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Abstract: This study developed an optimization model for the strategic location of maintenance
resource supply sites and the scheduling of multiple resources following failures in urban metro
systems, with the objective of enhancing system resilience. The model employs a multi-objective
optimization framework, focusing primarily on minimizing resource scheduling time and reducing
costs. It incorporates critical factors such as spatial location, network topology, station size, and
passenger flow. A hybrid method, combining the non-dominated sorting genetic algorithm III and
the technique for order of preference by similarity to ideal solution, is used to solve the model,
with its effectiveness confirmed through a case study of the Nanjing Metro system. The simulation
results yielded an optimal number of 21 maintenance resource supply stations and provided their
placement. In the event of large-scale failures, the optimal resource scheduling strategy ensures
demand satisfaction rates exceed 90% at critical stations, maintaining an overall rate of 87.09%,
therefore significantly improving resource scheduling efficiency and the system’s emergency response
capabilities and enhancing the physical resilience and recovery capabilities of the urban metro
system. Moreover, the model accounts for economic factors, striving to balance emergency response
capabilities with production continuity and cost efficiency through effective maintenance strategies
and resource utilization. This approach provides a systematic framework for urban metro systems to
manage sudden failures, ensuring rapid recovery to normal operations and minimizing operational
disruptions in scenarios of limited resources.

Keywords: urban metro system; multi-objective optimization; resource scheduling; NSGA-III;
resilience enhancement

1. Introduction

The urban metro system (UMS) is the primary form of urban rail transit. It plays a
crucial role in improving urban traffic structures, alleviating traffic pressure, and promoting
socio-economic development, making it an essential lifeline infrastructure for cities [1]. With
the expansion of the UMS, the increase in complexity and interconnectivity, and the growing
prominence of network effects [2,3], the number of sudden disasters and malfunctions
faced during the operational phase of the UMS is also increasing. These sudden events
not only cause significant social negative impacts but also lead to immeasurable economic
losses. To address these challenges, the urban metro system must continuously enhance its
resilience and emergency repair response capabilities.

A reasonable post-repair resource scheduling strategy can quickly and effectively
repair damaged equipment and facilities, thereby restoring their normal functions and
performance. This strategy reflects the recovery capability of the UMS’s physical resilience,
that is, the system’s ability to return to normal operating status swiftly after suffering
damage or malfunction. Through post-repair activities, the UMS can quickly respond
to occurred malfunctions, reduce downtime and operational interruptions during the
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recovery process, and ensure continuous system operation and work efficiency. Post-repair,
as a responsive activity, focuses on resolving already occurred malfunctions, damages,
or anomalies. By mobilizing resources such as manpower and materials, and taking
repair measures like fixing, replacing damaged components, and recalibrating, the repair
strategy aims to restore the normal working state of UMS equipment or systems as quickly
as possible to minimize system interruption time and losses. A reasonable post-repair
resource scheduling strategy is an important component of enhancing the overall resilience
of the UMS. It helps the system recover quickly from adverse states, reduces losses, and
ensures the stability and sustainability of production and operations. During the post-repair
process, economic considerations are also crucial, requiring a balance between repair costs
and the continuity of system operation. By planning reasonable repair strategies, resource
utilization can be maximized, ensuring that the UMS can be repaired in the most cost-
effective way when facing malfunctions, thereby achieving a win–win situation between
production continuity and cost efficiency.

Currently, research on UMS maintenance primarily focuses on maintenance techniques,
equipment status [4] and reliability [5], system risk [6], and design and management
models [7]. However, there is relatively little research on the application of maintenance
resource supply station location and post-failure maintenance resource scheduling strategy
models. With the continuous improvement of the UMS network, based on the concept of
network-wide maintenance, which differs from the segmented and specialized maintenance
models, constructing a comprehensive maintenance network for urban rail transit, and
achieving rational distribution of comprehensive maintenance institutions and resource
scheduling on the UMS network, has become a crucial aspect of urban rail transit network
health management [8]. In existing research, classical location problems, such as those
involving logistics institutions [9] and road institutions, primarily relate to scenarios where
point-based service facilities provide services to point-based demand objects. However,
the activities of UMS maintenance institutions occur on the metro network, with location
decisions constrained by the metro network and its routes, and the coverage area needs
to be continuous. Thus, UMS maintenance institution location problems differ from other
studies in terms of location objects and coverage area requirements. Moreover, most studies
adopt single-objective models or multi-objective models weighted into a single objective
for solutions, which cannot directly reflect the impact of various factors on emergency
resource scheduling [10]. Lu et al. [11] improved upon traditional facility location models
by proposing a weight allocation algorithm based on the influencing factors of emergency
resource distribution. The algorithm aims to minimize the number of maintenance resource
supply points while ensuring complete coverage of emergency resources and meeting
the minimum number of emergency points required by standards. To this end, they
developed an optimization model for the location of subway maintenance resource supply
points and implemented and solved the model using Lingo software. Although the model
focuses on minimizing the number of maintenance supply points, multiple objectives
such as cost, response time, and resource utilization rate often need to be considered in
practice, making a single-objective optimization strategy potentially insufficient. For the
purposes of minimizing rescue time and construction costs, Cao et al. [12] established
an optimization model for emergency station location with the goal of minimizing the
combined costs of time and emergency station construction, solving the optimal resource
configuration using the dynamic programming backward method. Wang et al. [13] aimed
to minimize construction, operational, and equipment costs in their optimization model for
the location of high-speed railway infrastructure maintenance facilities, programming and
computing the model with Lingo software. This approach has two shortcomings: firstly,
the location of emergency stations only considered coverage of demand points and not the
volume of demand, which should lead to a denser concentration of emergency stations
near high-demand points; secondly, the model only considered the cost of resource storage
and not the costs associated with dispatching and transporting resources. Li et al. [14]
aimed to reduce customer waiting times, minimize excessive human resource usage, and
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maximize cost-effectiveness of resources, solving the model using the NSGA-II algorithm.
Kim et al. [15] considered the weight of each demand point based on traffic load with the
objective of minimizing the total weighted travel distance from each supply point to the
nearest facility, solving the optimal maintenance resource supply location using a genetic
algorithm. A limitation of their study is the assumption that each node can only be assigned
to one hub, which may not reflect real-world scenarios where resources might need to
be dynamically allocated based on available reserves. Additionally, their study did not
determine a dispatch strategy from supply points to demand points, nor did it consider the
costs of dispatching. Therefore, it is necessary to propose a computational model suitable for
UMS maintenance resource supply station location and resource scheduling optimization,
considering both maintenance efficiency and cost. This approach can not only enhance the
emergency response capability of the UMS but also ensure rapid recovery of the system
in case of failures, thereby reducing negative impacts on urban traffic and the economy.
Through such a comprehensive optimization strategy, the maintenance needs of the UMS in
a complex network environment can be better met, ensuring stable operation and efficient
management of the metro system. This is of great significance for enhancing the overall
resilience and reliability of urban rail transit systems. This study addresses the optimization
problem of location selection and post-failure maintenance resource scheduling for UMS
maintenance institutions by constructing a multi-objective optimization model. The model
focuses on two main objectives: the shortest resource scheduling time and the lowest
resource scheduling cost. Under the constraints of the number of maintenance resource
supply institutions, coverage area, and allowable maximum resource scheduling time, this
paper proposes an optimization model suitable for the location selection and resource
scheduling of UMS maintenance resource supply sites after failures.

This study is divided into several parts. Section 2 provides an in-depth analysis of the
characteristics, constraints, and objectives of the problem and constructs a corresponding
multi-objective programming model. It also designs a strategy for solving the model.
Section 3 validates the effectiveness of the model through case analysis. Section 4 offers
a detailed analysis and discussion of the model results and conducts sensitivity analysis.
Finally, this study provides a comprehensive summary of the entire paper.

2. Problem Description and Model Construction
2.1. Problem Description

This study primarily aims to optimize the site selection for UMS maintenance resource
supply stations and the scheduling strategies for post-fault resource allocation, enhancing
the system’s recovery capabilities. Each maintenance resource—encompassing acquisi-
tion, transportation, and storage—incurs specific costs. The site selection for different
maintenance resource supply stations and their resource scheduling strategies significantly
influences the dispatch time and the satisfaction of demand at various stations. Our opti-
mization goals are twofold: minimize both the costs and time required while fulfilling the
demand for maintenance resources at faulted stations as completely as possible. In achiev-
ing these goals, we must also adhere to several critical constraints. Firstly, the scheduling
time for maintenance resources must meet the maximum time standards set by regulations,
as delays in resource delivery can prolong system downtimes and exacerbate the impacts
of faults. Secondly, the number of maintenance resource supply stations is not unlimited;
it must be proportionate to the number of demand sites needing resources. Lastly, the
quantity of maintenance resources dispatched from any given supply station must not
exceed the station’s actual supply capacity, and, similarly, the resources delivered to a
demand site must not exceed its actual needs. This research not only seeks to optimize
operational efficiencies and cost-effectiveness but also aims to ensure compliance with
regulatory constraints, maintaining a balance between resource availability and demand
satisfaction. Through strategic site selection and resource scheduling, we aim to minimize
the impact of faults and enhance the resilience of the UMS.
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Maintenance resources, as an indispensable part of the maintenance system for the
UMS’s physical facilities, encompass the human resources, physical resources, and time
resources required for maintenance activities. The effective allocation and utilization of
these resources form the material basis for maintenance support activities. Based on the
characteristics of the UMS, maintenance resources can be categorized into three major types:
maintenance personnel, maintenance equipment, and maintenance materials. Maintenance
personnel refer to the technicians responsible for carrying out specific repair tasks, and the
diversity of their skills and professional backgrounds is crucial for ensuring the efficient
completion of maintenance tasks. Maintenance equipment includes all tools and devices
needed for repair, maintenance, or inspection tasks, such as various manual and power
tools and measurement and diagnostic instruments. Maintenance materials involve all the
materials, replacement parts, and consumables used in maintenance activities, such as spare
parts, lubricants, and cleaning agents. By classifying and allocating maintenance resources,
UMS managers can gain deeper insights into the resource needs during the repair process,
thereby optimizing resource allocation to effectively enhance the efficiency and quality of
maintenance work, thus enhancing the resilience of the UMS to fault disturbances.

After an equipment failure occurs, rapid emergency response and rescue operations
are crucial as they directly impact the efficiency of fault handling and the recovery of
system performance. Therefore, the main indicators for measuring the effect of main-
tenance resource dispatch strategies on the physical resilience of the UMS include the
resource dispatch time and the degree of demand satisfaction at resource demand sites.
The maintenance resource supply station, as a crucial component of the emergency repair
system, plays a decisive role in enhancing the efficiency of emergency repairs through the
rationality of its location and the adequacy of its configuration. During emergency repairs,
the dispatch time of maintenance resources is strictly limited. According to the “Safety
Assessment Regulations during the Operation of Urban Rail Transit” [16], the response and
handling range of the regional emergency center should ensure coverage of at least a 5 km
radius of the network, and emergency response resources should be able to reach the fault
site within 20 min. Therefore, a reasonable and effective plan is needed to allocate limited
maintenance resources to ensure that resources are fully and rationally utilized. To meet
these requirements, optimizing the location of UMS maintenance resource supply stations
becomes a primary task, aiming to minimize the average dispatch time while ensuring that
the dispatch time under the most adverse conditions does not exceed the prescribed 20 min.
In the UMS, any station could potentially experience a fault disturbance; thus, all stations
should be considered as potential demand sites. The resulting constraint is to ensure that
each station can receive maintenance resources within the maximum allowed dispatch
time. Therefore, the optimization goal is to minimize the average response time from the
resource supply station to each demand station for maintenance personnel, equipment,
and materials, thereby enhancing the overall system’s emergency response efficiency and
rescue capability. The factors influencing the location of emergency maintenance resource
supply sites mainly include the following four aspects:

(1) Local Spatial Accommodation Factors

In planning emergency maintenance resource supply sites, the choice of spatial location
is crucial. Supply sites should be reasonably and evenly distributed at key positions in the
system or network to ensure timely coverage of all potential fault locations. By establishing
these supply sites at critical locations, the efficiency and coverage of fault emergency
responses can be maximized, ensuring rapid and effective repair and recovery work when
problems occur, thereby minimizing the impact on the operation of the UMS system;

(2) Network Topology Factors

The topology of the UMS system or network has a direct impact on the planning of
emergency maintenance resources. Transfer stations, junctions, and stations with multiple
lines are usually key nodes in the network, thus requiring more emergency resource support.
These nodes play an important role in the network, and their failure could have a greater
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impact on the entire system. Therefore, when planning emergency maintenance resources,
the location of these key nodes must be considered, and sufficient emergency resources
must be reasonably deployed nearby to ensure a rapid and effective response to potential
faults;

(3) Station Size and Passenger Volume Factors

The larger the station, the more equipment and facilities it has and the higher the
probability of faults. Similarly, larger stations generally mean busier traffic and higher
passenger flow, which also increases the likelihood of equipment and facility failures.
At the same time, the larger the station, the more passengers are affected by delays due
to faults. To minimize the impact of sudden events on operations, emergency resource
deployment should focus on very large and large stations. From the feasibility perspective
of emergency point setup, larger stations are easier to equip because they usually have
more space to accommodate emergency resource facilities and have a higher demand, thus
more effectively responding to emergencies and reducing the impact on the entire system;

(4) Economic Factors

Although deploying as many emergency maintenance resource supply sites as possi-
ble is beneficial for efficient and timely dispatch of post-fault repair materials, excessive
deployment could lead to costs exceeding the financial capacity of the UMS operating units.
Therefore, cost factors need to be considered comprehensively during the planning process
to ensure effective resource deployment within an acceptable budget. This means balancing
investment and outcomes to ensure optimal resource utilization, while ensuring that the
quantity and location of emergency maintenance resources meet actual needs. Through
careful cost analysis and budget planning, it is possible to effectively control operational
costs while ensuring emergency response capabilities, thus ensuring the continuous and
stable operation of the UMS system in emergencies.

2.2. Model Construction

Effectively addressing the challenges of shortages in maintenance support resources
and time constraints is key to enhancing the resilience of the UMS physical systems to fault
disturbances. Conventional emergency repair material dispatch strategies tend to choose
the supply site closest to the demand site for material supply, requiring that the selected
supply site’s storage meets or exceeds the material needs of the demand site [17]. However,
when facing widespread emergency repair needs, this single-choice strategy often fails to
meet actual demands, leading to the need for optimized scheduling of multiple supply sites.
Additionally, it is essential to assess the importance of different fault points, prioritizing
those that have a greater impact on the system and are of higher importance. Within
this framework, the formulation of optimization strategies should unfold in two main
aspects: first, defining the number and spatial locations of maintenance resource supply
sites; second, devising an optimized scheduling plan for maintenance resources. The latter,
based on the resource demands of the maintenance points and the resource reserves at the
supply sites, ensures that maintenance resources are efficiently and reasonably allocated
to each demand site, thereby achieving rapid and efficient deployment of maintenance
resources [18,19]. Maintenance resources, including personnel, equipment, and materials,
should be considered in the scheduling plan, taking into account the characteristics and
needs of different resource types. The issue of maintenance resource supply site location
is crucial to ensure the convenience and efficiency of resource supply. By designing
scientific location and scheduling strategies, it is possible to effectively ensure the stability of
system operations and the efficiency of maintenance operations under the dual challenges
of resource scarcity and time pressure, thereby further enhancing the system’s overall
resilience to various equipment faults.

Since equipment failures are random, any station can potentially be affected. Therefore,
when planning for emergency maintenance resources, each station is considered a demand
site for emergency maintenance resources, requiring the dispatch of maintenance personnel,
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equipment, and materials from a central supply center. In locating emergency maintenance
resource supply sites and developing resource scheduling plans, it is crucial to consider
each station comprehensively. Given the characteristics of emergency repair material
dispatch for UMS equipment and facilities, the optimization goals of emergency repair
time and transportation costs should be prioritized. Based on these goals and constraints,
this study has developed an emergency resource scheduling model aimed at minimizing
time and costs, as illustrated in Figure 1. This model addresses the issue of multi-supply-
site-to-multi-demand-site transportation scheduling and location optimization for various
materials.
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As previously mentioned, the stochastic nature of equipment and facility failures
means that any metro station could potentially be impacted. Consequently, this study iden-
tifies every station (including line intervals attributed to the management of metro stations)
as a potential demand point for maintenance resources, denoted as A = {A1, A2, . . . , An}
and indexed by i. Maintenance resource supply sites are selected from all stations and are
denoted as V= {V1, V2, . . . , Vm}, indexed by j, and V ⊆ A. When a fault occurs, various
types of maintenance resources are required to support the repair of the fault node. The
maintenance resource type set is denoted as K =

{
K1, K2, . . . , Kp} and is indexed by k. The

optimization model aims to optimize the scheduling of maintenance resources after UMS
equipment facility faults by determining the optimal number of maintenance resource
supply sites m, the setting options for maintenance resource supply site yj, and the main-
tenance resource dispatch strategy xk

i,j. Specifically, if a site j is selected as a maintenance
resource supply site, then yj is set as 1; otherwise, yj is 0. The maintenance resource dispatch
strategy xk

i,j represents the number of units of resource type k dispatched from supply site
Vj to demand site Ai. For example, if demand site A4 receives 2 units of resource type K3

dispatched from supply site V1, then it can be denoted as x3
4,1 = 2.

2.2.1. Resource Allocation Time Calculation

The distance from a maintenance resource demand site Ai to a resource supply site Vj
is denoted as Dij, and the speed of transporting resource Kk is denoted as vk. Therefore,
the time required to dispatch resource Kk from the supply site Vj to the demand site Ai is
denoted as tk

i,j, and can be calculated as follows:

tk
i,j =

Dij

vk
(1)
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Since each demand site may require resources from multiple emergency repair resource
supply sites. The completion time for emergency response depends on the time taken to
allocate resources from the repair resource supply point with the longest duration, denoted
as t, which can be calculated as follows:

t = max
(

ε · tk
i,j

)
, i ∈ A, j ∈ V, k ∈ K (2)

where ε is the judgment factor, where ε =

{
0, xk

i,j = 0
1, xk

i,j ≥ 1
. If the repair resource demand

point Ai receives resources dispatched from the repair resource supply site Vj, ε is 1,
otherwise ε is 0. The average allocation time taverage can be calculated as the sum of the
times for each dispatch divided by the number of dispatches:

taverage =

n
∑

i=1

m
∑

j=1

p
∑

k=1
ε · tk

i,j

n
∑

i=1

m
∑

j=1

p
∑

k=1
ε

(3)

2.2.2. Total Resource Allocation Cost Calculation

Total resource allocation costs include the total cost of resources Cresource, the resource
transportation Ctransport, the resource storage Cstorage, and the penalty for unmeet demands
Cpenalty.

(1) Resource Cost Calculation

Let the cost set for each unit resource Kk be denoted as ck =
{

c1, . . . , cp
}

, Then, the total
cost of resources involved in the emergency repair Cresource can be calculated as follows:

Cresource =
n

∑
i=1

m

∑
j=1

p

∑
k=1

(
xk

i,j · ck

)
(4)

(2) Resource Transportation Cost Calculation

Let the set of transportation costs for each unit of resource type Kk be denoted as
ctk =

{
ct1, . . . , ctp

}
. The total transportation cost Ctransport of resources in emergency repair

scheduling can be calculated as follows:

Ctransport =
n

∑
i=1

m

∑
j=1

p

∑
k=1

(
xk

i,j · Dij · ctk

)
(5)

(3) Resource Storage Cost Calculation

Let the storage cost for each unit of resource Kk be denoted as csk. The total storage
cost Cstorage of resources in emergency repair scheduling can be calculated as follows:

Cstorage =
m

∑
j=1

p

∑
k=1

csk · VKk
j (6)

(4) Penalty costs calculation for unmet demand

Let the demand amount of demand site Ai for resource Kk be denoted as AKk
i . The

actual supply of resource Kk received by demand site Ai, AKk∗
i can be calculated as follows:

AKk∗
i =

m

∑
j=1

xk
i,j, i ∈ A, j ∈ V, k ∈ K (7)
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Let the penalty cost for each unit resource Kk that is not satisfied be denoted as pk, and
the importance of demand node Ai be denoted as ωi, where a higher importance leads to
higher penalty costs if the demands of the node are not met. Thus, the penalty cost Pi for
the unmet demands of demand node Ai can be calculated as follows:

Pi =
p

∑
k=1

(
AKi,k − AK∗

i,k

)
· ωi · pk (8)

The total penalty costs Cp incurred due to unmet demands across all demand sites can
be calculated as follows:

Cp =
n

∑
i=1

Pi (9)

2.2.3. Multi-Objective Optimization Model and Related Parameters

As previously mentioned, after a UMS failure, the scheduling of maintenance resources
faces the complexity of supplying repair materials with varying demands across multiple
supply and demand sites. The location selection for emergency supply sites needs to
consider factors such as the timeliness of resource scheduling and transportation costs.
Under these constraints, the goal of emergency maintenance resource scheduling is to
achieve the shortest possible scheduling time and the lowest scheduling costs. Therefore,
the emergency supply transportation issue involves a complex multi-objective optimization
problem that integrates multiple types of supplies and multiple start and end points.

(1) Model assumptions:

(1) After a failure, maintenance resource supply stations are selected within the sta-
tions themselves, and locations outside the UMS jurisdiction are not considered;

(2) Resources dispatched from the supply sites are transported in one trip, without
considering multiple transports;

(3) Different types of resources dispatched from a maintenance resource supply site
can depart simultaneously without interfering with each other;

(4) A resource demand point can receive resources from one or multiple mainte-
nance supply sites;

(5) The mode of travel from the maintenance resource supply sites to the failure
station is by car, with the speed calculated based on the travel time during peak
hours on weekdays at 40 km/h as per Baidu Maps [11];

(2) Model objective function

The first optimization goal is to minimize the average scheduling time:

F1= Min
(
taverage

)
= Min


n
∑

i=1

m
∑

j=1

p
∑

k=1
ε · tk

i,j

n
∑

i=1

m
∑

j=1

p
∑

k=1
ε

 (10)

The second optimization goal is to minimize the costs associated with resource schedul-
ing:

F2= Min
(

Cresource + Ctransport + Cpenalty + Cstorage

)
= Min

(
n
∑

i=1

m
∑

j=1

p
∑

k=1

(
xijk · (ck + Dij · ctk)

)
+

n
∑

i=1

p
∑

k=1

(
AKi,k − AK∗

i,k

)
· ωi · pk

+
m
∑

j=1

p
∑

k=1
csk · VKk

j

) (11)
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(3) Model decision variables:

(1) The number of emergency maintenance resource supply sites m;
(2) The siting options for maintenance resource supply site yj = {0, 1};

yj =

{
1, Aj is selected as emergency maintenance resource supply site
0, Otherwise

(12)

(3) The scheduling scheme for emergency repair resources xk
i,j: the quantity of type

k resources received at demand site Ai from supply site Vj;

(4) Model constraints

xk
i,j, m ∈ N (13)

m

∑
j=1

xk
i,j ≤ AKk

i , ∀i ∈ {1, 2, . . . , n}, ∀k ∈ {1, 2, . . . p} (14)

n

∑
i=1

xk
i,j ≤ VKk

j , ∀j ∈ {1, 2, . . . , m}, ∀k ∈ {1, 2, . . . p} (15)

Di,j

vk
≤ tmax, ∀i ∈ {1, 2, . . . , n}, ∀j ∈ {1, 2, . . . m} (16)

1
6
≤ m

n
≤ 1

4
(17)

taverage ≤ tmax (18)

Equation (13) ensures that the number of emergency maintenance resource supply
sites m and the amount of resources xk

i,j dispatched from these supply sites Vj to the demand
sites Ai are non-negative integers.

Equation (14) ensures that the resources transported to the demand sites Ai do not
exceed their required quantities AKk

i .
Equation (15) ensures that the output of maintenance resources from the supply sites

Vj does not exceed their supply capacities VKk
j .

Equation (16) ensures that the resource scheduling time from any demand site to
the emergency maintenance resource supply site does not exceed the standard time. It is
20 min in China according to the ‘Urban Rail Transit Operation Period Safety Assessment
Specifications’ issued by the China Ministry of Transport.

Equation (17) ensures that the ratio of emergency resource supply sites to demand
sites is between 1:6 and 1:4, as proven in the literature [15,16].

Equation (18) ensures that the average scheduling time of emergency maintenance
resources does not exceed the max time tmax, which is 20 min as stipulated by the ‘Urban
Rail Transit Operation Period Safety Assessment Specifications’ provided in [16].

2.3. Solution Method
2.3.1. Method Comparison and Selection

Traditional methods typically convert multi-objective optimization problems into
single-objective problems using approaches such as the linear weighted sum method,
constrained optimization method, or goal programming, and then solve them using single-
objective optimization algorithms [20]. However, these methods are not suitable for this
study. This is because the objective functions involved in the multi-objective optimiza-
tion problem of preventative maintenance strategies in this research are nonlinear and
exhibit nondeterministic polynomial-time hardness (NP-hard) characteristics. NP-hard
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problems require polynomial time to reduce to a specific problem, which means that pre-
ventative maintenance scheduling issues cannot be efficiently solved using traditional
algorithms [21]. Additionally, the optimization must consider two distinct objectives si-
multaneously: scheduling time and scheduling costs. Each objective possesses unique
attributes, units of measurement, and magnitudes, making direct comparison through
weighting impractical. Traditional methods have limited search capabilities and global
optimization power in the solution space. When dealing with multi-objective optimization
problems with complex solution spaces and conflicting sub-goals, be aware that these
problems might rely excessively on mathematical formalization and artificially set weights.
That often leads to local optima and struggling to effectively find the optimal solution set,
thus performing poorly in handling complex issues. In contrast, intelligent optimization
algorithms, by simulating natural processes, possess adaptive search strategies, global
optimization capabilities, and diversity maintenance mechanisms. Intelligent optimization
algorithms can explore the solution space more efficiently and find high-quality optimal
solution sets, and usually show stronger performance and robustness in complex multi-
objective optimization problems Therefore, intelligent algorithms are a suitable choice for
solving the problems of this research [22,23].

The goal of multi-objective optimization using intelligent algorithms is to find a Pareto-
optimal solution set. A Pareto-optimal solution set consists of solutions where no single
solution is completely superior across all objectives. In other words, each solution in this
set represents a trade-off among various conflicting objectives, and improvement in one
objective can only be achieved at the expense of another. In a Pareto-optimal set, each
solution is non-dominated, meaning there is no other solution in the set that is better in
all objectives. This concept is crucial in scenarios where it is impossible to simultaneously
optimize all objectives to their fullest extent. By examining the Pareto-optimal solutions,
decision-makers can understand the trade-offs involved and select a solution that best
meets their specific criteria or preferences. As the number of objectives increases, the Pareto
set evolves from a point to a curve or line segment and eventually to a surface with three
objectives. Pareto solutions are optimal across multiple objectives and cannot be improved
further. Srinivas and Deb [24] introduced the non-dominated sorting genetic algorithm
(NSGA), which uses evolutionary processes to find Pareto-optimal solutions. The NSGA
employs non-dominated sorting and crowding distance techniques to maintain diversity
and ensure comprehensive solution sets. The NSGA is effective but can struggle with
slow convergence and uneven solution distribution in complex scenarios. To address these
issues, Deb et al. [25] developed the NSGA-II, which enhances algorithm performance
and solution distribution. As the solution count grows, however, the NSGA-II may face
reduced evolutionary pressure. For more than three objectives, Deb and Jain [26] proposed
the NSGA-III, replacing crowding distance with reference points to better manage diversity
and avoid local optima. Compared to other evolutionary algorithms such as the NSGA-I,
NSGA-II, or SPEA2, the NSGA-III demonstrates superior performance in maintaining a
diverse set of Pareto-optimal solutions across multiple objectives. It addresses the scal-
ability issues encountered in its predecessor, the NSGA-II, by incorporating a reference
point-based approach to preserve diversity. This is crucial for ensuring comprehensive
coverage of the Pareto front in multi-objective scenarios, which are prevalent in complex
systems like the UMS. The NSGA-III represents a significant advancement in evolutionary
algorithms, specifically engineered to tackle the inherent challenges of complex multi-
objective optimization problems that feature numerous conflicting objectives. We selected
the NSGA-III for its robust capability to efficiently manage the high-dimensional objective
space typical of multi-objective optimization in the UMS. This algorithm uses a reference
point-based approach to maintain a diversity of solution populations, which is essential for
ensuring a comprehensive exploration of the solution space. Furthermore, the NSGA-III
employs an improved sorting mechanism that effectively differentiates solutions along
complex Pareto fronts, thereby overcoming the limitations of earlier algorithm versions.
This enhancement is pivotal for better convergence toward the optimal frontier, aligning
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with our research objectives where cost minimization and time minimization are often
in conflict. The strength of the NSGA-III lies in its ability to balance these competing
objectives, thus providing feasible, optimized solutions tailored to the complex dynam-
ics of the UMS. Additionally, the NSGA-III is widely recognized for its proficiency in
handling multi-objective problems with extensive objectives, as underscored in seminal
studies [27,28]. By employing the NSGA-III, our study not only addresses the immediate
challenges of maintenance resource scheduling but also aids in achieving broader goals
of enhancing the resilience and efficiency of the UMS. This ensures that the systems can
withstand operational disruptions and recover swiftly.

Machine learning models have been utilized to improve optimization processes by
learning from data and making predictions that guide the search for optimal solutions.
Techniques such as Gaussian Processes, Support Vector Machines, and Random Forests
have been integrated into multi-objective optimization to predict and model objective
functions efficiently. Liu et al. [27] improved the NSGA-III using genetic k-means cluster-
ing, demonstrating significant enhancements in convergence speed and solution diversity.
Deep learning models, particularly neural networks, have shown promising results in
handling complex, high-dimensional optimization problems. They can learn representa-
tions and capture intricate patterns that traditional optimization algorithms might miss.
Zhao et al. [4] utilized a continuous wavelet transform and a Gaussian Convolutional Deep
Belief Network for intelligent diagnosis in optimization, showcasing the effectiveness of
deep learning in predictive maintenance and optimization tasks. Hybrid methods that
integrate AI techniques with traditional optimization algorithms have proven effective.
These approaches leverage the strengths of both paradigms to enhance performance. Awad
et al. [28] combined the NSGA-III with clustering algorithms to address portfolio manage-
ment issues, showing significant improvements in maintaining diversity and achieving
high-quality solutions.

The primary goal of this study is to enhance the resilience of the UMS by developing
an optimization model for the strategic location of maintenance resource supply points and
the scheduling of various resources post failure. This study identified optimal locations and
resource scheduling strategies, and the NSGA-III is well-suited to solving our problem due
to several advantages compared to ML and DL methods. The NSGA-III, as an evolutionary
algorithm, iteratively evolves a population of solutions and does not rely on large-scale
training data, which is particularly important for metro systems where much of the relevant
data are confidential and unreliable, making it difficult to gather the large datasets required
for ML and DL models. Moreover, the NSGA-III is specifically designed for multi-objective
optimization, effectively handling multiple conflicting objectives (such as time and cost)
by using non-dominated sorting and reference points to find a balanced Pareto-optimal
set of solutions. This generates a diverse set of solutions, offering decision-makers a wide
range of choices for different scenarios. Additionally, evolutionary algorithms like the
NSGA-III are highly adaptable and robust, capable of handling complex, non-linear, and
constrained optimization problems without requiring assumptions about data distribu-
tion. This makes them suitable for varied metro system maintenance needs. In contrast,
ML and DL methods often require complex designs, substantial computational resources,
and domain expertise for model tuning. Furthermore, the NSGA-III can leverage paral-
lel computing to enhance computational efficiency, incrementally approaching optimal
solutions through generational evolution, allowing flexible allocation of computational
resources. This makes the NSGA-III an ideal choice for solving the optimization problem
of maintenance resource supply point location and resource scheduling in urban metro
systems, given its low data requirements, strong multi-objective optimization capabilities,
high adaptability, robustness, and computational efficiency.

TOPSIS is employed for its effectiveness in decision-making scenarios that require a
clear ranking of multi-objective optimization results. This method is particularly advanta-
geous due to its methodological simplicity and its capability to provide a straightforward
computational approach for assessing the proximity of each solution to the ideal solution.



Systems 2024, 12, 262 12 of 26

Unlike other multi-criteria decision-making methods such as the Analytical Hierarchy
Process (AHP) or VIKOR, TOPSIS does not necessitate the intensive pairwise comparison
and consistency checks required with the AHP, nor does it solely rely on the compromise
ranking strategy characteristic of VIKOR. This makes TOPSIS a more direct and computa-
tionally efficient choice for final decision-making within our study’s context. TOPSIS was
strategically employed to rank the Pareto-optimal solutions derived from the NSGA-III.
This method is highly effective in environments where decision-makers are tasked with
selecting the optimal choice based on its closeness to an ideal solution. By complementing
the NSGA-III, TOPSIS facilitates a coherent decision-making framework that aligns with
our goal to not only identify optimal solutions but also to prioritize them according to
practical operational metrics. This approach ensures that the most relevant and feasible
solutions are recognized and highlighted for implementation.

2.3.2. Algorithm Process

The NSGA-III employed in this study involves several key steps as shown in Figure 2:
initialization, non-dominated sorting, crowding distance maintenance, reference point
setting, allocation schemes, selection of the next generation, and iteration. In its execution,
the NSGA-III begins by initializing the population, followed by non-dominated sorting
and crowding distance maintenance to generate the initial population’s Pareto front. Sub-
sequently, reference points are set, and distances from each individual to these points are
calculated to determine allocation schemes based on proximity. Within each scheme, the
next generation is selected based on crowding distance and non-dominated sorting. The
process repeats until termination criteria are met.
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Step 1: Initialization

Define objective functions and constraints for decision variables and set key algo-
rithm parameters like population size, crossover probability, mutation rate, and maximum
iterations. The initial parent population is generated randomly, with each individual
in the population representing a potential solution characterized by decision variables
m, yj and xk

i,i. This parent population serves as the foundational set of solutions from which
offspring are generated. Each potential solution in this initial population is evaluated
based on multiple objective functions, setting the stage for the evolutionary processes that
follow. This initial random generation ensures a diverse pool of solutions, facilitating broad
exploration of the solution space in subsequent phases of the algorithm [24].

Step 2: Evaluate Parent Population

Calculate the values of both objective functions for each individual in the parent
population to assess their performance across different objectives.

Step 3: Non-dominated Sorting
Step 3.1: Initialize Parameters

The initialization of each individual i in the population involves setting two key
parameters. The first parameter is the “dominance count” denoted as ni, which reflects
the number of other individuals that dominate this particular individual based on the
performance across the objective functions. The second parameter is the “dominance set”
denoted as Si, which contains all the individuals that dominate the specified individual.

Step 3.2: Determine Dominance Relationships

For each pair of individuals i and j in the population, compare their performance on
both objective functions to determine their dominance relationship. If j outperforms i on
objective one without being worse on objective two, or j outperforms i on objective two
without being worse on objective one, j is considered dominating i. Then, increase the
dominance count ni of individual i by one, and add individual j to the dominance set Si.

Step 3.3: Construct Non-dominated Fronts

Identify all individuals with a dominance count of zero as they are not dominated
by any other in the population. They form the first non-dominated front. Remove these
individuals from the population and decrease the dominance count for those dominated
by the removed individuals. Repeat this process until all individuals are assigned to a
non-dominated layer.

Step 3.4: Complete Sorting

Assign a priority level to each individual based on their non-dominated layer; the first
layer is allocated the highest priority, followed by the second and so on.

Step 4: Generate Reference Points

Reference points are used to guide the solution search process, ensuring a uniform
distribution of solutions in the multi-objective solution space. These reference points
are predefined through uniform distribution methods. Throughout each generation of
the algorithm, every individual (both from the parent and the offspring generations) is
associated with the nearest reference point by calculating the distance to all reference points.
These reference points are strategically placed across the entire normalized hyperplane
to assist in distributing the solutions widely [26]. This setup increases the likelihood
that the solutions will be well-spread near or on the Pareto-optimal front. The Pareto
front is a visual or mathematical representation of these optimal solutions in the objective
space, highlighting the trade-offs that exist among the objectives. Preset reference points
are essentially predefined coordinates in the objective space that guide the selection and
maintenance of diversity among the solutions. In this study, there are two objective
functions, which leads to the generation of reference points that are uniformly distributed
across a line segment. The endpoints of this line segment represent the extreme values of
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each objective function. To construct this, first mark the endpoints corresponding to the
maximum of each objective function, forming a line segment. Next, this line segment is
divided into equal intervals to generate multiple reference points along it. For instance, if
the line is divided into four equal segments, it results in five reference points, including the
endpoints. Each of these points represents a combination of the two objectives, illustrating
different trade-offs between them.

Step 5: Parent Population Selection

Individuals are selected based on their non-dominated ranking and their proximity to
reference points, with priority allocated to those who are ranked higher in non-dominance
and are closer to the reference points.

Step 6: Generation and Evaluation of Offspring Population

The offspring population refers to the new set of candidate solutions generated from
the parent population through genetic operators [26]. In this step, offspring populations
are generated from the filtered parent population through the crossover and mutation
operations of traditional genetic algorithms. For each individual in the offspring population,
the values of all objective functions are calculated to reflect each individual’s performance
across different objectives.

Step 7: Merging of Offspring and Parent Populations

The current parent population and the newly generated offspring population are
merged to form a larger population for the next round of selection.

Step 8: Elite Population Selection

The merged population undergoes non-dominated sorting and is layered according to
dominance relationships. Individuals are selected based on their non-dominated ranking
and their proximity to reference points, with priority allocated to those who are ranked
higher in non-dominance and are closer to the reference points.

Step 9: Termination Condition Check

The algorithm checks if the maximum number of iterations has been reached. If not,
the currently generated population is used as the parent population, and the process returns
to Step 2 to continue; otherwise, it proceeds to the final step.

Step 10: Output of Final Solution Set

At the end of the algorithm, the non-dominated Pareto front contained in the last
generation population is output, representing the optimal solution set evaluated based on
multiple objective functions.

Based on the NSGA-III process, a set of Pareto-optimal solutions is obtained that
simultaneously considers the shortest average scheduling time and lowest cost. Given the
presence of multiple Pareto-optimal solutions in multi-objective optimization problems, it is
often challenging to achieve optimal results in all sub-objectives simultaneously. Therefore,
to determine an appropriate plan, a common approach is to consider the decision-maker’s
preferences for various objectives, facilitating the selection of the most suitable solution.
This study employs the TOPSIS method to further decide among the Pareto-optimal solu-
tions derived from the NSGA-III. TOPSIS is a widely used multi-criteria decision-making
method designed to identify solutions closest to the ideal positive solution (optimal values)
and furthest from the negative ideal solution (least ideal values). It involves determining
the weight of each objective to reflect its importance in decision-making. Each solution
in the Pareto-optimal set is then compared with the ideal positive and negative solutions,
calculating distances to obtain a comprehensive score for each solution, assessing its perfor-
mance under various objectives. In this study, shorter maintenance resource scheduling
times and reduced scheduling costs are set as the decision-making objectives. Using the
TOPSIS method, which considers the decision-maker’s preferences and the weights of
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different objectives, multiple Pareto-optimal solutions obtained from an intelligent opti-
mization algorithm are evaluated and ranked. Ultimately, a maintenance resource supply
site selection and scheduling plan that best meets current management needs is chosen,
thereby enhancing the efficiency and accuracy of management decisions.

3. Practical Applications
3.1. Case Background

To validate the effectiveness of the resilience enhancement model based on post-
failure maintenance resource scheduling and emergency supply site optimization, the
UMS in the main urban area of Nanjing (excluding the suburban lines starting with ‘S’)
is used as a case study. The choice of this case is primarily based on computational
considerations. As the number of stations increases, the volume of data that needs to
be processed and stored grows significantly. Moreover, compared to suburban metro
lines, the urban UMS lines in the city center exhibit distinct differences in operational
modes, passenger flow characteristics, and service demands. The urban metro lines more
centrally reflect the operational characteristics of city metro systems, including densely
arranged station layouts, large daily passenger volumes, and complex network connections.
Therefore, the metro lines within the city are more suitable as ideal cases to evaluate
the effectiveness of the proposed resilience enhancement model. The data used include
public data from the Nanjing Transportation Bureau, publicly available data from Nanjing
Metro, internal training materials from Nanjing Metro Limited Liability Company, and
field research on Nanjing Metro Company. Currently, the metro lines operating in the main
urban area of Nanjing include Lines 1, 2, 3, 4, and 10, covering a total of 109 stations as
shown in Figure 3.
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3.2. Model Parameters

According to the mathematical model for post-failure maintenance resource schedul-
ing and emergency supply site optimization designed in this study, it is necessary to
establish the model parameter. We collected the names, latitudes, and longitudes of all
stations in the Nanjing UMS, as well as the adjacency matrix between stations. The Space-L
network modeling method reflects the true physical system and natural structural state of
the UMS [29,30], providing a reliable basis for subsequent resource scheduling and emer-
gency supply site selection. This study utilizes the Space-L modeling approach, treating
each station in the Nanjing Metro system as a node, with direct segments between adjacent
stations mapped as edges between nodes. The distance between any two nodes can be
calculated using their local spatial coordinates defined within the Nanjing area. After
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eliminating duplicate stations due to shared lines, the total number of stations requiring
maintenance resource supply due to potential equipment failures is 109. According to
reference [31], the ratio of emergency maintenance resource supply sites to demand points
should be between 1:6 and 1:4, suggesting that the number of emergency supply sites
should range from 18 to 27.

Nodes in critical positions within the network and those with high passenger flows
are more prone to equipment failures, necessitating more maintenance resources. Network
indicators of nodes reflect their position within the network, the number of connected
edges, and their importance in terms of network connectivity and traffic flow. The more
critical a node’s position in the network, the greater its impact on the entire network, thus
necessitating more attention and maintenance. Additionally, the number of edges connected
to a node also indicates its importance within the network; nodes with more connections
typically bear higher network loads and more complex transport tasks, requiring more
maintenance resources to ensure their proper functioning. Passenger flow is another
crucial indicator for assessing the importance of nodes. Nodes with high passenger traffic
usually represent densely populated areas, which are essential for the smooth operation
of the urban transportation system. Consequently, these nodes have a higher frequency
of equipment and facility failures, necessitating a significant allocation of maintenance
resources to maintain operational stability. Therefore, when calculating the importance of
demand nodes, it is essential to consider both the network indicators and the passenger
flow comprehensively.

(1) A Station Topological Importance Calculation

This study adopts betweenness centrality as the core metric to assess the topological
importance of UMS stations. Betweenness centrality is a measure of a network’s centrality
based on the shortest paths between pairs of nodes. For any pair of nodes, at least one short-
est path exists such that the number of edges in the path is minimized. The betweenness
centrality of a node is determined by the number of these shortest paths that pass through
it. This metric helps identify nodes that act as bridges or critical points within the net-
work. Calculating node importance using betweenness centrality identifies critical bridge
nodes, accounts for the entire network structure, measures a node’s influence in connecting
groups, and is applicable to various types of networks. Betweenness centrality illustrates
the intermediary role of a station within the entire transport network, highlighting its hub
function in connecting different UMS lines and stations [32]. In the UMS network layout,
stations with high betweenness centrality are typically located at critical traffic flow nodes,
significantly influencing the network’s stability and efficiency. Therefore, this research uses
betweenness centrality as a measurement indicator to quantify the topological importance
of UMS stations, aiming to deepen the understanding of the influence of key nodes on
UMS network operations.

(2) A Station Functional Importance Calculation

Passenger flow is selected as the core indicator for evaluating the functional importance
of a UMS station. Passenger flow not only intuitively reflects the frequency of station usage,
revealing the scale of economic and social activities it supports, but is also closely related
to the maintenance needs of the station. High passenger traffic often leads to increased
frequency of equipment use, which can accelerate equipment wear and even damage.
Consequently, including the passenger flow in the assessment of station maintenance
resource needs is particularly important. This approach effectively assists operators in
optimizing resource allocation, ensuring the quality of service and operational efficiency
at high-traffic area stations, and promoting the stable and reliable operation of the UMS
system. According to the monthly report on major transport statistics released by the
Nanjing Municipal Transportation Bureau, the total monthly passenger flow of all UMS
lines in Nanjing in November 2023 was 87.87 million, with the five main urban lines
accounting for 74.68 million or 84.989% of the total, as shown in Table 1.



Systems 2024, 12, 262 17 of 26

Table 1. Monthly passenger traffic statistics of Nanjing metro lines (Unit: 10,000 people).

Line number 1 2 3 4 10

Passenger flow 2417 2166 1974 488 423

According to the data from Table 1, there are significant differences in passenger traffic
among different subway lines. Lines 1, 2, and 3, which cover the main commercial and
residential areas of Nanjing, have higher passenger volumes, amounting to 24.17 million
and 21.66 million, respectively. In contrast, Lines 4 and 10, which connect the urban and
suburban areas of Nanjing, experience relatively lower passenger traffic, with 4.88 million
and 4.23 million, respectively. Due to the unavailability of publicly available detailed
passenger flow data for each station, the total passenger traffic for each line can be allocated
to individual stations based on indicators such as the development level of the business
district where the station is located, the overall development level of the region, and the
intensity of pedestrian traffic. The results of this allocation are shown in Figure 4.
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When calculating the comprehensive importance of nodes, since the betweenness
centrality values of nodes range within a certain scale [0, 1], the passenger flow of each
station is also normalized to ensure that both metrics are compared on the same scale.
The importance of a node is calculated as the sum of its betweenness centrality and the
normalized passenger flow of the station. To facilitate calculation, the resulting node
importance values are mapped to a scale of 0 to 10 to obtain more readable and interpretable
results. The final node importance values are presented as shown in Figure 5.

Due to the unavailability of direct data on the supply, demand, storage, and penalty
costs of maintenance resources, this study makes reasonable assumptions based on the
existing literature. The demand for maintenance resources at UMS stations is directly
proportional to their importance. The higher the importance of a station, the greater its
resource demand, and the higher the penalty cost when the resource demand is not met.
Additionally, the speed of resource deployment is set based on the average speed on busy
urban roads, which is 40 km per hour. Through these assumptions, this study aims to
build a subway station maintenance resource scheduling model that is closer to real-world
conditions, with parameters as shown in Table 2.
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Table 2. Model parameter list.

Maintenance Personnel K1 Maintenance Equipment K2 Maintenance Material K3

Supply site supply amount VKk
j 200 200 400

Demand site demand amount AKk
i 10 × ωi 10 × ωi 10 × ωi

Resource scheduling speed vk
(km/h) 40 40 40

Cost per unit ck(CNY) 100 300 100
Transportation cost per unit per

kilometer ctk (CNY) 10 50 10

Storage cost per unit csk (CNY) 10 50 10
Penalty charge per unit of unmet

demand pk (CNY) 500 700 600

4. Results and Discussion

This study employs the NSGA-III and TOPSIS joint resolution method designed in
Section 2.3 to solve the multi-objective optimization model for emergency supply site
selection and emergency maintenance resource scheduling strategies. The obtained Pareto-
optimal solution set is illustrated in Figure 6.

As depicted in Figure 6, accelerating the scheduling speed to respond to fault distur-
bances is often accompanied by higher costs. Conversely, as the scheduling time extends,
the associated costs tend to decrease gradually. Hence, decision-makers need to balance
time and economic costs when formulating resource scheduling strategies. In emergency
maintenance resource allocation, rapid response is typically considered crucial. Therefore,
when making decisions from the Pareto-optimal solution set generated with the NSGA-
III algorithm using the TOPSIS method, this study assigns a weight of 80% to resource
scheduling time and 20% to the cost of resource scheduling. This weighting emphasizes
the importance of rapid response in emergencies over cost savings. In scenarios involving
large-scale faults, where all stations require maintenance resource support, determining
the optimal number of maintenance resource supply sites becomes particularly critical.
Through the comprehensive evaluation and optimization modeling of station locations and
resource scheduling efficiency conducted in this study, the ideal number of maintenance
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resource supply sites is determined to be 21. The corresponding site selections and names
are illustrated in Figure 7 and listed in Table 3.
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4. Results and Discussion 
This study employs the NSGA-III and TOPSIS joint resolution method designed in 

Section 2.3 to solve the multi-objective optimization model for emergency supply site se-
lection and emergency maintenance resource scheduling strategies. The obtained Pareto-
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Table 3 displays the optimal locations for post-failure repair resource supply sites. The
selection of maintenance resource supply stations as shown in the table reflects a strategic
balance between sites with high and low comprehensive importance. High-importance
stations like Nanjing Station and Xinjiekou, which have values of 9 and 10, respectively,
are chosen due to their significant resource demands and strategic locations that help
reduce delivery times and costs. Simultaneously, the inclusion of lower-importance sites
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such as Shuanglong Avenue and Zhushan Road, despite their lower scores of 3 and 2,
ensures that maintenance resources are equitably distributed across the network. This
strategy not only prioritizes efficiency and rapid response in critical areas but also ensures
comprehensive coverage, maintaining network integrity and service quality even in less-
frequented locations. Thus, the overall selection approach effectively balances operational
efficiency with broad network coverage, enhancing the resilience and responsiveness of the
service system. By comparing the maintenance resource supply station locations generated
by our model with the 16 actual sites currently used by the Nanjing Metro, we found that
13 of our recommended sites coincide with the existing ones. This substantial overlap not
only reinforces the credibility of our research results but also confirms that the current
site selection strategy of the Nanjing Metro is scientifically sound and rational. However,
it also highlights a deficiency in the number of sites, suggesting room for expansion to
meet additional needs. Figure 7 displays the maintenance resource supply sites of the
UMS and their service ranges. Maintenance resource supply sites are marked with red
pentagrams, and the pink circles around them depict the 5 km service radius of each site.
The map clearly demonstrates that the site selection strategy successfully covers all demand
stations, ensuring comprehensive service accessibility. In the city center where Lines 1 and
2 intersect, due to the high passenger flow at stations, the maintenance resource supply
sites are relatively concentrated, which aids in rapid response to emergency maintenance
needs and minimizes operational disruptions. On the less crowded Lines 3, 4, and 10,
although the supply sites are sparser, they are evenly distributed, showing a balance
between cost control and service coverage, achieving reasonable coverage across all lines.
A well-planned maintenance resource supply site selection strategy enhances the UMS’s
resilience to disruptions. Should a failure occur in any area, the nearby supply sites
can immediately mobilize maintenance resources. This not only ensures rapid repair of
faulty equipment but also significantly reduces the potential cascading effects of failures,
minimizing the impact of service interruptions to the lowest possible level.

Table 3. List of supply sites for post-failure repair resources.

Number Station Comprehensive
Importance Number Station Comprehensive

Importance

3 Nanjing Station 9 60 Taifeng Road 4
8 Xinjiekou 10 63 Shangyuanmen 3

12 Andemen 6 75 Mingfa Plaza 4
17 Shuanglong Avenue 3 82 Mozhou East Road 2
22 Zhushan Road 2 86 Dongliu 2

26 Nanjing Communications
Institute 2 92 Jiangwang Temple 2

34 Jinma Road 3 97 Longjiang 2
40 Ming Imperial Palace 4 102 Pukou Wanhui City 2
45 Mochou Lake 2 106 Mengdu Avenue 3
50 Yuntong 6 109 Xiaohang 3
54 Qinglian Street 2

The study results, as shown in Table 4, consider the optimal emergency maintenance
resource scheduling strategy under scenarios of large-scale failures, where all stations
require support from maintenance resources. Due to the extensive amount of data, only a
partial result is displayed in Table 4. Under the optimal maintenance resource scheduling
strategy, the average scheduling time is 16.54 min, which meets the 20 min requirement
stipulated by the “Urban Rail Transit Operational Safety Assessment Specification”; the
resource scheduling cost is CNY 3,875,697, and the degree of demand satisfaction at each
demand station is as shown in Figure 8.



Systems 2024, 12, 262 21 of 26

Table 4. Resource scheduling strategy xk
i,j.

A1 A2 A3 A4 . . . A108 A109

K1 K2 K3 K1 K2 K3 K1 K2 K3 K1 K2 K3 . . . K1 K2 K3 K1 K2 K3
V1 1 1 1 1 1 1 5 6 5 1 1 2 . . . 2 2 1 1 2 1
V2 1 0 1 0 0 2 4 2 8 1 0 1 . . . 0 0 2 3 0 1
V3 2 0 3 2 0 1 4 2 8 2 2 3 . . . 0 1 2 0 1 4
V4 2 1 5 1 1 1 1 2 3 2 2 1 . . . 4 1 4 0 3 2
V5 0 1 1 1 1 1 6 9 4 1 0 1 . . . 2 1 2 3 1 2
V6 0 0 0 0 0 1 5 7 0 0 1 0 . . . 0 1 0 1 1 0
V7 0 1 1 1 0 0 2 5 2 0 0 0 . . . 1 1 0 2 0 0
V8 2 2 1 1 2 2 2 3 7 1 2 1 . . . 1 1 2 1 2 2
V9 1 1 2 1 1 1 2 2 8 0 1 2 . . . 2 2 4 0 2 2
V10 1 1 2 1 2 3 2 3 6 2 0 2 . . . 1 3 3 1 2 2
V11 1 0 0 0 0 0 6 3 0 0 0 0 . . . 1 1 0 2 1 1
V12 0 1 1 1 0 1 1 5 3 0 0 1 . . . 0 1 1 1 1 2
V13 0 2 1 1 2 1 2 0 9 1 1 1 . . . 1 1 1 0 2 4
V14 0 2 0 0 2 1 2 5 6 1 0 0 . . . 3 2 3 2 1 2
V15 1 1 0 1 1 1 7 2 3 0 1 1 . . . 1 1 1 2 1 1
V16 0 0 0 0 0 0 2 0 2 0 0 0 . . . 0 1 0 1 0 0
V17 1 0 0 1 1 0 4 7 2 1 0 1 . . . 1 0 1 0 1 1
V18 0 0 0 0 0 1 8 5 4 0 1 0 . . . 0 1 1 0 1 1
V19 0 0 0 0 0 1 6 2 2 0 0 1 . . . 0 1 2 2 1 1
V20 1 0 1 1 0 0 3 5 1 0 1 1 . . . 1 0 0 2 1 0
V21 0 1 0 1 0 1 9 9 7 1 1 1 . . . 1 3 0 1 0 1
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In the resilience enhancement model concerning post-failure repair resource depot
location and resource dispatch optimization, the degree of resource demand satisfaction at
demand sites—namely the ratio of the actual amount of resources received to the required
resources—is a critical indicator of resilience enhancement effects. It reflects the system’s
response and recovery capabilities to failures. A high satisfaction level means that resources
can reach the demand points swiftly and effectively, thus rapidly restoring malfunctioning
equipment, reducing downtime, and minimizing systemic performance losses. Accordingly,
this study calculated the degree of demand satisfaction at various demand sites under
the optimal resource scheduling and allocation strategies derived from the model. As
indicated by Figure 9, demand satisfaction rates at stations of high importance are very
high, exceeding 90%. The algorithm prioritizes the needs of important stations, allowing
the UMS to recover as efficiently as possible in the shortest time. Moreover, even in extreme
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scenarios where all stations experience failures, the maintenance resource scheduling
strategy proposed in this study still ensures an overall demand satisfaction rate of 87.09%,
with the majority of demand stations having satisfaction rates above 85%. This outcome
robustly demonstrates the efficiency of the proposed strategy in handling system failures.
In the event of large-scale sudden failures at multiple stations, the system can quickly
dispatch maintenance resources to ensure that the repair needs of the affected stations
are promptly met and satisfied. To study the impact of different maintenance resource
supply levels on average resource scheduling time and total scheduling costs, this research
compares the differences arising from increasing the supply by 20% and decreasing it by
20%, considering the initial scenario.

Systems 2024, 12, x FOR PEER REVIEW 23 of 27 
 

 

 
Figure 9. Degree of demand satisfaction at maintenance resource demand sites. 

The scatter plot as shown in Figure 8 indicates the demand satisfaction at mainte-
nance resource demand sites under three supply conditions: initial, increased by 20%, and 
decreased by 20%. In the plot, blue dots represent the satisfaction under the initial supply, 
while red dots show the satisfaction when the supply is increased by 20%. It is evident 
that increasing the supply by 20% enhances the satisfaction level at almost all demand 
points; conversely, reducing the supply by 20% significantly lowers satisfaction, highlight-
ing the negative impact on satisfaction, particularly at stations where initial satisfaction 
was already low. From Table 5, the consistency of the average scheduling time indicates 
that changes in supply do not affect the resource scheduling time. This phenomenon sug-
gests that scheduling time is determined by factors such as the efficiency of the scheduling 
algorithm, the speed of resource allocation, and the optimization of scheduling routes, 
rather than the quantity of supply. The stability of scheduling times underlines the con-
tinuous efficiency of dispatching operations across different supply levels, which is crucial 
for responding to an emergency, ensuring that response times remain constant regardless 
of how resource levels change. 

Table 5. Resource scheduling time, cost, and demand satisfaction rate at demand sites under differ-
ent maintenance supply conditions. 

 Initial Supply Amount Increased Supply by 20% Decreased Supply by 20% 
Average Scheduling Time 16.54 min 16.54 min 16.54 min 
Resource Scheduling Cost 3,875,697.06 CNY 4,224,497.06 CNY 3,526,897 CNY 
Demand Satisfaction Rate 87.09% 89.41% 76.70% 

As the supply changes, resource scheduling costs exhibit significant fluctuations: 
with a 20% increase in supply, costs rise from the initial CNY 3,875,697.06 to CNY 
4,224,497.06; conversely, a 20% decrease reduces costs to CNY 3,526,897. Changes in sup-
ply not only affect the cost of the resources themselves but also impact dispatching- and 
storage-related expenses. Therefore, facing a limited budget, decision-makers need to find 
a balance between the actual demand for resources and budget constraints to determine 
the appropriate supply level at maintenance resource supply sites. The fluctuations in de-
mand satisfaction further prove the significant impact of supply changes on the ability to 
meet demands at repair points: with an increase in supply, satisfaction rises from 87.09% 
(blue dots in Figure 8) to 89.41% (red dots in Figure 8); with a decrease, satisfaction falls 
to 76.70% (green dots in Figure 8). This indicates that increasing the supply allows for the 
allocation of more resources to demand points, thereby improving satisfaction levels; 
however, reducing supply makes resources more scarce, leading to decreased satisfaction. 
Nevertheless, it is worth noting that higher demand satisfaction often comes with higher 

Figure 9. Degree of demand satisfaction at maintenance resource demand sites.

The scatter plot as shown in Figure 8 indicates the demand satisfaction at maintenance
resource demand sites under three supply conditions: initial, increased by 20%, and
decreased by 20%. In the plot, blue dots represent the satisfaction under the initial supply,
while red dots show the satisfaction when the supply is increased by 20%. It is evident that
increasing the supply by 20% enhances the satisfaction level at almost all demand points;
conversely, reducing the supply by 20% significantly lowers satisfaction, highlighting the
negative impact on satisfaction, particularly at stations where initial satisfaction was already
low. From Table 5, the consistency of the average scheduling time indicates that changes
in supply do not affect the resource scheduling time. This phenomenon suggests that
scheduling time is determined by factors such as the efficiency of the scheduling algorithm,
the speed of resource allocation, and the optimization of scheduling routes, rather than the
quantity of supply. The stability of scheduling times underlines the continuous efficiency
of dispatching operations across different supply levels, which is crucial for responding to
an emergency, ensuring that response times remain constant regardless of how resource
levels change.

Table 5. Resource scheduling time, cost, and demand satisfaction rate at demand sites under different
maintenance supply conditions.

Initial Supply Amount Increased Supply by 20% Decreased Supply by 20%

Average Scheduling Time 16.54 min 16.54 min 16.54 min
Resource Scheduling Cost 3,875,697.06 CNY 4,224,497.06 CNY 3,526,897 CNY
Demand Satisfaction Rate 87.09% 89.41% 76.70%

As the supply changes, resource scheduling costs exhibit significant fluctuations: with
a 20% increase in supply, costs rise from the initial CNY 3,875,697.06 to CNY 4,224,497.06;
conversely, a 20% decrease reduces costs to CNY 3,526,897. Changes in supply not only



Systems 2024, 12, 262 23 of 26

affect the cost of the resources themselves but also impact dispatching- and storage-related
expenses. Therefore, facing a limited budget, decision-makers need to find a balance be-
tween the actual demand for resources and budget constraints to determine the appropriate
supply level at maintenance resource supply sites. The fluctuations in demand satisfaction
further prove the significant impact of supply changes on the ability to meet demands
at repair points: with an increase in supply, satisfaction rises from 87.09% (blue dots in
Figure 8) to 89.41% (red dots in Figure 8); with a decrease, satisfaction falls to 76.70% (green
dots in Figure 8). This indicates that increasing the supply allows for the allocation of
more resources to demand points, thereby improving satisfaction levels; however, reducing
supply makes resources more scarce, leading to decreased satisfaction. Nevertheless, it is
worth noting that higher demand satisfaction often comes with higher cost expenditures.
Given that this study assumes an extreme scenario where all stations have resource needs,
in practice, under non-extreme conditions, supply levels can be adjusted flexibly based on
specific circumstances to achieve an optimal balance between cost and demand satisfaction.

Our research can be applied to urban metro systems globally by adopting a similar
integrated resource scheduling framework that considers multi-objective optimization,
such as cost and time, to enhance emergency response capabilities and system resilience.
Policymakers should adapt the model parameters based on local conditions, including pop-
ulation density, passenger flow, and metro station distribution. The strategic distribution
of maintenance resource supply sites is critical for improving emergency repair efficiency.
Policymakers should consider network topology, station size, and passenger flow when
planning and constructing maintenance resource supply sites to ensure rapid and effective
resource deployment during large-scale failures. When formulating maintenance resource
scheduling strategies, it is essential to balance cost and time. Our model demonstrates that
accelerating resource scheduling speed improves fault recovery significantly, despite higher
costs. Urban planners should select the optimal resource scheduling strategy based on
economic conditions and actual needs to ensure a quick and efficient emergency response
while controlling costs. Optimizing resource supply site selection and scheduling strategies
significantly enhances the resilience and recovery capabilities of urban metro systems.
This provides vital insights for policymakers and urban planners in developing long-term
development plans and emergency response strategies, ensuring stable operations and
rapid recovery during disruptions.

5. Conclusions

A rational post-failure maintenance resource scheduling strategy is crucial for quickly
and effectively repairing damaged UMS equipment and restoring its normal functions and
performance. This strategy demonstrates the recoverability of the UMS and its physical
resilience, meaning the system can be swiftly and effectively repaired and returned to
normal operation after damage or failure. Through post-failure maintenance activities,
the UMS can rapidly address failures, reducing downtime and operational interruptions,
thus ensuring continuous system operation and work efficiency. Therefore, a sensible post-
failure maintenance resource scheduling strategy is an essential component of enhancing
the overall resilience of the UMS, helping the system to recover quickly from adverse
conditions, minimize losses, and ensure the stability and sustainability of production
and operations. However, in practice, the repair and resilience enhancement of the UMS
physical system are often constrained by resource limitations. This implies that, under
limited resources, the most effective repairs must be achieved through a reasonable resource
allocation strategy to maximize system resilience. This study aims to find the optimal
resource allocation strategy for the emergency repair phase after failures, considering the
cost and effectiveness of resilience enhancement under resource constraints, to better enable
the system to handle disturbances and maximize resilience. By considering emergency
repair time, transportation costs, resource supply and demand, and resource distribution
in the network, a multi-objective optimization model for post-failure maintenance resource
supply site location and resource scheduling has been developed. This model clarifies the
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optimal number of maintenance resource supply sites and their locations, as well as the
best resource scheduling strategy in the event of large-scale failures, ensuring resources
can be rapidly and effectively distributed to demand points, thereby swiftly restoring
system functions and minimizing the impact of downtime and operational interruptions.
We integrated the NSGA-III and TOPSIS methods to create the model, using the subway
transit of Nanjing’s main urban area as an example, and validated the effectiveness of the
proposed resilience enhancement model.

The research findings indicate that strategically placed supply sites and well-considered
resource scheduling can significantly enhance the system’s resilience to disruptions. Opti-
mized resource deployment ensures that maintenance personnel and materials can quickly
reach needed locations, thereby minimizing downtime and maintaining operational conti-
nuity. This study also reveals that accelerating scheduling speed to address fault disruptions
is often accompanied by higher costs. Conversely, as the scheduling time extends, the
associated costs show a gradual decline. Therefore, decision-makers need to balance time
costs and economic costs when formulating resource scheduling strategies. Additionally,
this study underscores the importance of considering various supply and demand sce-
narios to further refine the resource allocation strategy. Observations from increasing the
supply by 20% showed significant improvements in meeting the resource needs of the
urban metro system, albeit at increased costs. Conversely, a reduction in supply markedly
lowered satisfaction levels, highlighting the crucial balance between resource availability
and budget constraints.

In summary, this research provides a robust framework for the ongoing efforts in urban
infrastructure management for emergency maintenance planning which is both effective
and economical. This model serves as a vital tool for decision-makers in enhancing the
operational readiness of urban transportation systems against unforeseen failures, ensuring
the provision of a resilient and reliable service to the public. Through this approach, not
only is the efficiency of emergency responses enhanced, but it also provides scientific and
technical support for the sustainable development and optimized operation of urban metro
systems.

While our study provides a robust framework for optimizing maintenance resource
scheduling and site selection in urban metro systems, several areas warrant further in-
vestigation. Future research could explore the integration of real-time data analytics and
machine learning algorithms to continuously improve resource scheduling strategies based
on evolving urban conditions and system demands. Additionally, investigating the impact
of different types of failures and varying scales of disruptions on resource allocation and
scheduling efficiency would provide deeper insights into system resilience. Scaling our
findings to other urban systems presents a promising avenue for future research. Extend-
ing the optimization model to include other forms of urban transportation, such as bus
networks or regional rail systems, could offer comprehensive strategies for enhancing the
resilience of entire urban transportation ecosystems. Moreover, adapting the model to
different urban contexts, considering unique geographic, demographic, and infrastructural
characteristics, would validate its applicability and effectiveness across diverse settings.
In conclusion, our study not only contributes to the optimization of maintenance resource
scheduling and site selection for urban metro systems but also provides a foundation for
future research aimed at enhancing urban transportation resilience. By exploring advanced
data-driven approaches and expanding the model to other urban systems, we can develop
more resilient, efficient, and sustainable urban transportation networks.
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