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Abstract: Effective emergency logistics facility site selection is vital for ensuring prompt and fair food
supply during crises. This study tackles the intricate task of choosing optimal sites for emergency food
logistics facilities by considering varying urgency levels of needs, uncertain demands, and potential
facility interruptions. A novel weighted Mahalanobis distance–gray relational analysis–TOPSIS
method is devised to evaluate demand urgency and guide site selection decisions. The proposed
location model aims to minimize total cost and unmet demand while integrating discrete scenario
strategies to address interruption events. Leveraging the Social Network Search (SNS) algorithm, the
model is solved, and its effectiveness is validated through a case study analysis. The results highlight
the accuracy of the urgency level determination method in capturing demand characteristics and the
model’s provision of an objective and practical framework for formulating rational facility location
strategies. This approach holds significant promise for enhancing the promptness and fairness of
food supply assurance during emergencies.

Keywords: emergency logistics; facility sites selection; urgency of food demands; social network
search algorithm

MSC: 90B50

1. Introduction

Frequent sudden events worldwide have a profound impact on residents, economies,
and social development. Post disasters, there is a surge in food demand in affected regions,
requiring swift supply under resource constraints [1–3]. Optimizing the spatial layout of
emergency logistics facilities is a widely employed and effective strategy to reduce material
distribution time, manage costs, and enhance material supply efficiency [4–6]. It serves as a
crucial practical foundation for emergency logistics system operations and has the potential
to significantly enhance the effectiveness of material supply efforts. The optimization process
should adhere to the principle of prioritizing urgent demands first. Facilities should be
strategically located near areas with high demand urgency, and their capacity should align
with the urgency of material requirements. By accounting for demand variations and fully
acknowledging the urgency’s impact, the development of scientifically driven site selection
strategies for emergency logistics facilities can facilitate the establishment of a robust and
efficient emergency logistics system. This, in turn, can enhance allocation efficiency, bolster
material supply operations during crises, and ensure reliable support [7–14].

Various research endeavors have been pursued to tackle this challenge. Ye Feng
et al. introduced an Emergency Warehouse Location Problem (EWLP) model, prioritiz-
ing effectiveness in emergency management over efficiency, to investigate the site selec-
tion problem for national emergency warehouses in China [15]. Liu Jin et al. advocated
emergency material reserve warehouse site selection based on coverage satisfaction and
cost-effectiveness [16]. Mansoor et al. presented a comprehensive bilateral location model
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considering center and customer utilities to enhance service quality and center density [17].
Naranjo et al. proposed a hierarchical facility location model for multi-category facilities,
emphasizing storage capacity and coverage rate to optimize overall coverage satisfac-
tion [18]. Regis-Hernández et al. assert that combining location and allocation factors can
strengthen the scientific foundation of location decisions [19]. To capture the intricacies and
uncertainties of emergencies, Michael et al. developed a multi-capability P-median facility
location model that accounts for the diverse needs of individuals following disasters [20].
Guo et al. addressed the intermittent unavailability of established emergency logistics facil-
ities due to capacity constraints or disaster impact in their research on emergency logistics
facility location issues [21]. Several groups of researchers have extensively investigated
the effects of uncertain demand on location problems [22–25]. Several groups of scholars
emphasize the significance of transportation and transit costs in location problems [26–29].
In contrast, other groups of scholars advocate incorporating humanitarian considerations
into site selection decisions [30–33].

These studies have given less emphasis to variations in demand urgency. To tackle
this gap, Pamucar et al. introduced the fuzzy FUCOM-D’Bonferroni model to prioritize
transportation demand management (TDM) issues [34]. Song et al. introduced a novel
material dispatching model that accounts for distinct disaster severity levels, ensuring
prioritization and concentration on emergency material dispatching in severely affected
areas while also considering equity in emergency material distribution across all levels [35].
Furthermore, Song et al. recommended that scheduling decisions should factor in rescue
time window constraints across different urgency levels [36]. Zhang et al. proposed a
dynamic optimization model that considers demand urgency, arguing that conventional
emergency material supply models focus on meeting quantity requirements but overlook
the subjective urgent needs of diverse emergency materials and disaster victims, hindering
the fair and rational maximization of limited resources’ utility [37]. For complex location
models, Mišković et al. proposed a variable neighborhood search method to tackle practical
problems that the CPLEX solver cannot handle [38]. Filippi et al. introduced a kernel
search heuristic to improve the effectiveness of model solutions [39]. Presently, research on
emergency material dispatch primarily focuses on medical supplies and specialized rescue
equipment, often overlooking the importance of food provision. Emergency food plays a
crucial role in not only sustaining life but also maintaining social order, facilitating swift
responses, preventing diseases, supporting long-term rescue efforts, and catering to vul-
nerable populations. Unlike medical supplies that have specific usage guidelines, various
types of food can address basic survival requirements. Additionally, food presents distinct
challenges like perishability and specific transportation needs. Therefore, in situations with
limited resources, it is essential to prioritize various food requirements and make strategic
decisions regarding facility locations.

This paper explores the problem of food emergency logistics facility location by
fully considering the impact of demand urgency and determining the optimal layout and
configuration of these facilities. Firstly, it designs a method for assessing demand urgency
and establishes a location model aimed at minimizing total cost and unmet demand, with
considerations for potential facility disruptions. Secondly, it develops a solution method
for the model and verifies it through case analysis. Finally, this paper summarizes the
findings, aiming to improve China’s crisis management capabilities and enhance emergency
response effectiveness.

2. Model Establishment
2.1. Problem Description and Assumptions

Within an emergency logistics system, emergency logistics facilities primarily com-
prise emergency logistics centers and distribution centers. The material demand points,
representing the disaster-affected areas, can be fulfilled directly by the emergency logistics
centers or indirectly through the distribution centers. Emergency logistics centers are
divided into permanent and temporary types, with permanent ones established during the
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prevention and preparation phase. In the aftermath of a sudden incident, the emergency
response phase may witness substantial casualties and losses, rendering existing logistics
centers inadequate to meet the demand. Hence, it becomes imperative at this juncture
to address the two-tier food emergency logistics facility location problem encompassing
“logistics centers–distribution centers”. The model integrates uncertain demand and de-
mand urgency to formulate the location model for food emergency logistics facilities. To
streamline the model, it focuses solely on domestic logistics and considers a single mode
of transportation, be it road, waterway, or air transport. Furthermore, the model operates
under the following assumptions:

(1) The positions of potential emergency logistics facilities and demand points are prede-
termined.

(2) Each emergency logistics facility can cater to multiple demand points, and conversely,
demand points can be serviced by multiple facilities.

(3) Factors such as demand, damage rate, and damage cost of various material types are
not taken into account.

(4) The capacity of emergency logistics facilities is restricted, and can be adjusted as
needed, in proportion to construction and operational expenses.

Following a sudden disaster, uncertainty parameters may not exhibit randomness due
to information scarcity, and the outcomes of diverse disasters can differ. It is plausible that
uncertainty parameters cannot be deduced from historical data or conform to a probability
distribution. In such instances, the prerequisites for employing stochastic programming are
not fulfilled, prompting the creation of a robust optimization model. To tackle uncertainty
parameters in the location selection issue, uncertainty sets are employed to represent
demand uncertainty. We devise a food emergency logistics facility location model centered
on demand urgency. The symbols utilized in the model are elucidated below:

I: a set of demand points, I = 1, 2, . . . , |I|.
M: a set of established and candidate logistics centers, M = {1, 2, . . . , |M|}.
N: a set of candidate distribution centers, N = {1, 2, . . . , |N|}.
k: the total categories of emergency food.
qi, qk

i : these, respectively, represent the expected demand of the demand point (Ii) and
the actual demand of the demand point (Ii) for materials (k), k ∈ K.

λi, λk
i : these denote the urgency of emergency demand and the urgency of emergency

food (k) demand at the demand point (Ii).
FCM, FCN : the unit construction cost of the logistics center and distribution center,

FCM > FCN .
VCM, VCN : the unit operating cost of the logistics center and distribution center,

VCM > VCN .
SC: the unit transportation cost refers to the cost of transporting goods per unit distance.
TC: the unit transit cost is the charge for moving each unit of goods from the logistics

center to the demand point through the distribution center.
vNmax, νNmax: the maximum and minimum construction capacity (i.e., the volume of

materials they can handle) of logistics centers.
smi, sni, smn: the distance from the demand point to the logistics center, the distance

from the demand point to the distribution center, and the distance from the logistics center
to the distribution center.

wM, wN : the decision variable, i.e., the number of emergency logistics centers and
distribution centers opened.

xM
m ∈ {0, 1}, xN

n ∈ {0, 1}: The decision variable signifies the opening status of a
logistics center (Mm) or distribution center (Nn). A value of 1 indicates that the center is
open, while any other value indicates closure. m ∈ M, n ∈ N.

vM
m , vN

n : The decision variable. The capacity of a logistics center and distribution center
denotes the volume of goods they can hold.

zk
mn, zk

mi, zk
ni: the decision variable representing the allocation quantity of food supply

(k) among logistics centers, distribution centers, and demand points.
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2.2. Determination of Demand Urgency

Following a sudden event, the urgency of demand for emergency food varies across
demand points due to factors like the severity of the disaster, economic conditions, and
population demographics. The urgency of demand is influenced by factors such as food
importance, production capabilities, transportation challenges, and emergency response
efficiency. As a result, demand points exhibit varying levels of urgency for different
food types. Therefore, the analysis of demand urgency should consider two aspects: the
urgency at demand points and the urgency across food categories. Priority should be
given to meeting the needs of high-urgency demand points while also addressing those
with lower urgency. This approach allows for centralized coordination by emergency
material management centers, rational selection of emergency logistics sites, and efficient
resource utilization. It enhances decision-making precision, ensures timely food supply
during emergencies with limited resources, reduces management expenses, and boosts
rescue effectiveness.

To assess the urgency of food demand at various points, we consider the following
indicators: degree of disaster (X1), extent of building or road damage (X2), energy demand
density (X3), primary industry GDP (X4), population density (X5), and ratio of elderly
and young population (X6). For evaluating the urgency of food demand itself, we choose
the following indicators: demand level (Y1), nutritional demand (Y2), demand frequency
(Y3), transportation temperature and humidity index (Y4), lead time (Y5), demand price
elasticity (Y6), self-sufficiency capacity (Y7), edible days (Y9), food energy (Y9), shelf life
(Y10), and convenience of consumption (Y11). To ensure objectivity, we first construct an
initial decision matrix and preprocess it. Then, we use the entropy weight method to assign
weights. Next, we apply the weighted Mahalanobis distance–gray relational–TOPSIS
method to obtain urgency coefficients. Finally, we use hierarchical clustering to determine
the urgency levels of demand. The steps are as follows:

Step 1: Interval number type conversion. Liu et al. introduced a method for converting
attribute values represented as interval numbers [40].

xie = x− + ie(x+ − x−) (1)

where ie are expected indicative values, and the general value is 0.5; x between [x−, x+] x−

and x+ belongs to ℜ; x− is less than x+.
Step 2: Normalization of indicator values. Define set n as the evaluation objects,

associated with set m as the evaluation indicators, and create an initial evaluation indicator
matrix A = (aij)n×m, where aij represents the j-th indicator of the i-th object, 1 ≤ i ≤ n,
1 ≤ j ≤ m. Matrix A is normalized using the min–max method, resulting in matrix
B = (bij)n×m.

Step 3: Calculate the information entropy Hj:

Hj = −
n

∑
i=1

cij ln cij/ln n (2)

where cij = bij/
n
∑

i=1
bij represents the specific gravity of the indicator. To prevent calculation

errors in cases where it equals zero, the lower limit of the normalization interval is set
to 0.002.

Step 4: Use wj = 1 − Hj/n −
n
∑

j=1
Hj to calculate index entropy weight wj.

Step 5: Calculate the positive ideal solution A+ and negative ideal solution A−:

A+ =
{

a+1 , a+2 , . . . , a+m
}
=

(
maxxij
1≤i≤n

∣∣∣∣∣j ∈ J+, minxij
1≤i≤n

∣∣j ∈ J−
)

(3)
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A− =
{

a−1 , a−2 , . . . , a−m
}
=

(
minxij
1≤i≤n

∣∣∣∣∣j ∈ J+, maxxij
1≤i≤n

∣∣j ∈ J−
)

(4)

where J+ and J− are benefit-type and cost-type index sets, respectively.
Step 6: Calculate the dimensionless Markov distance Dj

+ between each evaluation

scheme and the positive ideal solution, d+i = d(ai, A+) =
√
(ai − A+)ΩΣ−1ΩT(ai − A+)T,

D+
i =

d+i
max

1≤i≤n
d+i

. Similarly, the dimensionless Markov distance from the negative ideal

solution D−
i =

d−i
max

1≤i≤n
d−i

, Ω = diag(
√

w1,
√

w2, . . . ,
√

wm); Σ is the covariance matrix of

matrix A; and d+i is the Mahalanobis distance with dimension.
Step 7: Calculate the dimensionless gray correlation degree R+

i and R−
i of each scheme

with positive and negative ideal solutions.
Firstly, calculate the weighted normalized matrix C = ((bij ∗ wj)n×m)

T . Then, calculate
the gray correlation coefficient matrix r+ = (r+ij )n×m

of each scheme and positive ideal

solution, where r+ij =
min

i
min

j

∣∣∣c+j −cij

∣∣∣+ρmax
i

max
j

∣∣∣c+j −cij

∣∣∣∣∣∣c+j −cij

∣∣∣+ρmax
i

max
j

∣∣∣c+j −cij

∣∣∣ . Finally, the gray correlation degree

R+
i =

r+i
max

1≤i≤n
r+i

with the positive ideal solution is calculated. Here, r+i = 1
m

m
∑

j=1
r+ij and ρ are

the resolution coefficients, and ρ = 0.5 is generally selected; c+j = max(cj); r+ij represents
the gray coefficient of the i scheme and the positive ideal solution with respect to the j
index; and r+i is the gray correlation degree with dimension.

Similarly, the dimensionless gray correlation degree between each scheme and the

negative ideal solution is R−
i =

r−i
max

1≤i≤n
r−i

.

Step 8: Combine the Mahalanobis distance and the gray correlation degree. The larger
D−

i and R+
i are, the closer they are to the positive ideal scheme; conversely, the larger D+

i
and R−

i are, the closer they are to the ideal solution.

H+
i = αD−

i + βR+
i (5)

H−
i = αD+

i + βR−
i (6)

where 1 ≤ i ≤ n; α + β = 1, generally 0.5; H+
i and H−

i are the weighted synthetic values of
D−

i and R+
i and the weighted synthetic values of D+

i and R−
i , respectively.

Step 9: Utilize H∗
i =

H+
i

H+
i +H−

i
to compute the urgency value H∗

i . A higher proximity

value indicates a more urgent demand, correlating to a heightened level of demand urgency.
Step 10: Use the hierarchical clustering method H∗

i to cluster urgent values.

2.3. Construction of Site Selection Model Considering the Urgency of Demand
2.3.1. Location Model

Utilizing the maximum coverage model, a food emergency logistics facility location
model, denoted as SAM, is developed with the aim of minimizing total cost and unmet
demand while considering demand urgency.

Total construction cost: TFC = ∑
m∈M

xM
m vM

m FCM + ∑
n∈N

xN
n vN

n FCN .

Total operating cost: TVC = ∑
m∈M

xM
m vM

m VCM + ∑
n∈N

xN
n vN

n VCn.

Total transportation cost:

TSC = ∑
m∈M

(
∑
i∈I

∑
k∈K

zk
mismiSC + ∑

n∈N
∑
k∈K

zk
mnsmnSC

)
+ ∑

n∈N
∑
i∈I

∑
k∈K

zk
nisniSC.
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Total transit cost: TTC = ∑
n∈N

∑
i∈I

∑
k∈K

xN
n zk

niTC.

(SAM) : min f1 = TFC + TVC + TSC + TTC

= ∑
m∈M

(
xM

m vM
m (FCM + VCM) + ∑

i∈I
∑

k∈K
zk

mismiSC+ ∑
n∈N

∑
k∈K

zk
mnsmnSC

)
+ ∑

n∈N

(
xN

n vN
n (FCN + VCN) + ∑

i∈I
∑

k∈K

(
zk

nisniSC + xN
n zk

niTC
)) (7)

min f2 = ∑
i∈I

∑
k∈K

λk
i

(
qk

i − ∑
m∈M

zk
mix

M
m − ∑

n∈M
zk

nix
M
m

)
+ ∑

i∈I
λi

(
∑
k∈K

qk
i − ∑

m∈M
∑
k∈K

zk
mix

M
m − ∑

n∈N
∑
k∈K

zk
nix

n
n

)
(8)

s.t. ∑
n∈N

xN
n = wN (9)

∑
m∈M

xM
m = wM (10)

∑
i∈I

∑
k∈K

zk
mi + ∑

n∈N
∑
k∈K

zk
mn ≤ vM

m , ∀m ∈ M (11)

∑
m∈M

∑
k∈K

zk
mn ≤ vN

n , ∀n ∈ N (12)

∑
m∈M

zk
mn = ∑

i∈I
zk

ni, ∀n ∈ N (13)

zk
mn, zk

mi =

{
≥ 0, xM

m = 1
0 , else

zk
ni =

{
≥ 0, xN

n = 1
0 , else

(14)

xM
m , xN

n ∈ {0, 1} (15)

vM
m ≥ vMmin, 0 ≤ vN

n ≤ vNmax (16)

∀i ∈ I, m ∈ M, n ∈ N, k ∈ K (17)

Objective function (7) aims to minimize the total cost, encompassing construction,
operating, operating, transportation, and transit costs. Objective function (8) focuses on
minimizing the material shortage at demand points based on their urgency, considering
both total demand shortfall and specific material deficiencies. Constraint (9) restricts
the number of allowable distribution centers. Constraint (10) limits the number of new
logistics centers that can be established. Constraints (11) and (12) ensure that material
supply at logistics and distribution centers, respectively, does not exceed their capacities.
Constraint (13) enforces flow conservation at distribution centers. Constraint (14) mandates
that supplies are only provided if the facility is operational. Constraints (15) to (17) define
variable type limitations.

In the model SAM, the objective function (8) incorporates an uncertain parameter
related to uncertain demand qk

i for food supply k. This paper utilizes the robust counterpart
optimization method, employing a “box” uncertainty set to characterize the uncertainty
level in demand qk

i . It integrates the robust counterpart model introduced by Bertsimas
and Sim to convert the objective function (8) into a robust equivalent model.

Assume qk
i ⊆

[
qk

i − ak
i uk

i , qk
i + ak

i uk
i

]
, ∀i ∈ I, where qk

i is the nominal demand of de-

mand point I, ak
i = εk

i qk
i is the demand perturbation, εk

i is the perturbation ratio, and uk
i

is the uncertainty factor. In uncertainty set Uk =

{
uk : ∑

i∈I
uk

i ≤ Γk
u, ∀i ∈ I , the parameter

Γk
u signifies the level of uncertainty within the demand set. This parameter quantifies

the conservatism of the constraints, mirroring the decision-maker’s risk preference. A
higher value of Γk

u indicates a more conservative approach. Here, Γk
u is a subset of [0, I],

while I denotes the count of demand points, suggesting that not all demand points will
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encounter fluctuations in material (k) requirements. This implies that the demands of up
to
⌊

Γk
i

⌋
demand points can fluctuate within their intervals, with each demand perturba-

tion being
(

Γk
i −

⌊
Γk

i

⌋)
qk

i , while the demands for the remaining demand points remain

at their nominal level qk
i . Under this condition, the resulting robust solution remains

viable [41]. Part ∑
i∈I

∑
k∈K

λk
i qk

i +∑
i∈I

∑
k∈K

λiqk
i of objective function (8) containing uncertain de-

mand is sorted out to obtain ∑
i∈I

∑
k∈K

(
λi + λk

i

)
qk

i . After applying the method described

above, ∑
i∈I

∑
k∈K

(
λi + λk

i

)
(qk

i + ak
i uk

i ) is derived. According to the Bertsimas and Sim equiva-

lent model, the inner maximization problem is denoted as max ∑
i∈I

∑
k∈K

(λi + λk
i )ak

i uk
i , and its

constraints are represented as ∑
i∈I

uk
i ≤ Γk

u, ∀i ∈ I, k ∈ K, 0 ≤ uk
i ≤ 1 [42].

Applying duality theory involves introducing dual variables φk and γik to address
this maximization problem, resulting in the following outcome:

min∑
i∈I

∑
k∈K

(
λi + λk

i

)
qk

i + ∑
k∈K

Γk
u φk + ∑

i∈I
∑
k∈K

γik (18)

φk + γik ≥
(

λi + λk
i

)
εk

i qk
i (19)

φk, γik ≥ 0, ∀i ∈ I, k ∈ K (20)

Ultimately, Equation (8) is converted into Equation (21).

min f2 = ∑
i∈I

∑
k∈K

λk
i

(
qk

i − ∑
m∈M

zk
mix

M
m − ∑

n∈M
zk

nix
M
m

)
+ ∑

i∈I
λi

(
∑
k∈K

qk
i − ∑

m∈M
∑
k∈K

zk
mix

M
m − ∑

n∈N
∑
k∈K

zk
nix

n
n

)
+ ∑

k∈K
Γk

u φk + ∑
i∈I

∑
k∈K

γik (21)

2.3.2. Site Selection Model Considering Facility Interruption

In light of potential sudden events, particularly natural disasters, that could damage
infrastructure, established emergency facilities may face interruptions. When a facility
is disrupted, it may lose partial or complete functionality, leading to unmet demands at
various points. This necessitates the construction of new facilities or the reassignment of
existing ones to address the situation. However, the temporary facilities may be distant
and lack sufficient inventory capacity, causing delays in the supply of emergency food
materials and impacting rescue operations. A new assumption is introduced, considering
the risk of facility interruptions in both emergency logistics centers and distribution centers,
with interruptions only considered in cases of complete functional loss. Discrete random
scenarios are employed to depict facility interruption events [43]. In addition to the current
site selection model, new variables are introduced based on the characteristics of reliability
site selection issues. The symbols’ meanings are as follows:

Ξ: the scenario set for facility disruptions, Ξ = {1, 2, . . . , |Ξ|}, ξ ∈ Ξ.
pξ : the probability of occurrence of scenario ξ, pξ ∈ [0, 1].
yMξ

m , yNξ
n ∈ {0, 1}: In scenario ξ, whether logistics center (Mm) and distribution center

(Nn) is interrupted. If it is 1, it is interrupted.
zkξ

mn, zkξ
mi, zkξ

ni : the decision variable, denoted as, signifies the allocation of food material
(k) among logistics centers, distribution centers, and demand points within scenario ξ.

Building upon model SAM, a location selection model based on discrete scenarios is
developed and denoted as model ISAM.

Total construction cost: TFC = ∑
m∈M

xM
m vM

m FCM + ∑
n∈N

xN
n vN

n FCN

Total operating cost: TVC = ∑
ξ∈Ξ

∑
m∈M

pξ xM
m yMξ

m vM
m VCM + ∑

ξ∈Ξ
∑

n∈N
pξ xN

n yNξ
n vN

n VCN
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Total transportation cost:

TSC = ∑
ξ∈Ξ

∑
m∈M

pξ

(
∑
i∈I

∑
k∈K

zkξ
mismiSC + ∑

n∈N
∑
k∈K

zkξ
mnsmnSC

)
+ ∑

ξ∈Ξ
∑

n∈N
∑
i∈I

∑
k∈K

pξ zkξ
ni sniSC

Total transit cost: TSC = ∑
ξ∈Ξ

∑
n∈N

∑
i∈I

∑
k∈K

pξ xN
n yNξ

n zkξ
ni TC

(ISAM) : min f1 = TFC + TVC + TSC + TTC

= ∑
m∈M

xM
m vM

m FCM + ∑
n∈N

xN
n vN

n FCN + ∑
ξ∈Ξ

∑
n∈N

pξ xN
n yNξ

n vN
n VCN + ∑

ξ∈Ξ
∑

m∈M
pξ

(
xM

m yMξ
m vM

m VCM + ∑
i∈I

∑
k∈K

zkξ
mismiSC + ∑

n∈N
∑

k∈K
zkξ

mnsmnSC
)

+ ∑
ξ∈Ξ

∑
n∈N

∑
i∈I

∑
k∈K

pξ zkξ
ni

(
sniSC + xN

n yNξ
n TC

) (22)

min f2 = ∑
ξ∈Ξ

∑
i∈I

∑
k∈K

Pξ λk
i (q

k
i − ∑

m∈M
zkξ

mix
M
m yMξ

m − ∑
n∈N

zkξ
ni xM

m yMξ
m ) + ∑

ξ∈Ξ
∑
i∈I

Pξ λi(∑
k∈K

qk
i − ∑

m∈M
∑
k∈K

zkξ
mix

M
m yMξ

m − ∑
n∈N

∑
k∈K

zkξ
ni xM

m yMξ
m ) (23)

s.t. ∑
n∈N

xN
n = wN (24)

∑
m∈M

xM
m = wN (25)

∑
i∈I

∑
k∈K

zkξ
mi + ∑

n∈N
∑
k∈K

zkξ
ni ≤ vM

m , ∀m ∈ M, ξ ∈ Ξ (26)

∑
m∈M

∑
k∈K

zkξ
mn ≤ vN

n , ∀n ∈ N, ξ ∈ Ξ (27)

∑
m∈M

zkξ
mn = ∑

i∈I
zkξ

ni , ∀n ∈ N, ξ ∈ Ξ (28)

∑
m∈M

xM
m yM

m + ∑
n∈N

xN
n yN

n ≥ 1 (29)

zkξ
mn =

{
≥ 0, xM

m yMξ
m xN

n yNξ
n = 1

0 , else

zkξ
mi =

{
≥ 0, xM

m yMξ
m = 1

0 , else

zkξ
ni =

{
≥ 0, xN

n yNξ
n = 1

0 , else

(30)

xM
m , xN

n ∈ {0, 1} (31)

vM
m ≥ vMmin, 0 ≤ vN

n ≤ vNmax (32)

∀i ∈ I, m ∈ M, n ∈ N, ξ ∈ Ξ (33)

Constraint (29) guarantees the availability of at least one operational emergency facility
to deliver emergency supplies to the point of need in all scenarios. The remaining objective
functions and constraints convey the same meaning as those in the model SAM.

For the part ∑
ξ∈Ξ

∑
i∈I

∑
k∈K

pξ

(
λi + λk

i

)
qk

i of the objective function (23) that contains un-

certain parameter qk
i , the uncertain set description of “box” is adopted, which is robust and

transformed by introducing dual variables. The dual variables θk and ρik are introduced
and converted into Equations (34)–(36), which are put into the objective function, and
finally the final form (37) of the objective function (23) is obtained.

min ∑
ξ∈Ξ

∑
i∈I

∑
k∈K

pξ

(
λi + λk

i

)
qk

i + ∑
k∈K

Γk
uθk + ∑

i∈I
∑
k∈K

ρik (34)
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θk + ρik ≥
(

λi + λk
i

)
εk

i qk
i ∑

ξ∈Ξ
pξ (35)

θk, ρik ≥ 0, ∀i ∈ I, k ∈ K (36)

min f2 = ∑
ξ∈Ξ

∑
i∈I

∑
k∈K

Pξ λk
i (q

k
i − ∑

m∈M
zkξ

mi x
M
m yMξ

m − ∑
n∈N

zkξ
ni xM

m yMξ
m ) + ∑

ξ∈Ξ
∑
i∈I

Pξ λi(∑
k∈K

qk
i − ∑

m∈M
∑
k∈K

zkξ
mi x

M
m yMξ

m − ∑
n∈N

∑
k∈K

zkξ
ni xM

m yMξ
m ) + ∑

k∈K
Γk

uθk + ∑
i∈I

∑
k∈K

ρik (37)

3. Location Model Solving
3.1. Multiobjective Processing

Balancing cost and unmet value as dual objectives poses challenges in real rescue
operations due to differing units of measurement, making the traditional linear weighting
method impractical. This paper adopts a method to address multi-objective decision-
making, where f ∗1 and f ∗2 represent the optimal values for the respective sub-problems, and
α denotes the cost preference weight determined by the decision-maker [44,45].

min f = α
f1

f ∗1
+ (1 − α)

f2

f ∗2
(38)

3.2. Algorithm Design

This paper employs a novel meta-heuristic algorithm, the Social Network Search (SNS),
to tackle the model. The SNS algorithm, introduced by SIAMAK TALATAHARI et al. in
2021, mimics user behaviors in social networks to gain recognition, replicating actions like
imitation, dialog, argument, and innovation [46]. These behaviors serve as optimization
operators, mirroring how users are influenced and driven to share fresh perspectives.
The algorithm accounts for interpersonal relationships, incorporates additional random
elements and population diversity, and boasts low computational overhead and rapid
convergence speed.

(1) Encoding

The facilities (logistics center, distribution center) for the supply of materials accepted
by the demand point are taken as the code, that is, the emergency logistics center and
the corresponding rescue provided by the distribution center are taken as the code. As-
suming that there are m demand points, each of which can be supplied by n emergency
facilities, a vector m × n dimensional vector (called user individual) is constructed using
symbol coding.

X = (x1, x2, . . . , xk, . . . , x2m) (39)

where the value xk(1 ≤ k ≤ 2m) of gene location k represents the number of the logistics
center or distribution center that provides materials to the corresponding demand point,
and the location k = n(i − 1) + j corresponds to the number of the Class j facility that
supplies materials to the i demand point.

(2) SNS algorithm steps

Step 1: Initialize scale (nUser), maximum number of evaluations (MaxEval), maximum
number of iterations (MaxEval), and other parameters.

Step 2: Initialize individual users and evaluate them.
Step 3: Users are randomly selected to enter four behavioral modes of imitation, dialog,

argument, and innovation to obtain a new solution. Since the encoded solution is discrete,
the SNS algorithm needs to reprocess the solution after it is updated, and the processing
method is Formula (40), where UB and LB represent the maximum and minimum values
of the variable value range, and round(·) represents the nearest integer value.

xi new =


LB, x′i new < LB
round(x′i new), LB ≤ x′i new ≤ UB
UB, UB < x′i new

(40)
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Step 4: If the new solution satisfies the condition, it replaces the old solution and
updates the function value. Otherwise, return to Step 3.

Step 5: If the termination conditions are not met, which typically involve reaching the
maximum number of iterations or attaining the global optimum, the process returns to
Step 3.

The algorithm flowchart is depicted in Figure 1.
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4. Example Analysis
4.1. Data Description

This case study delves into a region in China impacted by the novel coronavirus
pneumonia event in October 2022. It involves 20 demand points, with their food demand
urgency data and demand urgency analysis data detailed in Tables 1 and 2, respectively.
Table 2 specifically outlines the food demand data for demand point 14. Assuming logistics
centers 1 and 2 are already operational, two additional candidate logistics centers (num-
bered 3 and 4) and six candidate distribution centers can be added. The food demand at
demand points follows a specific distribution, with probabilities of 0.1, 0.15, and 0.19 for
three scenarios. The emergency food categories required consist of Material 1, Material
2, and Material 3. The coordinates and relevant demand data for each demand point are
provided in Tables 3–5, respectively. The unit construction cost for logistics centers and
distribution centers is 2 and 1, respectively. The unit operating costs are 0.05 and 0.03,
respectively. The unit transportation cost for goods is 0.012, with a unit transfer cost of
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0.001. The minimum construction capacity for logistics centers is 800, while for distribution
centers it is 200, with a maximum construction capacity of 1000. The facility interruption
scenarios are detailed in Table 6.

Table 1. Urgency of food demand at demand points.

Demand Point Number Coordinate X1 X2 X3 X4 X5 X6

1 (20,85) 28.57% 0 2172.86 11.27 1460.04 31.95%
2 (5,45) 14.29% 0 2182.09 5.42 2439.82 32.70%
3 (42,15) 45.45% 0 2172.77 9.11 1416.11 33.92%
4 (38,5) 7.14% 0 2196.79 6.30 2449.44 33.55%
5 (95,35) 98.00% 0 2213.94 0.20 106.57 25.35%
6 (85,25) 89.00% 0 2220.31 0 84.76 25.40%
7 (62,80) 82.00% 0 2238.93 2.70 54.03 22.79%
8 (58,75) 83.00% 0 2235.85 0.50 93.58 22.61%
9 (55,85) 76.00% 0 2241.31 5.40 46.93 27.96%

10 (18,80) 92.00% 0 2236.34 10.2 46.77 26.84%
11 (25,30) 4.00% 0 2158.20 80.87 410.85 40.48%
12 (15,10) 5.00% 0 2161.98 48.58 375.87 44.10%
13 (45,65) 10.27% 0 2201.03 38.65 248.62 29.68%
14 (65,20) 47.37% 0 2178.86 21.74 2529.31 32.19%
15 (31,52) 32.00% 0 2136.60 71.20 315.42 38.78%
16 (2,60) 38.46% 0 2158.16 23.73 336.07 44.75%
17 (5,5) 60.00% 0 2116.64 12.47 985.87 33.70%
18 (57,29) 8.33% 0 2107.92 18.29 159.74 40.81%
19 (4,18) 11.76% 0 2158.06 39.04 202.64 41.31%
20 (26,35) 57.14% 0 2150.47 25.96 152.17 41.93%

Table 2. Analysis data of food demand urgency.

Broad
Category Middle Class Y1 Y2 Y3 Y4 X5 Y6 Y7 Y8 Y9 Y10 Y11

grain

flour 2 250 3 0.36 0.5 0.32 70.63 4.00 364.00 270 2
rice 2 250 3 0.69 2.0 0.39 0.47 4.00 120.00 270 2
corn 2 250 3 0.64 0.5 0.30 57.25 4.00 112.00 16 2

soya bean 5 30 1 0.34 1.0 0.43 0.59 33.33 390.00 900 2
other 2 250 3 0.30 0.5 0.70 6.35 4.00 325.00 45 2

vegetable
fresh 3 400 3 0.56 1.5 0.42 194.6 2.50 43.42 6 2

dehydrated 3 40 3 0.13 0.5 5.34 4.04 25.00 273.16 225 4
other 3 400 3 0.58 0.5 0.85 10.77 2.50 40.00 9 2

fruit
fresh 3 275 3 0.46 1.0 0.65 41.41 3.64 85.97 25 5
dried 3 27.5 1 0.33 0.5 7.37 3.54 36.36 338.32 210 5

nut nut 5 30 1 0.36 2.0 5.35 9.72 33.33 1076.4 300 5

poultry egg egg 4 45 3 0.52 1.0 0.72 1.25 22.22 147.00 20.0 4
other 5 45 3 0.52 1.0 0.89 11.88 22.22 204.83 25.0 4

edible salt edible salt 6 2.5 3 0.11 0.5 0.54 0.00 400.0 0.00 1460 1

edible oil
vegetable 6 27.5 3 0.04 0.5 0.63 10.65 36.36 829.38 360 1

animal 6 27.5 3 0.04 2.0 0.74 0.01 36.36 867.57 360 1

sugar sugar 6 5.00 0.5 0.13 1.0 0.56 0.00 200 400.00 630 3

meat
livestock meat 4 55 2.5 0.53 1.0 0.79 7.69 18.18 236.09 1.5 1

poultry 4 55 2.5 0.53 0.5 0.85 1.90 18.18 284.90 2.5 1
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Table 2. Cont.

Broad
Category Middle Class Y1 Y2 Y3 Y4 X5 Y6 Y7 Y8 Y9 Y10 Y11

processed
food

convenience
food 2 250 3 0.43 0.2 7.31 166.7 4.00 473.00 330 4

dairy product 5 400 1.5 0.56 2.0 2.06 32.82 2.5 313.25 14.0 5
beverage 1 160 8 0.04 0.2 0.68 78,505 0.63 37.15 405 5
processed

aquatic
products

4 57.5 0.5 0.88 2.5 4.48 7.22 17.39 310.45 138 1

Table 3. Information of candidate logistics centers.

Number of the Built
Logistics Center x-Coordinate y-Coordinate Added Candidate

Logistics Center Number x-Coordinate y-Coordinate

1 55 80 3 20 50
2 20 50 4 43 8

Table 4. Information of candidate distribution centers.

Candidate Number x-Coordinate y-Coordinate Candidate Number x-Coordinate y-Coordinate

5 17 15 8 80 21
6 25 70 9 10 25
7 45 46 10 23.3 52

Table 5. Food demand at each demand point.

Demand
Point

Number

The Demand for
Different Situations

Nominal Demand for
Different Materials

Demand
Point

Number

The Demand for
Different Situations

Nominal Demand for
Different Materials

1 2 3 1 2 3 1 2 3 1 2 3

1 200 180 220 50 130 20 11 150 210 170 110 30 10
2 180 240 300 70 60 50 12 220 190 160 150 30 40
3 210 200 170 90 30 90 13 160 230 210 60 20 80
4 220 190 210 50 60 110 14 210 140 190 80 60 70
5 230 220 190 70 50 110 15 170 190 210 70 40 60
6 230 240 210 30 80 120 16 210 210 210 70 70 70
7 190 180 160 60 70 60 17 180 240 230 80 60 40
8 210 260 260 90 50 70 18 190 220 170 40 90 60
9 210 150 230 50 90 70 19 230 170 210 100 50 80
10 170 170 150 70 70 30 20 240 190 220 60 60 120

Table 6. Sets of disruption scenarios of logistics facilities.

Situation Opportunity
Logistics Facility Code

1 2 3 4 5 6 7 8 9 10

situation 1 0.2 1 1 1 1 1 1 1 1 1 1
situation 2 0.05 1 0 * 1 1 1 1 1 1 1 1
situation 3 0.1 1 1 1 1 0 1 1 1 1 1
situation 4 0.1 1 1 1 1 1 1 1 1 1 0

* 0 indicates facility interruption. Source of data.

4.2. Results and Analysis
4.2.1. Model Solution Results

(1) Solution for demand urgency

Using the above method and data for determining demand urgency, we obtained the
numerical values for demand urgency and identified the emergency demand urgency level
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for each demand point through cluster analysis. Given that China categorizes emergency
response to sudden events into four levels, we have similarly classified demand urgency
into four levels, as shown in Table 7. For demand point 14, which has the highest demand
urgency, detailed evaluations of demand urgency for different food categories are provided
in Table 8. Additionally, the demand urgency for each demand point across different food
categories is presented in Table 9.

Table 7. Comprehensive parameters for food demand urgency evaluation at demand points.

Demand Point
Number

Evaluate the Comprehensive Parameter Values
H* Sort Urgency Level

D+ D− R+ R− H+ H−

14 1.8072 2.4434 0.8303 0.6966 1.6369 1.2519 0.5666 1 I
5 1.7104 1.7563 0.9471 0.7033 1.3517 1.2069 0.5283 2 II
6 1.7247 1.9923 0.8152 0.8123 1.4038 1.2685 0.5253 3 II
2 2.1442 2.1346 0.7912 0.7322 1.4629 1.4382 0.5043 4 II
4 2.1624 2.1447 0.8028 0.7360 1.4738 1.4492 0.5042 5 II

10 1.4862 1.6830 0.7350 0.9473 1.2090 1.2167 0.4984 6 II
8 1.8329 1.8761 0.7487 0.8877 1.3124 1.3603 0.4910 7 II
7 1.8452 1.8531 0.7302 0.8877 1.2917 1.3665 0.4859 8 II

16 2.3692 2.0854 0.7810 0.7159 1.4332 1.5426 0.4816 9 II
9 1.9514 1.7347 0.7363 0.9988 1.2355 1.4751 0.4558 10 III

13 2.5738 1.8462 0.9829 0.8365 1.4146 1.7052 0.4534 11 III
20 2.7843 1.8132 0.7801 0.7368 1.2966 1.7606 0.4241 12 III
12 2.6218 1.7583 0.7158 0.8020 1.2371 1.7119 0.4195 13 III
3 2.7077 1.5804 0.7591 0.6953 1.1697 1.7015 0.4074 14 III

17 2.7785 1.5384 0.7513 0.7449 1.1449 1.7617 0.3939 15 III
18 3.0372 1.3996 0.6711 0.8513 1.0353 1.9442 0.3475 16 IV
19 3.1233 1.3375 0.6887 0.8046 1.0131 1.9639 0.3403 17 IV
1 3.0537 1.2186 0.7226 0.7451 0.9706 1.8994 0.3382 18 IV

11 2.9690 1.2881 0.6530 0.8503 0.9706 1.9097 0.3370 19 IV
15 2.9692 1.2551 0.6589 0.8044 0.9570 1.8868 0.3365 20 IV

Table 8. Comprehensive parameters of urgency evaluation of emergency food demand.

Category
Evaluate the Comprehensive Parameter Values

H* Sort Urgency Level
D+ D− R+ R− H+ H−

beverage 7.2821 6.4459 0.7926 0.8075 3.6192 4.0448 0.4722 1 I
nut 8.7383 3.8761 0.7476 0.8262 2.3118 4.7822 0.3259 2 II

convenience food 8.6439 3.7371 0.7102 0.849 2.2237 4.7464 0.3190 3 II
sugar 8.6669 3.7071 0.7021 0.8374 2.2046 4.7521 0.3169 4 II

edible salt 8.5758 3.1473 0.7576 0.8512 1.9525 4.2135 0.3167 5 II
dairy product 8.7621 3.5623 0.7356 0.8382 2.149 4.8002 0.3092 6 II

rice 9.0211 3.4956 0.7313 0.8302 2.1134 4.9257 0.3002 7 III
flour 8.9822 3.3937 0.7048 0.8534 2.0493 4.9178 0.2941 8 III

other vegetables 8.8549 3.325 0.6942 0.8752 2.0096 4.8651 0.2923 9 III
fresh fruit 9.0802 3.3496 0.7292 0.8462 2.0394 4.9632 0.2912 10 III

fresh vegetable 8.9359 3.2866 0.7072 0.8584 1.9969 4.8972 0.2897 11 III
corn 9.0038 3.2249 0.7042 0.8699 1.9645 4.9368 0.2847 12 III

animal fat 9.1666 3.273 0.7037 0.8698 1.9884 5.0182 0.2838 13 III
soya bean 9.6582 3.4051 0.7008 0.8516 2.053 5.2549 0.2809 14 III

vegetable oil 9.1086 3.2161 0.6816 0.8931 1.9489 5.0008 0.2804 15 III
other grain 9.1321 3.1391 0.697 0.8711 1.9181 5.0016 0.2772 16 III
other eggs 9.3358 3.147 0.7044 0.8652 1.9257 5.1005 0.2741 17 III

egg 9.4011 3.1257 0.7086 0.8606 1.9172 5.1308 0.272 18 III
dried fruit 9.5242 2.912 0.7045 0.8662 1.8082 5.1952 0.2582 19 IV

dehydrated vegetable 9.5948 2.9074 0.6923 0.8705 1.7998 5.2327 0.2559 20 IV
processed aquatic

products 9.4564 2.8358 0.7131 0.8729 1.7745 5.1647 0.2557 21 IV

poultry 9.4232 2.7813 0.6791 0.9023 1.7302 5.1627 0.251 22 IV
livestock meat 9.5073 2.6917 0.6837 0.895 1.6877 5.2011 0.245 23 IV
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Table 9. Urgency of demand for different food materials.

Demand
Point

Different Urgency of Food Demand Demand
Point

Different Urgency of Food Demand

Category 1 Category 2 Category 3 Category 1 Category 2 Category 3

1 0.6567 0.6752 0.5786 11 0.5688 0.4637 0.4312
2 0.6599 0.6435 0.5416 12 0.6423 0.5381 0.5498
3 0.576 0.5173 0.579 13 0.5760 0.5718 0.5981
4 0.5385 0.5374 0.5971 14 0.5143 0.5381 0.5237
5 0.4693 0.4720 0.5122 15 0.5197 0.4420 0.5124
6 0.4391 0.4438 0.4685 16 0.4637 0.4667 0.4328
7 0.4599 0.4621 0.4610 17 0.6894 0.5973 0.1357
8 0.5675 0.5173 0.5578 18 0.5687 0.5637 0.5173
9 0.4368 0.4839 0.4764 19 0.642 0.6120 0.6389
10 0.4712 0.5713 0.3751 20 0.5364 0.5329 0.6210

According to Table 7, demand point number 14 has an emergency demand urgency
level of Level I. This area experiences severe disasters, high per capita energy demand, weak
self-supply capabilities, and high population density. There are eight demand points with
Level II urgency levels, characterized by relatively lower disaster severity but high energy
demand density and lower primary industry GDP. Demand point number 3, despite having
a smaller population density, has a higher proportion of elderly and young populations,
resulting in a relatively higher urgency level. This demonstrates that the model fully
considers various scenarios. There are six demand points with Level III urgency levels,
which have higher disaster severity and higher primary industry GDP, but lower demand
density and population density. Lastly, there are five demand points with Level IV urgency
levels. These points generally have lower disaster severity, low energy demand density,
high primary industry GDP, and low population density. They can somewhat meet their
own emergency requirements, justifying their classification as Level IV.

Referring to Table 8, Level I comprises 1 class, Level II includes 5 classes, Level
III consists of 12 classes, and Level IV encompasses 5 classes. Through the analysis, it
is observed that emergency food items sharing the same demand urgency level exhibit
consistent attributes. Class I emergency food stands out as a vital resource crucial for human
survival and development, representing a life-sustaining element. Class II emergency food
embodies emergency characteristics fully. Class III emergency food exhibits high demand,
nutritional requirements, and frequency, albeit with subpar performance, making it suitable
for scenarios with specific cooking conditions. Grade IV emergency food primarily consists
of less essential items with high interchangeability. Thus, it can be inferred that emergency
food items with identical demand urgency levels exhibit uniform attributes.

(2) Solve the model without considering the facility interruption

According to the above model (SAM), the SNS algorithm is used to solve the location
problem in the prevention and preparation stage. The user group size (nUser) is set to 10;
the maximum evaluation time (MaxEval) is 2000; the maximum iteration time (MaxIter)
is 200; the probability of constraint violation (MaxIter) is 0.1; the stocks of three kinds of
materials in the built logistics center 2 and logistics center 3 are, respectively, (1000,700, 400)
and (450,400,800); the uncertainty levels of the three different food materials (Γu) were 7,
10, and 8, respectively; the disturbance proportion (ε) was 0.1; and the cost target weight (α)
was 0.3. The solution results are shown in Tables 10 and 11.
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Table 10. The model solution results under the number of different logistics facilities.

wm wn f f1 f2 f*
1 f*

2 f1/f*
1 f2/f*

2

0

1 1.6685 2383.199 3269.633 919.203 2569.740 2.5927 1.2724
2 1.7852 2291.492 3620.558 926.595 2429.320 2.4730 1.4904
3 1.7457 2661.905 3171.083 1097.274 2180.702 2.4259 1.4542
4 1.2952 4057.208 2586.000 2465.955 2258.323 1.6453 1.1451
5 1.6590 3533.595 3047.085 1476.86 2266.243 2.3926 1.3446
6 1.7682 2786.600 3183.405 1200.033 2079.492 2.3221 1.5309

1

1 1.2447 3632.954 2866.138 2585.518 2437.317 1.4051 1.1759
2 1.0769 3993.407 2716.531 3107.202 2750.483 1.2852 0.9877
3 1.0558 4238.869 2645.678 3514.828 2668.240 1.2060 0.9915
4 1.1832 4361.449 2939.336 3368.338 2589.061 1.2948 1.1353
5 1.1536 4583.603 2547.332 3372.058 2390.743 1.3593 1.0655
6 1.2344 3358.112 3091.201 2294.003 2720.894 1.4639 1.1361

2

1 1.1986 4057.699 2884.946 2950.936 2569.142 1.3751 1.1229
2 1.2014 4560.539 2470.400 3396.610 2165.419 1.3427 1.1408
3 1.0917 4602.188 2596.678 3365.642 2667.117 1.3674 0.9736
4 1.0756 5248.056 2412.375 3629.812 2631.000 1.4458 0.9169
5 1.0626 5285.108 2427.910 3860.493 2607.200 1.3690 0.9312
6 1.3117 3153.151 3094.161 2293.750 2408.368 1.3747 1.2848

Table 11. Solution results of opening facilities and capacity under different number of logistics facilities.

wm wn
Emergency Logistics Facility Number

3 4 5 6 7 8 9 10

0

1 — — 121.5065 — — — — —
2 — — 1.0163 — — 110.6026 — —
3 — — 122.8886 220.7189 298.8664 — — —
4 — — 313.8970 — 405.2732 189.1734 — 313.4505
5 — — 574.6851 297.2199 89.4751 54.5037 — 5.3834
6 — — 312.6386 224.1756 185.2262 121.0599 109.1487 121.7259

1

1 23.4350 — — — — — 277.6299 —
2 — 154.0637 — — — — 488.9404 234.6332
3 — 152 — 554.2330 838.6398 — 412.5656 —
4 — 117.4460 497.7070 1258.243 40.27621 29 — —
5 100.7196 — 691.0052 408.6187 760.9448 0 177.2688 292.2753
6 69.6243 — 150.7925 493.5004 210.1093 359.9340 27.2092 75.5644

2

1 121 58 — — — — 588.3328 —
2 125 75 — 804.0603 844.2429 — — —
3 263.2657 13.32539 — 982.3554 — 286.5072 — 159.9360
4 200.6965 36.78673 1005.940 — — 704.9396 613.777 494.0270
5 255 5 1159.382 778.1607 — 841.4426 103.236 23.9527
6 53.1681 21.2980 237.9712 222.5209 250.5111 224.9367 86.9911 98.2520

Table 10 shows that the optimal solution involves establishing one new logistics center
and three distribution centers, resulting in a minimum comprehensive objective function
value of 1.0588. The total cost amounts to 4238.869, with a relatively low unmet demand of
2645.678, indicating economic viability during the rescue phase. In Table 11, it is evident
that the optimal solution with the minimum comprehensive objective value designates the
new logistics center as number 4, with a capacity of 152. The newly opened distribution
centers are numbered 6, 7, and 9, with capacities of 554.2330, 838.6398, and 412.5656,
respectively. Figure 2 illustrates the layout of supply points and the supply dynamics
between supply points and demand points in this scenario.
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Figure 2. Location layout and material supply relationship.

(3) Consider facility interruption model solution

According to the ISAM model, the results obtained are shown in Tables 12 and 13.

Table 12. Solution results of target values under different number of emergency facilities in the case
of facility interruption.

wm wn f f1 f2 f*
1 f*

2 f1/f*
1 f2/f*

2

0

1 1.3741 1250.9044 1222.5636 635.5231 1092.0905 1.9683 1.1195
2 1.4031 1193.6164 1359.3207 632.9688 1136.2676 1.8857 1.1963
3 1.2836 1016.3025 1400.7349 738.0747 1126.3595 1.3770 1.2436
4 1.4738 1234.8363 1425.5614 633.7922 1122.1173 1.9483 1.2704
5 1.3040 1272.7025 1373.4383 819.5163 1147.1680 1.5530 1.1972
6 1.3275 939.7073 1440.9201 702.6569 1088.8611 1.3374 1.3233

1

1 1.3996 2069.3108 1324.8951 1425.5944 961.9171 1.4515 1.3773
2 1.4556 2809.1657 1172.0470 1195.7195 1092.8168 2.3494 1.0725
3 1.5308 3009.3252 1246.6189 1251.9059 1077.7028 2.4038 1.1567
4 1.2409 2461.4220 1213.1392 1689.2833 1056.4609 1.4571 1.1483
5 1.3896 2756.3715 1125.5712 1298.8236 1046.4238 2.1222 1.0756
6 1.5019 2228.5791 1334.5366 1179.5523 999.0318 1.8893 1.3358

2

1 2.0617 2085.0847 1425.5944 546.4425 1088.2535 3.8157 1.3100
2 1.2356 1934.6315 1146.8449 1150.9369 1097.7588 1.6809 1.0447
3 1.4820 3027.5659 1150.9369 1372.3786 982.3305 2.2061 1.1716
4 3.8982 1870.8750 1689.2833 201.0679 1068.3705 9.3047 1.5812
5 2.2147 2151.8298 1298.8236 485.3437 1027.8230 4.4336 1.2637
6 1.4334 2442.5397 1179.5523 1310.0228 944.6323 1.8645 1.2487

Table 13. Solution results of facility establishment and capacity configuration under different number
of emergency facilities.

wm wn
Emergency Facility Number

3 4 5 6 7 8 9 10

0

1 — — — — — 327.5096 — 0
2 — — — 250.8966 — 86.4852 — 0
3 — — — 187.2122 399.7672 — — 25.6657
4 — — 358.6288 — 301.4494 54.79758 107.7734 —
5 — — 243.1211 273.8265 — 121.4983 136.4630 358.3099
6 — — 94.8141 304.8282 50.9340 122.0936 130.3203 63.0702
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Table 13. Cont.

wm wn
Emergency Facility Number

3 4 5 6 7 8 9 10

1

1 — 4.9113 — — — 9.1049 — —
2 — 49.5300 — 94.5167 — — 631.6002 —
3 — 103.4061 — — — 942.6161 162.2912 165.3176
4 161.4599 — — 306.2215 180.2892 55.6302 — 161.5663
5 — 417.4045 138.8492 224.1519 559.4366 197.9028 — 86.3463
6 183.9976 — 156.3549 109.3003 201.5024 87.5131 112.0054 107.1257

2

1 39.9344 2.7841 — 88.3463 — — — —
2 137.1711 61.1074 — — 442.7607 532.5178 — —
3 206.6114 24.2078 — — 155.2727 — 875.1702 232.9581
4 7.5415 1.0695 — 6.7985 17.3177 24.7640 — 12.7616
5 171.9057 69.8868 — 119.5227 89.8118 164.5950 49.5461 208.8138
6 53.3865 11.0256 118.9475 275.9588 150.777 222.5826 27.9950 123.1602

Table 12 illustrates that with two new emergency logistics centers and two distribution
centers, the minimum comprehensive target value of 1.2356 is achieved, representing the
optimal outcome. At this configuration, the total cost amounts to 1934.6315, with unmet
demands of 1146.8449 and dimensionless values of 1.6809 and 1.0447, respectively, where
the latter is minimized. These solution outcomes effectively mirror the requirements of
emergency material support operations. In Table 13, logistics centers 3 and 4 are selected
with capacities set at 137.1711 and 61.1074, while distribution centers 7 and 8 have capacities
of 442.7607 and 532.5178, respectively. Figure 3 depicts the location layout and the demand–
supply dynamics of various materials under this scenario.
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Figure 3. Location layout and material supply relationship.

4.2.2. Impact Analysis of Cost Weight

Figure 4 depicts the correlation between cost weight (CW) and the comprehensive
target value (CTV) alongside the dimensionless target value (DTV). As CW approaches 0,
CTV converges to 0.9764; at CW 0.32, CTV peaks at 1.3469; conversely, as CW nears 1, CTV
declines to its lowest point at 0.6829.
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Figure 4. Changes in target values for different cost weights.

Distinct intervals exhibit diverse curve behaviors. Within the range of CW from 0
to 0.32, CTV rises with increasing CW; the dimensionless total cost (C-DTV) fluctuates
notably but generally decreases, while the dimensionless unmet demand (D-DTV) stabilizes,
narrowing the gap between them.

As CW spans from 0.32 to 0.4, CTV inversely correlates with CW; D-DTV sees a
marked upsurge, while C-DTV maintains a downward trajectory at a slower rate. The
disparity between them diminishes with rising CW, aligning at a certain threshold before
gradually diverging.

In the CW range of 0.4 to 1, CTV sustains its decline with minor oscillations. C-DTV
and D-DTV uphold their respective trends, with C-DTV’s descent decelerating as D-DTV
consistently surpasses C-DTV. The gap between them widens as CW values increase.

Figure 5 illustrates the impact of facility interruption. For CW values between 0 and
0.2, CTV rises with CW, indicating a gradual decline in solution quality. Within this range,
C-DTV decreases notably while D-DTV increases slowly, narrowing the gap between them
until they equalize around CW 0.18 before diverging again.
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Figure 5. Changes in target values considering different cost target weights for facility outages.
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In the CW range of 0.2 to 1, CTV initially rises and then falls, peaking at 0.36 for
CW 0.36, representing the least favorable solution, and dropping to its minimum at CW
1. Changes in C-DTV and D-DTV follow similar patterns but with varying rates. C-DTV
decreases rapidly with CW, while D-DTV increases. The rate of change accelerates beyond
CW 0.72.

Comparing Figures 4 and 5 reveals overall consistency with notable differences at
key points. CTV’s trend is similar but peaks earlier in Graph 5. D-DTV exhibits a gradual
increase followed by a sharp rise, hitting its threshold earlier than C-DTV and after their
equalization, underscoring the importance of considering facility interruption in site selec-
tion models for decision-makers to grasp the impact of diverse disasters on target values.

Decision-makers can leverage these trends to select CW, factoring in the emergency
response stage’s characteristics. During the response phase emphasizing demand satis-
faction, this aspect should be proritized with CW between 0 and 0.72. As the situation
improves, focus should be shifted to cost, opting for CW between 0.72 and 1.

4.2.3. Impact Analysis of Uncertainty Level

Figure 6 illustrates the relationship between the uncertainty level (UL) and the Critical
Threshold Value (CTV) of three different emergency food supplies. The ranges between
the maximum and minimum CTV values under varying ULs for these supplies are 0.1859,
0.1386, and 0.1727, respectively. Category 1 exhibits the most significant fluctuation in
CTV, while Category 3 shows the least, with a gradual and steady upward trend. Category
2, however, experiences the most frequent fluctuations. Consequently, decision-makers
should enhance the accuracy of their assessments for Category 1 and 2 emergency supplies
prior to making decisions.
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Figure 7 presents the maximum and minimum comprehensive objective values under
different UL variations for categories 1, 2, and 3 as 1.4692, 1.5110, and 1.5368, and 1.2508,
1.2694, and 1.2998, respectively. The differences between the maximum and minimum
values are 0.2184, 0.2416, and 0.2370. The analysis of curve changes reveals that Category 1
has the smallest difference between maximum and minimum values but shows relatively
high frequency in curve fluctuations. For Category 2, a notable observation is that the
CTV is generally lower in the earlier part than in the latter when dividing the graph
at UL 10, suggesting that priority should be given to whether UL exceeds half of its
upper limit when locating facilities for this type of supply. Category 3, with the poorest
minimum comprehensive value, exhibits significant fluctuations between the maximum
and minimum values, and the uncertainty in CTV increases as UL rises. Therefore, decision-
makers should exercise increased caution when setting the UL for this category.
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The sensitivity analysis comparing scenarios with and without facility interruptions
highlights significant differences in how different types of supplies are affected, underscor-
ing the importance of developing separate models for facility interruption occurrences.

4.2.4. Influence Analysis of Disturbance Proportion

Figure 8a shows the relationship between the disturbance proportion (DP) and the
comprehensive target value (CTV). The disturbance proportion varies from 0 to 2. The
change in the target value depends on the range of the disturbance proportion.
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The relationship changes with DP values. When DP is between 0 and 1, the CTV rises
with the DP. This rise is first rapid and then more gradual. When DP is between 1 and 2,
the CTV becomes more sensitive to changes in it. CTV oscillates wildly between highs and
lows in this range. So, when DP reaches this range, the decision-maker should carefully
consider the parameters.

Figure 8b considers the disruption of emergency facilities. In this context, it shows the
trend in the CTV with DP. When DP changes in the interval (0, 1), CTV first increases and
then decreases as DP increases. The maximum value in this interval is 1.5121, which occurs
when DP is 0.32.

When DP is between 1 and 2, CTV varies erratically as DP rises. The fluctuation
frequency is high. CTV is more sensitive to DP in this range. The maximum value is 1.6309
when the weight is 1.58, and the minimum value is 1.3627 when the weight is 0.83. As a
result, the minimum and maximum values differ by 0.2689, which is a large value.
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Compare the results of the sensitivity analysis. First, look at the results in the 0–1 interval
without considering facility outages. Without facility outages, CTV always maintains a
upward trend. Second, look at the results with facility outages. CTV first rises and then
declines. But the interval between 1 and 2 gives different results. The relationship shows large
fluctuations and high frequency with or without outages. This confirms that when DP reaches
this level, the parameter should be calculated precisely. Decision-makers should not rely on
experience alone.

5. Conclusions

This paper presents several innovative aspects in exploring the location problem of
emergency logistics facilities. Firstly, food is essential for human survival, making its
demand both necessary and important. This paper treats food as emergency supplies, en-
riching previous studies that primarily focused on medical supplies and specialized rescue
materials, thereby expanding the research scope in this field. Secondly, by recognizing
the urgency of food demands, the model incorporates this critical factor and devises an
effective method for its determination, enhancing the model’s realism. Thirdly, it thor-
oughly examines the location problem within the context of potential facility disruptions,
establishing location models for various scenarios and enriching the model’s application
scope. The main conclusions of this paper are as follows:

(1) Fully considering demand urgency in food emergency logistics facility location is
crucial. The method proposed for determining demand urgency can identify both the
numerical value and the urgency level of demand. The results are straightforward
and practical. By observing that demand points or foods with the same urgency
level share common attributes, decision-making in the location and configuration of
emergency logistics facilities can be made more rational.

(2) The model extensively addresses the decision-making environment involving facility
disruptions. Case studies highlight the importance of creating distinct location models
and factoring in facility disruptions. The model’s solution algorithm can generate
comprehensive objective values for different scenarios and determine the optimal
decision plan, encompassing the type, number, location, and capacity of emergency
logistics facilities, along with material supply. This capability aids decision-makers in
promptly devising effective strategies.

(3) Analyzing variations in comprehensive objective values under different parameter set-
tings and comparing results across various decision-making scenarios reveal distinct
trends and frequencies of change for specific parameters within different intervals.
Some parameters exhibit clear thresholds, and their changes vary across decision-
making contexts. This insight can guide decision-makers in identifying relevant
parameters effectively before making informed decisions.

The methods and models presented in this paper effectively tackle the location prob-
lem of emergency logistics facilities for food. However, there are areas that can be improved.
The method for assessing demand urgency relied solely on objective weighting, overlook-
ing subjective factors that could enhance future research. Furthermore, the model was
constructed on specific assumptions without considering real-world factors such as cargo
damage costs and model dynamics. Subsequent research could explore these dimensions
to further improve the analysis.
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