Can Digital Transformation Restrain Corporate ESG Greenwashing—A Test Based on Internal and External Joint Perspectives
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypothesis
2.1. Digital Transformation and ESG Greenwashing
2.2. Digital Transformation, Investor Attention, and ESG Greenwashing
2.3. Digital Transformation, Executives’ Environmental Cognition, and ESG Greenwashing
3. Research Design
3.1. Sample Selection and Data Source
3.2. Variable Definition
3.2.1. ESG Greenwashing
3.2.2. Digital Transformation
3.2.3. Executive Environmental Cognition
3.2.4. Investor Attention
3.2.5. Control Variables
Type of Variable | Variable Name | Variable Abbreviation | Variable Measurement | Reference | Data Source |
---|---|---|---|---|---|
Dependent Variable | ESG Greenwashing | GWS | The result calculated using the formula | Zhang [50] | Bloomberg, Huazheng [60,61] |
Independent Variable | Digital Transformation | Digital | The results obtained from Python processing of the company’s annual report | Yuan [53] | Company Annual Report |
Mechanism variable | Investor Attention | Lnbaidu | Add 1 to the network search index and take the logarithm | Ying [56], wang [57] | Baidu Index website [62] |
Moderating variable | Executive environmental cognition | EEC | Frequency of keywords related to executives’ environmental awareness in annual reports of listed companies | Xiao [49] | Company Annual Report |
Control variables | Company Size | Size | The natural logarithm of total assets | Zhai [58], lu [59] | CSMAR database [63] |
Return on Equity | ROE | Net Profit/Average Owner’s Equity Balance | |||
Current Ratio | Liquid | Current assets/current liabilities | |||
Financial Leverage | LEV | Total liabilities/total assets | |||
Fixed Asset Ratio | Fixed | Fixed assets/total assets | |||
Firm Age | FirmAge | ln(Current year − Year of establishment + 1) | |||
Ownership Concentration | Top1 | Number of shares held by the largest shareholder/total number of shares | |||
Whether Audited by the Big 4 | Big4 | The company has been audited by the four major accounting firms as 1, otherwise it is 0 | |||
Tobin’s Q ratio | TobinQ | Stock market value/total assets | |||
CEO Duality | Dual | The Chairman and General Manager are the same person, with a value of 1; otherwise, it is 0 |
3.3. Model Settings
4. Empirical Test and Result Analysis
4.1. Descriptive Statistic
4.2. Benchmark Regression and Moderation Test
4.3. Endogenous Problem Handling
4.3.1. Instrumental Variables Method
4.3.2. Heckman Two-Stage Model
4.3.3. Entropy Balancing Matching
4.3.4. Change Model Method
4.4. Robustness Test
4.4.1. Replace Variables
4.4.2. Lag Regression
4.4.3. Expand the Range of Tail Reduction
4.4.4. Changing Sample Range
4.5. Further Analysis
4.5.1. Mechanism Verification
4.5.2. Heterogeneity Testing and Analysis
5. Research Conclusion and Discussion
5.1. Conclusion and Comparison
5.2. Marginal Contribution
5.3. Managerial Implications
5.4. Research Limitations and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Martiny, A.; Taglialatela, J.; Testa, F.; Iraldo, F. Determinants of Environmental Social and Governance (ESG) Performance: A Systematic Literature Review. J. Clean. Prod. 2024, 456, 142213. [Google Scholar] [CrossRef]
- Tuyen, B.Q.; Anh, D.V.P.; Mai, N.P.; Long, T.Q. Does corporate engagement in social responsibility affect firm innovation? The mediating role of digital transformation. Int. Rev. Econ. Financ. 2023, 84, 292–303. [Google Scholar] [CrossRef]
- Du, X. How the Market Values Greenwashing? Evidence from China. J. Bus. Ethics 2014, 128, 547–574. [Google Scholar] [CrossRef]
- Delmas, M.A.; Montes-Sancho, M.J. Voluntary agreements to improve environmental quality: Symbolic and substantive cooperation. Strateg. Manag. J. 2009, 31, 575–601. [Google Scholar] [CrossRef]
- Albuquerque, R.; Koskinen, Y.; Zhang, C. Corporate Social Responsibility and Firm Risk: Theory and Empirical Evidence. Manag. Sci. 2019, 65, 4451–4949. [Google Scholar] [CrossRef]
- Delmas, M.A.; Burbano, V.C. The drivers of greenwashing. Calif. Manag. Rev. 2011, 54, 64–87. [Google Scholar] [CrossRef]
- Leonidou, C.N.; Skarmeas, D. Gray Shades of Green: Causes and Consequences of green Skepticism. J. Bus. Ethics 2015, 144, 401–415. [Google Scholar] [CrossRef]
- Kim, E.H.; Lyon, T.P. Greenwash vs. Brownwash: Exaggeration and Undue Modesty in Corporate Sustainability Disclosure. Organ. Sci. 2015, 26, 705–723. [Google Scholar] [CrossRef]
- Hartmann, P.; Ibáñez, V.A. Green value added. Mark. Intell. Plan. 2006, 24, 673–680. [Google Scholar] [CrossRef]
- Marquis, C.; Toffel, M.W. When Do Firms Greenwash? Corporate Visibility, Civil Society Scrutiny, and Environmental Disclosure; Harvard Business School: Boston, MA, USA, 2012. [Google Scholar]
- Matejek, S.; Gössling, T. Beyond Legitimacy: A case study in BP’s “Green Lashing”. J. Bus. Ethics 2013, 120, 571–584. [Google Scholar] [CrossRef]
- Pudeyan, L.; Zaporozceva, E.; Medvedskaya, T. Innovation as a strategic direction for increasing the economic efficiency of the agro-industrial complex. E3S Web Conf. 2023, 371, 01063. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L. Digital economy, industrial structure upgrading, and residents’ consumption: Empirical evidence from prefecture-level cities in China. Int. Rev. Econ. Financ. 2024, 92, 1045–1058. [Google Scholar] [CrossRef]
- Goldfarb, A.; Tucker, C. Digital Economics. J. Econ. Lit. 2019, 57, 3–43. [Google Scholar] [CrossRef]
- Commander, S.; Harrison, R.; Menezes-Filho, N. ICT and Productivity in Developing Countries: New Firm-Level Evidence from Brazil and India. Rev. Econ. Stat. 2011, 93, 528–541. [Google Scholar] [CrossRef]
- Jia, X.; Wang, X. The impact of digital finance development on vertical specialization: Evidence from A-share listed companies in China. Kybernetes 2022, 53, 384–409. [Google Scholar] [CrossRef]
- Tang, M.; Liu, Y.; Hu, F.; Wu, B. Effect of digital transformation on enterprises’ green innovation: Empirical evidence from listed companies in China. Energy Econ. 2023, 128, 107135. [Google Scholar] [CrossRef]
- Peng, C.; Jia, X.; Zou, Y. Does digitalization drive corporate green transformation?—Based on evidence from Chinese listed companies. Front. Environ. Sci. 2022, 10, 963878. [Google Scholar] [CrossRef]
- Lv, X.; Wu, Z. The green effect of digital transformation: The impact of digital transformation in fiscal and taxation on regional green development. Econ. Anal. Policy 2024, 81, 787–800. [Google Scholar] [CrossRef]
- Yang, J.; Ying, L.; Xu, X. Digital transformation and accounting information comparability. Financ. Res. Lett. 2024, 61, 104993. [Google Scholar] [CrossRef]
- Kalthoff, M. How Smart, Connected Products Are Transforming Competition. Harv. Bus. Rev. 2015, 93, 20. [Google Scholar]
- Ma, D.; Li, L.; Wang, M. Governance Effects of Digital Transformation: From the Perspective of Corporate Information Disclosure Violations. Res. Financ. Econ. Issues 2023, 11, 86–100. [Google Scholar] [CrossRef]
- De Giovanni, P. Smart Supply Chains with vendor managed inventory, coordination, and environmental performance. Eur. J. Oper. Res. 2021, 292, 515–531. [Google Scholar] [CrossRef]
- Cardinali, P.G.; De Giovanni, P. Responsible digitalization through digital technologies and green practices. Corp. Soc. Responsib. Environ. Manag. 2022, 29, 984–995. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, W.; Wang, W.; Sun, X. How does digital transformation affect corporate social responsibility performance? From the dual perspective of internal drive and external governance. Corp. Soc. Responsib. Environ. Manag. 2023, 31, 1156–1176. [Google Scholar] [CrossRef]
- Wang, S.; Esperança, J.P. Can digital transformation improve market and ESG performance? Evidence from Chinese SMEs. J. Clean. Prod. 2023, 419, 137980. [Google Scholar] [CrossRef]
- Zhao, X.; Cai, L. Digital transformation and corporate ESG: Evidence from China. Financ. Res. Lett. 2023, 58, 104310. [Google Scholar] [CrossRef]
- Wu, F.; Hu, H.; Lin, H. Digital Transformation of Enterprises and Capital Market Performance: Empirical Evidence from Stock Liquidity. Manag. World 2021, 37, 130–144+10. [Google Scholar] [CrossRef]
- Zhang, J. The Impact of CEO Change on the Comparability of Accounting Information. Account. Res. 2017, 6, 52–57. [Google Scholar] [CrossRef]
- Wang, Y.; He, P. Enterprise digital transformation, financial information disclosure and innovation efficiency. Financ. Res. Lett. 2024, 59, 104707. [Google Scholar] [CrossRef]
- Lu, Z.; Li, H. Does environmental information disclosure affect green innovation? Econ. Anal. Policy 2023, 80, 47–59. [Google Scholar] [CrossRef]
- Chen, W.; Wu, W.; Ouyang, Z.; Fu, Y.; Li, M.; Huang, G.Q. Event-based data authenticity analytics for IoT and blockchain-enabled ESG disclosure. Comput. Ind. Eng. 2024, 190, 10992. [Google Scholar] [CrossRef]
- Li, D.; Huang, M.; Ren, S.; Chen, X.; Ning, L. Environmental Legitimacy, Green Innovation, and Corporate Carbon Disclosure: Evidence from CDP China 100. J. Bus. Ethics 2016, 150, 1089–1104. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Subjective probabilities: A judgment of representations. Cogn. Psychol. 1972, 3, 430–454. [Google Scholar] [CrossRef]
- Klöckner, M.; Schmidt, C.G.; Wagner, S.M. When Blockchain Creates Shareholder Value: Empirical Evidence from International Firm Announcements. Prod. Oper. Manag. 2022, 31, 46–64. [Google Scholar] [CrossRef]
- Liao, Z.; Chen, J.; Chen, X.; Song, M. Digital platform capability, environmental innovation quality, and firms’ competitive advantage: The moderating role of environmental uncertainty. International J. Prod. Econ. 2024, 268, 109124. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, L.; Jiang, P.; Meng, F.; Sun, Q. Can digital transformation improve the information environment of the capital market? Evidence from the analysts’ prediction behaviour. Account. Financ. 2021, 62, 2543–2578. [Google Scholar] [CrossRef]
- Song, Y.; Du, C.; Du, P.; Liu, R.; Lu, Z. Digital transformation and corporate environmental performance: Evidence from Chinese listed companies. Technol. Forecast. Soc. Chang. Technol. Forecast. Soc. Chang. 2024, 201, 123159. [Google Scholar] [CrossRef]
- Li, S.; Tian, Z. Can digital transformation change corporate greenwashing behavior. Financ. Econ. 2024, 4, 39–50+65. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Y. Does voluntary corporate social performance attract institutional investment? Evidence from China. Corp. Gov. 2017, 25, 338–357. [Google Scholar] [CrossRef]
- Raimo, N.; Caragnano, A.; Zito, M.; Vitolla, F.; Mariani, M. Extending the benefits of ESG disclosure: The effect on the cost of debt financing. Corp. Soc.-Responsib. Environ. Manag. 2021, 28, 1412–1421. [Google Scholar] [CrossRef]
- Sharma, S.; Pablo, A.L.; Vredenburg, H. Corporate Environmental Responsiveness Strategies. J. Appl. Behav. Sci. 1999, 35, 87–108. [Google Scholar] [CrossRef]
- Florida, R.; Davison, D. Gaining from Green Management: Environmental Management Systems inside and outside the Factory. Calif. Manag. Rev. 2001, 43, 64–84. [Google Scholar] [CrossRef]
- Sabbir, M.; Taufique, K.M.R. Sustainable employee green behavior in the workplace: Integrating cognitive and non-cognitive factors in corporate environmental policy. Bus. Strategy Environ. 2021, 31, 110–128. [Google Scholar] [CrossRef]
- Grossman, G.M.; Helpman, E. Growth, trade, and inequality. Econometrica 2018, 86, 37–83. [Google Scholar] [CrossRef]
- Zhou, Z.; Xin, P.; Chao, Y. Research on the Influence of Executive Green Cognition and Corporate Green Behavior on Its Green Performance—Based on Data of Shandong Light Industry Enterprises. East China Econ. Manag. 2019, 33, 35–41. [Google Scholar] [CrossRef]
- Jiang, Y.; Hu, Y.; Asante, D.; Ampaw, E.M.; Asante, B. The Effects of Executives’ low-carbon cognition on corporate low-carbon performance: A study of managerial discretion in China. J. Clean. Prod. 2022, 357, 132015. [Google Scholar] [CrossRef]
- Zhou, J.; Jin, S. Corporate Environmental Protection Behavior and Sustainable Development: The moderating role of green Investors and Green Executive Cognition. Int. J. Environ. Res. Public Health 2023, 20, 4179. [Google Scholar] [CrossRef]
- Xiao, D.; Dong, S.; Wang, J. Low carbon cities pilot, executive environmental cognition, and enterprise green technology innovation. MDE. Manag. Decis. Econ. 2024, 45, 2267–2281. [Google Scholar] [CrossRef]
- Zhang, D. Green financial system regulation shock and greenwashing behaviors: Evidence from Chinese firms. Energy Econ. 2022, 111, 106064. [Google Scholar] [CrossRef]
- Zhuo, C.; Chen, J. Can digital transformation overcome the enterprise innovation dilemma: Effect, mechanism and effective boundary. Technol. Forecast. Soc. Chang. 2023, 190, 122378. [Google Scholar] [CrossRef]
- Fang, X.; Liu, M. How does the digital transformation drive digital technology innovation of enterprises? Evidence from enterprise’s digital patents. Technol. Forecast. Soc. Chang. 2024, 204, 123428. [Google Scholar] [CrossRef]
- Yuan, C.; Xiao, S.S.; Geng, C.X.; Sheng, Y. Digital Transformation and Division of Labor between Enterprises: Vertical Specialization or Vertical Integration. China Ind. Econ. 2021, 9, 137–155. [Google Scholar]
- Ocasio, W. Attention to attention. Organ. Sci. 2011, 22, 1286–1296. [Google Scholar] [CrossRef]
- Da, Z.; Engelberg, J.; Gao, P. In Search of Attention. J. Financ. 2011, 66, 1461–1499. [Google Scholar] [CrossRef]
- Ying, Q.W.; Guo, H.J.; Deng, K.B. The Market Pressure Effect of Media Attention and Its Transmission Mechanism. J. Manag. Sci. China 2017, 20, 32–49. [Google Scholar]
- Wang, F.S.; Wang, Y.; Liu, S.Y. Research on the influence of online media reports on earnings management based on the perspective on abnormal investor attention Nankai Bus. Rev. 2021, 24, 116–129. [Google Scholar]
- Zhai, S.B.; Cheng, Y.T.; Xu, H.R.; Tong, L.J.; Cao, L. Media Attention and the Enterprises’ ESG Information Disclosure Quality. Account. Res. 2022, 8, 59–71. [Google Scholar]
- Lu, Z.; Lin, Y.; Li, Y. Does corporate engagement in digital transformation influence greenwashing? Evidence from China. Financ. Res. Lett. 2023, 58, 104558. [Google Scholar] [CrossRef]
- Bloomberg. Available online: https://www.bloombergchina.com/solution/data-content/reference-data/ (accessed on 20 March 2024).
- Huazheng. Available online: https://www.chindices.com/ (accessed on 20 March 2024).
- Baidu Index. Available online: https://index.baidu.com/v2/#/ (accessed on 10 April 2024).
- CSMAR Database. Available online: https://data.csmar.com/ (accessed on 13 July 2024).
- Bartik, T. How Do the Effects of Local Growth on Employment Rates Vary with Initial Labor Market Conditions? Soc. Sci. Res. Netw. 2006. [Google Scholar] [CrossRef]
- Yi, X.J.; Zhou, L. Does the Development of Digital Inclusive Finance Significantly Affect Household Consumption? Micro Evidence from China. J. Financ. Res. 2018, 47–67. [Google Scholar]
- Cette, G.; Nevoux, S.; Py, L. The impact of ICTs and digitalization on productivity and labor share: Evidence from French firms. Econ. Innov. New Technol. 2021, 31, 669–692. [Google Scholar] [CrossRef]
- Goldsmith-Pinkham, P.; Sorkin, I.; Swift, H. Bartik Instruments: What, when, why, and how. Am. Econ. Rev. 2020, 110, 2586–2624. [Google Scholar] [CrossRef]
- Wen, K.; Li, C.H.; Zeng, J.L. Digital Transformation, R&D Internationalization, and Enterprise Innovation Performance. Technol. Econ. 2023, 42, 49–67. [Google Scholar]
- Hainmueller, J. Entropy Balancing for Causal effects: A multivariate reweighting method to produce balanced samples in observational studies. Political Anal. 2012, 20, 25–46. [Google Scholar] [CrossRef]
- Wu, X.H.; Qin, L.B.; Bo, W. “Enterprise Digital Transformation and Cash Holding: Based on the Perspective of Business Uncertainty”. Bus. Manag. J. 2023, 45, 151–169. [Google Scholar] [CrossRef]
- Wu, C.Q.; Zhang, K.X.; Zhou, X.Y.; Zhou, Z.X. Digital Transformation, Competitive Strategy Choice, and High-Quality Development of Enterprises: Evidence Based on Machine Learning and Text Analysis. Bus. Manag. J. 2022, 44, 5–22. [Google Scholar]
- Liu, B.B.; Chen, M.L.; Guan, W.N.; Li, C.T. Information Governance Effect of Digital Transformation: Evidence from Information Disclosure Quality of A-share Listed Companies. J. Cent. Univ. Financ. Econ. 2024, 04, 52–65. [Google Scholar] [CrossRef]
- Monteiro, A.; Cepêda, C.; Da Silva, A.C.F.; Vale, J. The Relationship between AI Adoption Intensity and Internal Control System and Accounting Information Quality. Systems 2023, 11, 536. [Google Scholar] [CrossRef]
- Cao, X.; Wang, Z.; Li, G.; Zheng, Y. The impact of chief executive officers’ (CEOs’) overseas experience on the corporate innovation performance of enterprises in China. J. Innov. Knowl. 2022, 7, 100268. [Google Scholar] [CrossRef]
- Ma, Z.; Novoselov, K.E.; Zhou, K.; Zhou, Y. Managerial academic experience, external monitoring and financial reporting quality. J. Bus. Financ. Account. 2019, 46, 843–878. [Google Scholar] [CrossRef]
- Tian, G.; Zhou, S.; Qi, Y. Executive Financial Literacy and Corporate Performance: Evidence from Small and Medium-Sized Enterprises in China. Asia-Pac. J. Financ. Stud. 2022, 51, 797–827. [Google Scholar] [CrossRef]
Category | Main Characteristic Terms |
---|---|
Artificial Intelligence | Artificial Intelligence (AI), Business Intelligence, Image Understanding, Deep Learning, Investment Decision Support System, Intelligent Data Analysis, Machine Learning, Intelligent Robotics, Semantic Search, Face Recognition, Speech Recognition, Biometric Technology, Natural Language Processing, Identity Verification, AI Technology, Autonomous Driving |
Big Data | Big Data, Data Mining, Text Mining, Data Visualization, Heterogeneous Data, Credit Scoring, Augmented Reality, Mixed Reality, Virtual Reality |
Cloud Computing | Cloud Computing, Stream Computing, Graph Computing, In-Memory Computing, Multi-Party Secure Computing, Brain-Inspired Computing, Green Computing, Cognitive Computing, Converged Architecture, Billion-Scale Concurrency, EB-Level Storage, Internet of Things, Cyber-Physical System |
Application of Digital Technology | Mobile Internet, Industrial Internet, Mobile Connectivity, Internet Healthcare, Electronic Commerce, Mobile Payment, Third-Party Payment, Near Field Communication Payment (NPC Payment), Smart Energy, Business-to-Business (B2B), Business-to-Consumer (B2C), Customer-to-Business (C2B), Online-to-Offline (O2O), Network Connectivity, Smart Wearables, Smart Agriculture, Intelligent Transportation, Smart Healthcare, Smart Customer Service, Smart Home, Blockchain Energy Grid, Smart Investment Advisory, Smart Cultural Tourism, Smart Environmental Protection, Unmanned Retail, Internet Finance, Digital Finance, Fintech, Financial Technology, Quantitative Finance, Open Banking |
Blockchain | Blockchain, Digital Currency, Distributed Computing, Privacy-Enhancing Technologies, Smart Financial Contracts |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
N | Mean | SD | Min | Max | |
GWS | 7489 | −0.492 | 1.236 | −3.344 | 2.846 |
Digital | 7489 | 0.865 | 0.913 | 0.0374 | 4.826 |
Lnbaidu | 7489 | 13.031 | 0.731 | 11.449 | 15.137 |
EEC | 7489 | 4.010 | 4.830 | 0 | 21 |
Size | 7489 | 23.35 | 1.269 | 19.630 | 26.452 |
Lev | 7489 | 0.480 | 0.190 | 0.0349 | 0.908 |
ROE | 7489 | 0.0869 | 0.120 | −0.926 | 0.407 |
Liquid | 7489 | 1.854 | 1.843 | 0.268 | 25.080 |
FIXED | 7489 | 0.239 | 0.176 | 0.00164 | 0.719 |
Dual | 7489 | 0.194 | 0.395 | 0 | 1 |
Top1 | 7489 | 37.633 | 15.856 | 8.087 | 75.779 |
TobinQ | 7489 | 1.930 | 1.402 | 0.802 | 15.607 |
FirmAge | 7489 | 2.972 | 0.310 | 1.609 | 3.611 |
Big4 | 7489 | 0.144 | 0.351 | 0 | 1 |
Variables | (1) | (2) | (3) |
---|---|---|---|
GWS | GWS | GWS | |
Digital | −0.068 *** | −0.105 *** | −0.151 *** |
(−4.07) | (−4.76) | (−6.09) | |
EEC*DIG | −0.019 *** | ||
(−3.56) | |||
EEC | −0.022 *** | ||
(−6.59) | |||
Size | 0.058 *** | 0.067 *** | |
(3.56) | (4.13) | ||
ROE | 0.311 ** | 0.346 *** | |
(2.51) | (2.80) | ||
Lev | −0.169 | −0.156 | |
(−1.48) | (−1.37) | ||
Liquid | 0.020 * | 0.020 * | |
(1.89) | (1.84) | ||
FIXED | −0.202 * | −0.126 | |
(−1.95) | (−1.20) | ||
Dual | 0.214 *** | 0.210 *** | |
(5.92) | (5.84) | ||
FirmAge | −0.073 | −0.063 | |
(−1.35) | (−1.16) | ||
TobinQ | 0.043 *** | 0.035 *** | |
(3.71) | (3.01) | ||
Big4 | 0.584 *** | 0.565 *** | |
(12.74) | (12.34) | ||
Top1 | −0.001 | −0.000 | |
(−0.79) | (−0.49) | ||
Constant | −0.433 *** | −1.723 *** | −1.907 *** |
(−22.01) | (−4.25) | (−4.72) | |
Ind/year | YES | YES | YES |
Observations | 7489 | 7489 | 7489 |
R-squared | 0.003 | 0.061 | 0.068 |
Variables | (1) | (2) |
---|---|---|
The First Stage | The Second Stage | |
Dig | GWS | |
Digital_IV | 2.181 *** (15.72) | |
Digital | −0.234 *** (−3.03) | |
Controls | Yes | Yes |
Kleibergen-Paap rk LM | 195.86 *** | 195.86 *** |
Kleibergen-Paap Wald rk F | 247.00 {16.38} | 247.00 {16.38} |
Year | Yes | Yes |
Industry | Yes | Yes |
Observations | 5914 | 5914 |
Variables | (1) First-Stage | (2) Second-Stage |
---|---|---|
Dummy | GWS | |
Digital | −0.105 *** | |
(−4.79) | ||
IV1 | 0.794 *** | |
(11.95) | ||
IMR | 0.464 *** | |
(4.56) | ||
Controls | YES | YES |
Constant | −4.628 *** | −7.013 *** |
(−84.75) | (−5.53) | |
Ind | Yes | Yes |
year | Yes | Yes |
Observations | 32, 441 | 7489 |
R-squared | 0.338 | 0.064 |
Variables | Experimental Group | Weighted Precontrol Group | Weighted Control Group | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Variance | Skewness | Mean | Variance | Skewness | Mean | Variance | Skewness | |
Size | 23.3331 | 1.4335 | 0.3320 | 23.3766 | 1.7848 | 0.1983 | 23.3333 | 1.4338 | 0.3319 |
ROE | 0.0981 | 0.0150 | −2.2271 | 0.0758 | 0.0134 | −1.9256 | 0.0981 | 0.0150 | −2.2270 |
Lev | 0.4662 | 0.0317 | −0.1249 | 0.4944 | 0.0405 | −0.1989 | 0.4662 | 0.0317 | −0.1251 |
Liquid | 1.9301 | 2.9895 | 5.1834 | 1.7771 | 3.7945 | 4.6230 | 1.9298 | 2.9896 | 5.1839 |
FIXED | 0.2000 | 0.0221 | 0.9917 | 0.2790 | 0.0367 | 0.4763 | 0.2001 | 0.0221 | 0.9921 |
Dual | 0.2465 | 0.1858 | 1.1766 | 0.1413 | 0.1214 | 2.0596 | 0.2464 | 0.1857 | 1.1770 |
FirmAge | 2.9932 | 0.0962 | −0.8815 | 2.9502 | 0.0953 | −1.0829 | 2.9932 | 0.0962 | −0.8815 |
TobinQ | 2.1257 | 2.4193 | 2.7723 | 1.7351 | 1.4356 | 3.3269 | 2.1254 | 2.4187 | 2.7727 |
Big4 | 0.1351 | 0.1169 | 2.1348 | 0.1533 | 0.1298 | 1.9245 | 0.1351 | 0.1169 | 2.1347 |
Top1 | 35.7465 | 256.2942 | 0.4131 | 39.5213 | 238.8450 | 0.1572 | 35.7493 | 256.3281 | 0.4128 |
VARIABLES | (1) | (2) | (3) |
---|---|---|---|
Benchmark Regression | Before Entropy Equilibrium | After Entropy Equilibrium | |
GWS | GWS | GWS | |
Digital | −0.105 *** | ||
(−4.76) | |||
Treatdig | −0.078 ** | −0.190 *** | |
(−2.42) | (−3.48) | ||
Size | 0.058 *** | 0.054 *** | 0.082 *** |
(3.56) | (3.34) | (3.07) | |
ROE | 0.311 ** | 0.318 ** | 0.378 |
(2.51) | (2.57) | (1.59) | |
Lev | −0.169 | −0.182 | −0.237 |
(−1.48) | (−1.59) | (−1.37) | |
Liquid | 0.020 * | 0.021 ** | 0.003 |
(1.89) | (1.98) | (0.18) | |
FIXED | −0.202 * | −0.119 | −0.547 *** |
(−1.95) | (−1.16) | (−3.05) | |
Dual | 0.214 *** | 0.214 *** | 0.187 *** |
(5.92) | (5.93) | (2.83) | |
FirmAge | −0.073 | −0.061 | −0.015 |
(−1.35) | (−1.13) | (−0.20) | |
TobinQ | 0.043 *** | 0.043 *** | 0.048 *** |
(3.71) | (3.75) | (3.23) | |
Big4 | 0.584 *** | 0.593 *** | 0.589 *** |
(12.74) | (12.93) | (8.67) | |
Top1 | −0.001 | −0.001 | 0.001 |
(−0.79) | (−0.55) | (0.97) | |
Ind/year | YES | YES | YES |
Constant | −1.723 *** | −1.722 *** | −2.121 *** |
(−4.25) | (−4.25) | (−3.44) | |
Observations | 7489 | 7489 | 7489 |
R-squared | 0.061 | 0.059 | 0.077 |
VARIABLES | (1) | (2) | (3) |
---|---|---|---|
GWS | GWS | GWS | |
Digital | −0.108 *** | −0.113 *** | −0.110 *** |
(−4.86) | (−4.95) | (−4.81) | |
Controls | YES | YES | YES |
Constant | −1.495 *** | −1.489 *** | −1.395 *** |
(−3.55) | (−3.04) | (−2.92) | |
Ind | YES | NO | YES |
Year | YES | NO | NO |
Province | YES | YES | NO |
Ind×year | NO | YES | NO |
Province×year | NO | NO | YES |
Observations | 7489 | 7489 | 7489 |
R-squared | 0.081 | 0.088 | 0.104 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Replace Independent Variables | Lag Regression | Expand the Range of Tail Reduction | |||
GWS | GWS | GWS | GWS | GWS | |
DIG | −0.100 *** | ||||
(−4.33) | |||||
L2.Digital | −0.170 *** | ||||
(−5.71) | |||||
L.Digital | −0.147 *** | ||||
(−5.50) | |||||
DigCompre | −0.126 *** | ||||
(−7.65) | |||||
DCG_w | −0.032 ** | ||||
(−2.40) | |||||
Controls | YES | YES | YES | YES | YES |
Constant | −1.793 *** | −1.603 *** | −2.629 *** | −3.560 *** | −1.673 *** |
(−4.42) | (−3.97) | (−5.75) | (−7.00) | (−4.58) | |
Ind/year | Yes | Yes | Yes | Yes | Yes |
Observations | 7489 | 7489 | 5934 | 4930 | 7489 |
R-squared | 0.059 | 0.066 | 0.071 | 0.077 | 0.059 |
Variables | (1) | (2) | (3) |
---|---|---|---|
Excluding COVID-19 Pandemic Years | Excluding Directly Administered Municipalities | Including Years After 2015 | |
GWS | GWS | GWS | |
Digital | −0.101 *** | −0.069 *** | −0.124 *** |
(−3.54) | (−2.76) | (−5.22) | |
Controls | YES | YES | YES |
Constant | −0.996 ** | −1.257 *** | −2.961 *** |
(−2.10) | (−2.83) | (−6.23) | |
Ind | Yes | Yes | Yes |
year | Yes | Yes | Yes |
Observations | 5592 | 5716 | 5742 |
R-squared | 0.053 | 0.048 | 0.071 |
VARIABLES | (1) | (2) | (3) |
---|---|---|---|
GWS | lnbaidu | GWS | |
lnbaidu | −0.104 *** | ||
(−4.18) | |||
Digital | −0.105 *** | 0.073 *** | −0.097 *** |
(−4.76) | (7.41) | (−4.42) | |
Size | 0.058 *** | 0.350 *** | 0.094 *** |
(3.56) | (47.96) | (5.14) | |
ROE | 0.311 ** | −0.268 *** | 0.283 ** |
(2.51) | (−4.52) | (2.28) | |
Lev | −0.169 | −0.301 *** | −0.200 * |
(−1.48) | (−5.80) | (−1.75) | |
Liquid | 0.020 * | −0.012 *** | 0.019 * |
(1.89) | (−2.95) | (1.77) | |
FIXED | −0.202 * | −0.092 * | −0.211 ** |
(−1.95) | (−1.83) | (−2.04) | |
Dual | 0.214 *** | −0.078 *** | 0.206 *** |
(5.92) | (−4.56) | (5.70) | |
FirmAge | −0.073 | −0.013 | −0.074 |
(−1.35) | (−0.53) | (−1.38) | |
TobinQ | 0.043 *** | 0.113 *** | 0.054 *** |
(3.71) | (16.65) | (4.63) | |
Big4 | 0.584 *** | 0.112 *** | 0.596 *** |
(12.74) | (5.12) | (12.98) | |
Top1 | −0.001 | −0.008 *** | −0.002 |
(−0.79) | (−17.50) | (−1.60) | |
Constant | −1.723 *** | 5.592 *** | −1.142 *** |
(−4.25) | (30.67) | (−2.66) | |
Ind/year | YES | YES | YES |
Observations | 7489 | 7489 | 7489 |
R-squared | 0.061 | 0.446 | 0.063 |
VARIABLES | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
---|---|---|---|---|---|---|---|---|---|
SOE | Non-SOE | Heavily Polluting | Non-Heavily Polluting | High Tech | Non-High-Tech | Eastern | Central | Western | |
GWS | GWS | GWS | GWS | GWS | GWS | GWS | GWS | GWS | |
Digital | −0.187 *** | −0.045 | 0.071 | −0.113 *** | −0.097 *** | −0.045 | −0.113 *** | −0.103 | −0.044 |
(−5.79) | (−1.53) | (1.09) | (−4.55) | (−3.64) | (−1.13) | (−4.54) | (−1.12) | (−0.74) | |
Controls | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Constant | −3.633 *** | −0.169 | −2.326 *** | −1.201 ** | −1.654 *** | −1.996 *** | −2.509 *** | 0.350 | 0.519 |
(−6.17) | (−0.28) | (−3.76) | (−2.28) | (−2.97) | (−3.49) | (−4.84) | (0.38) | (0.54) | |
year | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Ind | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 4055 | 3434 | 2789 | 4700 | 3939 | 3550 | 5101 | 1083 | 1305 |
R-squared | 0.081 | 0.071 | 0.046 | 0.081 | 0.068 | 0.076 | 0.086 | 0.075 | 0.090 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Zhang, S.; Ren, Y.; Jiang, Q.; Wu, D. Can Digital Transformation Restrain Corporate ESG Greenwashing—A Test Based on Internal and External Joint Perspectives. Systems 2024, 12, 334. https://doi.org/10.3390/systems12090334
Xu S, Zhang S, Ren Y, Jiang Q, Wu D. Can Digital Transformation Restrain Corporate ESG Greenwashing—A Test Based on Internal and External Joint Perspectives. Systems. 2024; 12(9):334. https://doi.org/10.3390/systems12090334
Chicago/Turabian StyleXu, Shiwei, Siyuan Zhang, Yilei Ren, Qijun Jiang, and Dan Wu. 2024. "Can Digital Transformation Restrain Corporate ESG Greenwashing—A Test Based on Internal and External Joint Perspectives" Systems 12, no. 9: 334. https://doi.org/10.3390/systems12090334
APA StyleXu, S., Zhang, S., Ren, Y., Jiang, Q., & Wu, D. (2024). Can Digital Transformation Restrain Corporate ESG Greenwashing—A Test Based on Internal and External Joint Perspectives. Systems, 12(9), 334. https://doi.org/10.3390/systems12090334