




	
9

	
0.4368

	
0.4839

	
0.4764

	
19

	
0.642

	
0.6120

	
0.6389




	
10

	
0.4712

	
0.5713

	
0.3751

	
20

	
0.5364

	
0.5329

	
0.6210











 





Table 10. The model solution results under the number of different logistics facilities.
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     w m     

	
     w n     

	
   f   

	
     f 1     

	
     f 2     

	
     f 1 *     

	
     f 2 *     

	
     f 1  /  f 1 *     

	
     f 2  /  f 2 *     






	
0

	
1

	
1.6685

	
2383.199

	
3269.633

	
919.203

	
2569.740

	
2.5927

	
1.2724




	
2

	
1.7852

	
2291.492

	
3620.558

	
926.595

	
2429.320

	
2.4730

	
1.4904




	
3

	
1.7457

	
2661.905

	
3171.083

	
1097.274

	
2180.702

	
2.4259

	
1.4542




	
4

	
1.2952

	
4057.208

	
2586.000

	
2465.955

	
2258.323

	
1.6453

	
1.1451




	
5

	
1.6590

	
3533.595

	
3047.085

	
1476.86

	
2266.243

	
2.3926

	
1.3446




	
6

	
1.7682

	
2786.600

	
3183.405

	
1200.033

	
2079.492

	
2.3221

	
1.5309




	
1

	
1

	
1.2447

	
3632.954

	
2866.138

	
2585.518

	
2437.317

	
1.4051

	
1.1759




	
2

	
1.0769

	
3993.407

	
2716.531

	
3107.202

	
2750.483

	
1.2852

	
0.9877




	
3

	
1.0558

	
4238.869

	
2645.678

	
3514.828

	
2668.240

	
1.2060

	
0.9915




	
4

	
1.1832

	
4361.449

	
2939.336

	
3368.338

	
2589.061

	
1.2948

	
1.1353




	
5

	
1.1536

	
4583.603

	
2547.332

	
3372.058

	
2390.743

	
1.3593

	
1.0655




	
6

	
1.2344

	
3358.112

	
3091.201

	
2294.003

	
2720.894

	
1.4639

	
1.1361




	
2

	
1

	
1.1986

	
4057.699

	
2884.946

	
2950.936

	
2569.142

	
1.3751

	
1.1229




	
2

	
1.2014

	
4560.539

	
2470.400

	
3396.610

	
2165.419

	
1.3427

	
1.1408




	
3

	
1.0917

	
4602.188

	
2596.678

	
3365.642

	
2667.117

	
1.3674

	
0.9736




	
4

	
1.0756

	
5248.056

	
2412.375

	
3629.812

	
2631.000

	
1.4458

	
0.9169




	
5

	
1.0626

	
5285.108

	
2427.910

	
3860.493

	
2607.200

	
1.3690

	
0.9312




	
6

	
1.3117

	
3153.151

	
3094.161

	
2293.750

	
2408.368

	
1.3747

	
1.2848











 





Table 11. Solution results of opening facilities and capacity under different number of logistics facilities.
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     w m     

	
     w n     

	
Emergency Logistics Facility Number




	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10






	
0

	
1

	
—

	
—

	
121.5065

	
—

	
—

	
—

	
—

	
—




	
2

	
—

	
—

	
1.0163

	
—

	
—

	
110.6026

	
—

	
—




	
3

	
—

	
—

	
122.8886

	
220.7189

	
298.8664

	
—

	
—

	
—




	
4

	
—

	
—

	
313.8970

	
—

	
405.2732

	
189.1734

	
—

	
313.4505




	
5

	
—

	
—

	
574.6851

	
297.2199

	
89.4751

	
54.5037

	
—

	
5.3834




	
6

	
—

	
—

	
312.6386

	
224.1756

	
185.2262

	
121.0599

	
109.1487

	
121.7259




	
1

	
1

	
23.4350

	
—

	
—

	
—

	
—

	
—

	
277.6299

	
—




	
2

	
—

	
154.0637

	
—

	
—

	
—

	
—

	
488.9404

	
234.6332




	
3

	
—

	
152

	
—

	
554.2330

	
838.6398

	
—

	
412.5656

	
—




	
4

	
—

	
117.4460

	
497.7070

	
1258.243

	
40.27621

	
29

	
—

	
—




	
5

	
100.7196

	
—

	
691.0052

	
408.6187

	
760.9448

	
0

	
177.2688

	
292.2753




	
6

	
69.6243

	
—

	
150.7925

	
493.5004

	
210.1093

	
359.9340

	
27.2092

	
75.5644




	
2

	
1

	
121

	
58

	
—

	
—

	
—

	
—

	
588.3328

	
—




	
2

	
125

	
75

	
—

	
804.0603

	
844.2429

	
—

	
—

	
—




	
3

	
263.2657

	
13.32539

	
—

	
982.3554

	
—

	
286.5072

	
—

	
159.9360




	
4

	
200.6965

	
36.78673

	
1005.940

	
—

	
—

	
704.9396

	
613.777

	
494.0270




	
5

	
255

	
5

	
1159.382

	
778.1607

	
—

	
841.4426

	
103.236

	
23.9527




	
6

	
53.1681

	
21.2980

	
237.9712

	
222.5209

	
250.5111

	
224.9367

	
86.9911

	
98.2520











 





Table 12. Solution results of target values under different number of emergency facilities in the case of facility interruption.
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     w m     

	
     w n     

	
   f   

	
     f 1     

	
     f 2     

	
     f 1 *     

	
     f 2 *     

	
     f 1  /  f 1 *     

	
     f 2  /  f 2 *     






	
0

	
1

	
1.3741

	
1250.9044

	
1222.5636
