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Abstract: This paper presents a method for creating the system architecture of existing industrial
objects based on Model-Based Systems Engineering (MBSE) principles. The method aims to form
a digital representation of physical objects, which is crucial in the digital transformation of indus-
trial enterprises. It allows for the accurate reflection of all components, processes, functions, and
interrelationships within an object. The methodology includes stages of data collection, structuring,
development of ontological models, and the integration of a comprehensive system architecture into
the digital space. This method was tested using a small hydroelectric power plant, revealing its key
advantages and disadvantages and identifying areas for further improvement. The main findings
indicate a significant improvement in understanding the system architecture for scenario modeling
and digital operation of the objects. Despite challenges such as the need for multiple iterations and
high data requirements, the methodology demonstrates the potential for applying MBSE in the digital
transformation of existing industrial objects.

Keywords: Model-Based Systems Engineering; digital twin; digital representation; digital transformation;
complex technical system; system of systems; life cycle

1. Introduction

Digital transformation and, in particular, digital engineering are essential attributes
of modern enterprises. Digital engineering (DE) applied to an existing industrial object
involves the creation of a digital representation of a physical-world object in the virtual
world [1]. The complexity of this task lies in the significant number of constraints, includ-
ing the need to ensure that the digital representation of all components and the system
architecture of the object match the real-world object, i.e., its adequacy (Figure 1).
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Figure 1. Digital representation of a physical industrial object.

Developing system architecture, models, and corresponding analytics and calculations
are key factors in maintaining the adequacy of the digital object to its physical counter-
part [2,3]. For new industrial facilities, these procedures are conducted during the design
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phase [4]. Subsequently, during construction and installation, methodologies such as “As-is
and as-built” (specific methodologies for building information modeling) ensure that the
physical object corresponds to its digital representation in the virtual world [5]. To support
modernization, reconstruction, operational process changes, analysis, or other objectives,
it is also necessary to create digital representations of existing industrial facilities [6]. By
‘industrial facility’ here, we mean a complex technical system related to the field of man-
ufacturing, energy, or another area of industry, existing in the physical world, which can
be considered together with its components and processes. This could be a power plant,
factory, production workshop, data center, or any other complex technical facility of this
kind. The basis of such a complex technical system includes buildings and structures plus
technological equipment and the associated physical and technological processes.

We consider the key issue here to be that this process encounters numerous constraints,
often unknown or contradictory. An existing object may lack documentation, key personnel
competencies may be lost, or parts of the digital infrastructure may be missing. This process
can be referred to as digital re-engineering (DRE) [7–9]. Accordingly, the requirements for
DRE differ significantly from those for the digital engineering of new objects. To the tasks of
balancing the requirements and architectural elements of such systems, there is the added
condition that some constraints and elements are unknown and must be identified during
the balancing process. New methods are needed to meet these requirements, differing from
traditional digital engineering methods.

Currently, one of the most advanced approaches to the digital engineering of complex
systems, including industrial objects, is Model-Based Systems Engineering (MBSE) [9,10].
This approach involves developing system architecture and constructing models that
are interconnected with each other and with the physical-world object according to the
system architecture. This approach is inherently suitable for any complex system project,
including existing industrial objects. However, specific applied methods for using the
MBSE approach to existing industrial objects for building their system architecture have not
been identified by the authors, which serves as the starting point for the research described
in this paper [11,12].

Therefore, the objective of this study is to develop a method for constructing the
system architecture of an existing industrial object to create a digital representation of the
original object. The research object is an existing industrial object, meaning that the focus
of the research is on describing the sequence of steps to create a digital representation of
an existing industrial object. The subject of the research is the system architecture of an
existing industrial object in the digital space.

The objectives of this study are as follows:

• To determine the state of the art and identify developments in similar methodologies.
• To develop requirements for the method of creating the system architecture of an

existing industrial object. The main requirement is that the architecture of the industrial
object in the physical world and its architecture in the digital space constitute a
single entity.

• To apply the MBSE approach by creating the components of the method in the format:
“Requirements–Functions–Components–Processes” for the developed method.

• To present the method for constructing the system architecture of an existing indus-
trial object.

2. Background
2.1. System Architecture of Existing Industrial Objects

In systems engineering and IT, the architecture of an object describes the high-level
structural composition of the system, including components and their interactions [13,14].
This description focuses on the organization of the system and how different parts of the
system are connected and interact to achieve specific functional goals, typically including
the following [15]:

• A description of the main blocks or modules of the system and their functions.
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• The definition of interfaces for interaction between components.
• Structural division of the system into subsystems and their organization [16].
• Therefore, the concept of “architecture” should be considered as the foundation for

the more functional concept of “system architecture”, which is used for a complete
and comprehensive description of both the structure and functioning of the object in
the digital space [16,17].

The concept of “system architecture” exists and is widely used in various fields, includ-
ing information technology, engineering, and project management [18]. System architecture
is a conceptual model that defines the structure, behavior, and other representations of the
system [19]. System architecture is a structural description of the system that primarily
includes the system components, their relationships, and the guiding principles and guide-
lines that define the structure and behavior of the system [20,21]. System architecture is a
more in-depth and comprehensive type of architecture that includes not only the structure
but also many other aspects, such as the following [4,22]:

Integration of functional (e.g., energy production) and non-functional requirements
(e.g., performance, safety, scalability, reliability).

Description of relationships and dependencies between components at multiple levels,
including software and hardware, data, and processes.

Management and maintenance of the system throughout its life cycle, including
deployment, monitoring, updating, and scaling.

Thus, this description extends the concept of architecture to include process manage-
ment, security, reliability, and other non-functional requirements that are important for
the full operation of the system [23]. System architecture can also include the architec-
ture of software, hardware, processes, and more, depending on the context and project
requirements [24].

This approach is actively used in fields such as CAD (Computer-Aided Design), BIM
(Building Information Modeling), and analytical systems for optimizing and managing
technical systems [18,25]. In the digital space, the system architecture of a technical object
can include not only its physical characteristics but also parameters of its interaction with
other system elements, rules of behavior, and data for monitoring and management [26].

Therefore, the difference between the “architecture of an existing object” and the
“system architecture of an existing object” is as follows:

• System architecture specific to a broader range of system aspects compared to basic
architecture [27], which may be more limited and focus on specific structural elements.

• System architecture often requires a more detailed and comprehensive approach,
including analysis and design at multiple levels.

• System architecture focuses more on functional completeness and performance opti-
mization of the system under real operating conditions.

In the context of the research objective, the authors will use the term “system architec-
ture”, as it emphasizes a comprehensive approach to studying and modeling a technical
object, reflecting all aspects of its functioning in the digital environment [28].

2.2. General Principles and Methods of Systems Engineering and MBSE Applicable to the Creation
of System Architecture for Existing Industrial Objects

The initial hypothesis of this research posits that existing approaches in systems engi-
neering are inadequate for developing digital representations of existing industrial objects.
Consequently, there is a need to develop a specific method for creating the system architec-
ture of such objects, which will subsequently form the basis for their digital representations.
To identify the gaps not covered by existing approaches, we conducted an analysis of
the most advanced systems engineering methods and modeling techniques used in the
industry for existing objects.

The literature extensively covers the general principles and methods of systems engi-
neering and MBSE that can be applied to the creation of system architecture for existing
industrial objects. The International Council on Systems Engineering (INCOSE) in its “Sys-
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tems Engineering Handbook” [29,30] proposes an approach that spans the entire life cycle
of a system, from conceptualization to decommissioning. Special emphasis is placed on
supporting MBSE models and standards, which enable the integration and interconnection
of various system components to achieve overall goals [31–33]. The core of the MBSE
approach involves structuring requirements, functions, components, and processes into a
hierarchical, attributed element structure and subsequently forming influence matrices to
account for the mutual impact of components [34]. Matrices allow us to take into account
the mutual influence of components on each other [35,36].

Additionally, TOGAF (The Open Group Architecture Framework) presents a detailed
methodology and a set of tools for developing enterprise architecture [37]. TOGAF includes
the Architecture Development Method (ADM), which helps structure a phased approach
to architecture development. This method addresses various aspects of the system at each
stage of its life cycle, thus providing a systematic view and simplifying the management of
complex projects [38]. The main stages of TOGAF ADM are as follows:

• The preliminary phase, where the main objectives, project scope, and tools to be used
are established.

• Business architecture to support business goals and structures.
• Data and application system architecture to support business functions.
• Technical architecture to define hardware, software, and network solutions for imple-

menting systems.
• Planning and execution of projects, change management, and maintaining the archi-

tecture’s relevance.

A significant advantage of TOGAF is its ability to integrate different perspectives
and requirements, which is beneficial when developing and upgrading large industrial
objects. TOGAF uses a series of architectural models that help bridge the gap between
strategic business goals and IT products [39]. However, the ADM method can be complex
to implement and understand, perceived as rigid and bureaucratic, require significant
financial and temporal resources, and be heavily focused on IT architecture, which may not
fully meet the needs of organizations outside the IT sector, making integration with other
approaches challenging [40].

In contrast, the Zachman Framework (Zachman Framework for Enterprise Architec-
ture) represents architecture as a matrix, considering the system from six perspectives
(Planner, Owner, Designer, Builder, Subcontractor, and Worker) and answering six key
questions (What, How, Where, Who, When, Why) [41]. Unlike TOGAF, which is more
process- and methodology-oriented, the Zachman Framework focuses on presenting data
and information about the system in an orderly manner, which enhances communication
and understanding among various project participants. However, the method may be
perceived as overly complex and static, reducing its adaptability to a rapidly changing
business environment. Strict formalization can lead to excessive documentation and a lack
of timely information updates.

For military and large governmental organizations, the DoDAF (Department of De-
fense Architecture Framework), developed by the U.S. Department of Defense, is suit-
able [42,43]. This framework focuses on ensuring interdisciplinary integration and stan-
dardization, which is particularly important for complex and large-scale projects. The
MODAF (Ministry of Defence Architecture Framework), developed by the U.K. Ministry of
Defence, has similar goals but emphasizes supporting defense planning and management,
ensuring compatibility between various military and civilian organizations. Both frame-
works help structure and coordinate complex systems, ensuring their efficient functioning
and management [44,45].

Furthermore, the FEAF (Federal Enterprise Architecture Framework) was developed
to support IT management in U.S. federal agencies, providing a structured approach
to organizational design and improving inter-agency interaction [46]. This framework
helps integrate IT infrastructure and business processes. Key elements of FEAF include
the following:



Systems 2024, 12, 355 5 of 30

• The Consolidated Reference Model (CRM) provides a common language for describing
and analyzing investments.

• The Collaborative Planning Methodology is a repeatable process for planning and imple-
menting architectural projects, promoting transparency and inter-agency cooperation.

• The Performance Reference Model (PRM) links investments to agency goals and
measures performance in various areas.

Besides MBSE methods for systems, there are established practices for projects related
to specific domains, considering their specifics. Previously, the authors reviewed these
cases and formed the main principles of systems engineering used in various domains [47].
However, these approaches have mainly been applied to new technical projects and did
not consider existing objects. While re-engineering and digital transformation are of
primary interest for existing industrial objects, effective solutions to these tasks are only
possible using systematic approaches. Such approaches are not yet formalized for existing
industrial objects.

The SCOR model (Supply Chain Operations Reference) focuses on supply chain
processes at industrial enterprises and the movement of components within the enterprise.
It includes aspects of physical asset and production capacity management, facilitating the
integration of physical and logistical management aspects, but requires highly qualified
specialists for implementation [48,49].

Reverse engineering methods focus on accurately recreating the physical components
of existing objects [32,50–53]. These approaches primarily involve collecting and process-
ing data on the shape and size of components using 3D scanning and CAD modeling
technologies. Reverse engineering allows the creation of digital models based on scan
data, including steps such as aligning point clouds with nominal CAD models, creating
3D models of products, and evaluating them for compliance with specified tolerances.
These models are then used to analyze and optimize manufacturing and assembly pro-
cesses. Although reverse engineering provides high accuracy in reproducing physical
objects, it does not cover the functional and process aspects of the entire system, limiting
its applicability for comprehensive analysis and optimization of the system architecture of
industrial objects.

Among these approaches, the As-built BIM approach is the closest to the needs of
re-engineering existing industrial objects. The fundamental difference between As-built
BIM methods and MBSE methods lies in their modeling approaches, goals, and applica-
tions. The main goal of As-built BIM is to provide accurate and up-to-date information
about the current state of the object for its further use in management, maintenance, and
modernization [54,55].

Systems engineering using MBSE methods, in contrast to As-built BIM, has a more
comprehensive and multi-level approach. MBSE aims to model the entire system of the
object, including not only its physical components but also functional and process aspects,
as well as balancing stakeholder requirements [11]. MBSE allows modeling not only the
current state of the object but also predicting its behavior in various scenarios, which
is important for process optimization and decision-making [56]. Thus, in the context of
existing industrial objects, As-built BIM provides a detailed model of the current state of
the object, while MBSE offers a systematic view of the object.

Model-Based Systems Engineering (MBSE) is increasingly utilized to create digital
twins, which are dynamic digital representations of physical systems. These digital twins
integrate with system simulation and the Internet of Things (IoT) to offer a real-time, up-
dated reflection of a system’s status, aiding in problem prevention, maintenance scheduling,
and strategic planning in technology [57].

The application of MBSE in developing digital twins covers various aspects, including
continuous system monitoring and predictive analysis. MBSE provides a structured frame-
work that enhances the creation of accurate digital twins by leveraging data and analytics
from the physical systems they mirror. This not only aids in better decision-making but
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also supports the lifecycle management of systems from development through operational
stages [58].

Since MBSE provides a structured platform, and one of the main problems, according
to the authors, is the lack of a common classification system for defining system components
and their interrelationships, MBSE approaches help systematize data and facilitate the
development of system architecture.

From the collection of general systems engineering methods and methods for creat-
ing digital representations of existing objects, it can be concluded that a comprehensive
solution for creating the system architecture of existing industrial objects has not yet been
developed, but requires improvement, more practical examples and adaptation to new
technologies [59]. Therefore, it is necessary to develop the method outlined in the objectives
of this article, taking into account the above-mentioned solutions for existing industrial
objects and their digital representations.

2.3. Ontological Models and the Creation of System Architecture for Existing Industrial Objects

Ontological modeling is a tool for the formal description and representation of a
system, organized to support reasoning about system structures and behaviors [22]. In the
literature on the integration and structuring of initial data for existing industrial objects,
considerable attention is given to the application of ontologies in Building Information
Modeling (BIM) systems. Ontologies provide a systematic approach to the semantic
representation of data, which is crucial for ensuring functional compatibility and efficient
data exchange in various fields of architecture, engineering, and construction, particularly
for construction and facility management (AEC-FM) [60].

When developing technical systems, knowledge from different domains is utilized.
There are several approaches to developing ontologies in various domains [60]:

• Development of a unified ontological model covering all domains involved in the life
cycle of an industrial object.

• Development of an ontological model for each domain, ensuring their alignment for
information exchange.

• Refinement of the domain ontological model based on a unified ontology.

Currently, a key issue in ontology creation is the machine-readable format of the
ontological model, where the crucial characteristic is information interpretation, i.e., pre-
serving the semantic and syntactic content of the data. An example of developing a domain
ontology based on a unified ontology is presented in [61]. The Basic Formal Ontology
(BFO) provides a foundational structure that helps classify and systematize information in
the most general sense. It lays the groundwork for defining various types of objects and
their relationships in any field, not just engineering. In this context, BFO helps ensure data
compatibility across different systems, simplifying data exchange and integration without
losing meaning or context. BFO creates the foundation, while the Top-Level Ontology
(TLO) develops it further by adding more specific categories and relationships tailored to
the needs of systems engineering. TLO enhances the data structure introduced by BFO,
providing more detailed classifications and relationships. Such detailed structuring is
crucial for managing complex projects and ensuring that all aspects of the system’s data are
thoroughly documented and easily accessible. Together, BFO and TLO help break down
large and complex information into more manageable fragments, ensuring that everything
from the big picture to the smallest details is accounted for and can be integrated into
various platforms and projects. This organized approach is necessary for developing com-
prehensive digital models and passports for existing industrial objects. The authors of this
paper adhere to this approach for developing ontological models: first, developing a do-
main ontological model, and then creating an ontological model for the system architecture
of the existing industrial object.

Different languages are used for developing ontological models—formal languages
used for encoding ontology. There are several such languages: OWL, KIF, Common Logic
(CL), CycL, DAML, OIL, and Agent Communications Language [62]. One of the most
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widely used languages is OWL (Web Ontology Language), which was developed by W3C
specifically for use in the Semantic Web and is supported by numerous tools for working
with ontologies, such as Protégé [63,64]. Spreadsheet formats for data representation in
appropriate software, like Excel, can also be used. These languages provide the capabilities
necessary for creating dynamic ontologies with the ability to visualize hierarchical struc-
tures and relationships between elements. They are key elements for developing ontologies
as they serve as the means of their modeling [65,66].

Modern artificial intelligence (AI) technologies are used in conjunction with ontolo-
gies to enhance data processing and analysis processes. Ontologies create a structured
database, ensuring semantic interoperability and simplifying the integration of heteroge-
neous data [67–69]. AI, using ontologies, can semantically enrich data, improve model
training, develop expert systems, automate complex processes, and ensure interoperability
between systems [70]. Recent advancements in digital twin technology have led to the
development of the cognitive digital twin. Cognitive digital twins integrate AI and machine
learning to create models that not only replicate the physical attributes and operations of
their counterparts but also possess the ability to learn from data, predict outcomes, and
make decisions [71,72]. This evolution from static digital replicas to dynamic, learning, and
predictive models allows for deeper insights into system behaviors and more proactive
maintenance strategies. In the context of existing industrial facilities, cognitive digital
twins are important because they enable the identification and analysis of new information
through perception and flexible problem-solving, including the consideration of defects
and damages to the facilities [73], as well as other identified imperfections in the elements
and processes of existing systems. This aspect is crucial at the stage of creating the system
architecture when the task is to describe the actual state of the facility.

Thus, in the evolving field of systems engineering, the key role of ontology in struc-
turing raw data into systematized databases is increasingly recognized [74], which, in
our opinion, contributes to the creation of system architecture for industrial objects in the
digital space.

3. Materials and Methods
3.1. Limitations and Essence of the Method Development

To develop a method that aligns with our basic hypothesis, it is necessary to define
the boundaries of our study (Figure 2).

Among the three components of MBSE—tools, methods, and language [75]—this
research focuses exclusively on methods. Tools and language are not considered here, and
it is assumed that the existing tools and languages will suffice for existing industrial objects.
This will be further analyzed in the discussion of the method.

We also only consider the applicability of the method to existing industrial objects.
According to systems engineering methodology, various viewpoints, including economic,
organizational, and logistical aspects, are considered [76]. In this methodology, only the
physical and cyber–physical layers of objects and processes are involved, as they constitute
the key difference between existing objects and new ones. Other layers of viewpoints are
considered as a single block, treated as a black box.

In developing the method, only the stage of creating the system architecture is consid-
ered, excluding the stage of its use in the digital representation and without delving into the
purposes of creating the digital representation. It is assumed that the purposes of using the
digital representation may vary and differ significantly from each other, but the method for
creating the system architecture of an existing industrial object should be versatile enough
for its application for various purposes of developing a digital representation.

To develop a method for forming the system architecture of an existing industrial ob-
ject, it is also necessary to define what is meant by system architecture and what constitutes
an industrial object. System architecture (SA) is a structural description of a system, which
primarily includes the system components and their relationships, as well as guiding prin-
ciples and recommendations that define the structure and behavior of the system [20,21].
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An industrial object is a combination of physical and cyber–physical components of an
industrial enterprise system, including buildings, structures, equipment, and infrastruc-
ture, and the corresponding processes of their operation and maintenance, intended to
perform production processes. An industrial object is one of the subsystems of an industrial
enterprise (an organization engaged in production activities).
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need to be thought through in advance [77–80]. Another major challenge, according to
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industrial facilities in parallel with the development of their system architecture. With
appropriate data collection and analysis systems in place, this can significantly simplify the
processes involved in creating the system architecture of existing facilities.

The method was developed based on the existing theoretical foundation of MBSE,
presented in Section 2, and considering the specifics of existing industrial objects. To
account for these specifics, requirements for the method were developed, which, when met,
will allow the system architecture to consider the specifics of the existing industrial object
and solve the task of restoring unknown components of the architecture by analogy with
solving systems of mathematical equations. These requirements were formulated based on
publications and reports on the digitalization of existing industrial objects, as well as from
the analytical perspectives of McKinsey [81] on the criteria that digital representations of
objects should meet.

After formulating the requirements, the final result of the method (the system architec-
ture) was iteratively shaped in general terms. Based on this, an algorithm was constructed
to transition from the set of initial data to the final result (system architecture) using existing
approaches presented in Section 2. This algorithm constitutes the proposed method.



Systems 2024, 12, 355 9 of 30

The method was then verified by comparing it with the underlying approaches and
principles. Validation of parts 1 and 2 of the method was also conducted using an example
of an existing industrial object. Based on the results, recommendations for the application
of the method and further research addressing questions not covered in this study and
identified limitations were formed.

Additionally, the main structural elements of the ontological model were defined
for developing the method [56]. An ontological model is a structured representation of a
system, where elements are presented in a hierarchical structure, with attributes assigned to
these elements and relationships between the elements. The purpose of Figure 3 is to explain
how various components and aspects of the system can be organized and interrelated to
create an ontological model using the MBSE approach to define the relationships between
system elements (Figure 3):
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Instances (elements)—objects that make up the ontological model, being attributed
and specific objects.

Classes—abstract groups, collections, or sets of objects, which can include instances,
other classes, or combinations thereof. For example, rooms, structures, etc. The difference
between an instance and a class is that a class contains an instance, for instance, the class
“Room” contains the instance “Chemistry Lab”. Ontology classes constitute a taxonomy—a
hierarchy of concepts by inclusion relationships [82].

Attributes—characteristics that describe properties that instances of classes may pos-
sess, but they are defined at the class level. That is, attributes are set for classes and through
this are applied to instances. For example, the attribute “Room Name” with the value “Mez-
zanine”, the attribute “Floor Type” with the value “Load-bearing”, etc. An attribute for the
room object has the value “Mezzanine”, and the name of this attribute is “Room Name”.

Relationships—dependencies between ontology objects. Typically, a relationship is an
attribute whose value is another object.
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In the generally accepted definition, classes in ontology are defined as abstract cate-
gories that describe the common properties and behaviors of a group of objects or concepts.
Classes establish templates that instances belonging to these classes must instantiate [83].
These templates provide structure to knowledge through hierarchies and relationships,
allowing for the creation of a logical system of categorization and abstraction without the
physical presence of instances within the class. There is also an understanding of classes as
abstract groups, collections, or sets of objects that resonate in some definitions of ontology,
especially those concerning the extensional approach. According to this approach, classes
can be viewed as abstract assemblies of objects, defined either by enumerating all their
members or through conditions that must be met for inclusion in the class [84,85]. Such
classes form sets of objects that together constitute a class within a specific ontology. This
definition reveals that classes can be perceived as collections of objects, but it is important
to note that this is an abstract and theoretical description, not the physical content of objects
in the class

3.2. Identification of Requirements for the Method of Forming the System Architecture of Existing
Industrial Objects

• The system architecture of the digital representation must be identical to the system
architecture of the existing object in the physical world concerning the objectives of
creating the digital representation. The architectural representation of the existing
industrial object (EIO) must be provided to the necessary and sufficient extent for
the purposes of system design. This means that the actual system architecture of
the existing object in the physical world must be represented in the digital world to
the necessary and sufficient extent, as creating a complete digital copy of the object
reflecting all its temporal changes is impossible. This goal can be verified by comparing
the system architecture of the digital representation and the level of detail defined
by the objectives. If, after collecting information and identifying missing system
elements, there are no unknown elements left at the required level of detail, the goal is
considered achieved.

• The proposed method must create a semantic foundation where the constituent el-
ements of the system architecture (requirements, functions, components, processes,
models) are unambiguously defined and understood by all stakeholders. This require-
ment is verified by ensuring that all parties agree on the provided directories and
matrices. If all parties have agreed, the criterion is met.

• The method must provide the capability to balance the requirements of different
stakeholders. This goal is verified by the presence of tools in the method procedure
for resolving contradictions and identifying unknown elements of the system. If the
procedure provides tools for these tasks and their implementation is demonstrated,
then the goal is considered achieved.

• The method must ensure an iterative process for creating the system architecture,
allowing for the updating and modernization of the constructed system architecture.
The goal indicates that the procedure of the method must allow for the possibility to
return to previous stages at any time and to perform repeat steps and clarifications,
including during further work with the already completed architecture in case of
external changes.

3.3. Expected Outcome of the Method Application

To gain a precise understanding and outline the procedure of the method, it is nec-
essary to define the expected outcome of its application according to the formulated
requirements presented earlier.

The first requirement is realized through the creation of a structured hierarchy of
system entities, their descriptions, and attribute content. An industrial object, as defined in
Section 3.1, is a combination of physical and cyber–physical components of an industrial en-
terprise system, including buildings, structures, equipment, and infrastructure, along with
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the corresponding processes of their operation and maintenance, intended for performing
production processes. To meet this requirement, it is essential to obtain a necessary and
sufficient volume of entities—components, processes, and functions—with appropriate
decomposition. Each entity must be unambiguously defined and described, with attributes
and their values assigned to each entity.

The second requirement is related to the first in that the initial data on entities must
be collected from all stakeholders, and their final descriptions, parameters, and attributes
must be agreed upon by these stakeholders.

The third requirement, concerning the balancing of requirements and other entities of
the system architecture, implies not only a balanced architecture as the result of applying
the method but also the presence of a rebalancing mechanism in case of any changes.
This balancing is most conveniently carried out using entity relationship matrices. Thus,
entity relationship matrices should be included in the system architecture along with the
hierarchically structured entity directory.

Finally, the last requirement concerns ensuring an iterative process for developing the
system architecture and the possibility of reapplying the method during the modernization
and updating of the architecture. Given that each industrial object possesses a degree
of uniqueness, a single general algorithm of the method will not suffice to meet this
requirement. To account for this uniqueness and adaptability to a specific object, it is
necessary to develop local policies and rules for designing the architecture (rules for
obtaining the aforementioned components—hierarchical directories, parameterization,
building matrices, and balancing procedures).

From the above, the overall expected outcome of applying the method is formed—a
hierarchically structured list of requirements, functions, components, and processes of the
industrial object, descriptions, attributes, and parameters of each entity, entity relationship
matrices, and local rules for the system architecture. This ensemble forms the system
architecture of the existing industrial object. Initially, the system architecture may be
incomplete, insufficient, and contradictory. In such cases, the next iteration of the method
is performed, and iterations are repeated until a system architecture that satisfies all
stakeholders is formed.

4. Results
4.1. Method Algorithm

In this section, we propose an algorithm that is not new in the classical sense but
represents an assembly of methods and approaches adapted for the specific needs of
reengineering existing industrial facilities. Although each component of the algorithm
is based on well-known MBSE tools and ontological modeling, the key feature is their
integration into a unified sequence of actions, which provides a way to solve the task of
building system architecture. This algorithm was also tested on the example of a small
hydroelectric power station to identify the characteristics of its use.

In accordance with the general outline of the system architecture from Section 4.2, an
algorithm for constructing the system architecture of an existing industrial object has been
developed (Figure 4). Figure 4 illustrates the methodology for creating digital represen-
tations of existing industrial objects, starting from the collection of initial data about the
physical object, including documentation and input from stakeholders, through structuring
these data, developing a semantic model, and forming an ontological model. The process
includes creating a hierarchical structure of entities, developing a database, and integrating
with software components to manage the digital representation, which ensures support
for efficient modeling and operation of industrial objects. This method involves repeating
various steps to refine the architecture until the desired accuracy and completeness of the
representation are achieved. A detailed description of the algorithm and its justification are
presented below.

General comments on the algorithm: All described steps of the algorithm are per-
formed iteratively, meaning that at any step, if necessary, it is required to go back several



Systems 2024, 12, 355 12 of 30

steps to make changes. It is recommended to complete all the steps of the algorithm to
produce a first draft of the system architecture. Subsequently, any imperfections in the
system architecture will be identified, and the steps will need to be repeated until the
desired result is achieved. Flaws in the architecture are identified based on comparison
with the project implementation goals and must be resolved by balancing requirements
and elements. If the goals and required level of detail are met, it is considered that there
are no flaws. The determination of goal achievement and level of detail is performed by
all stakeholders
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In accordance with the requirements identified in Section 4.2, a method for constructing
the system architecture of an existing industrial object for forming its digital representation
has been developed:

1. Initial Data for Forming the System Architecture of an Existing Industrial Object in
the Digital Space.

A. Sources of Initial Data
The first step involves collecting initial data about the existing industrial object (EIO).

The sources of initial data are classified as follows:

• Physical components and processes of the EIO;
• Documentation of the EIO;
• Information support of the EIO, including information models of the EIO’s infrastruc-

ture and technological equipment;
• All stakeholders interacting with the EIO.

The initial data should be redundant, meaning that there are no restrictions during
data collection, for example, in cases of duplication. Filtering of unnecessary and erroneous
data is carried out in subsequent steps.

We can achieve the necessary level of information sufficiency, which is defined by the
objectives and agreed upon by the stakeholders.

For these rules, it is necessary to identify additional features associated with the
existing object, which are not accounted for in the general rules and principles of implemen-
tation. They depend on the specific case, as each industrial object is unique and requires
more detailed specificity of the general rules

B. Processing (Structuring) Initial Data
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After collecting the initial data,

• Define the boundaries of the target system;
• Annotate the collected initial data and classify them into groups corresponding to

the entities used in the method for forming the system architecture: requirements,
functions, components, and processes.

The annotation of the collected initial data is performed in accordance with the MBSE
approach methodology, which involves structuring into four main groups: requirements,
functions, components, and processes [86]. Data structuring can be performed using NLP
tools followed by expert validation of the results, or solely by expert distribution. The
justification for the distribution is the semantic content of the initial data.

Alongside the annotation, the system boundaries are defined. Boundary definition
begins with identifying the layers of the subject areas to be involved. For example, for
an EIO, these could be the layers of physical components and processes, as well as the
operational layer. Data that do not belong to these layers and relate, for example, to the
economic or logistical layer, should be marked as not included in the system but not
discarded for potential use in subsequent iterations.

After defining the boundaries by layers, it is necessary to set the boundaries of the
system in each of the four groups: requirements, functions, components, and processes. The
system exists in each of these categories, and the boundaries in each must be determined.

After defining the boundaries by entity groups, the boundaries of detail must also
be set, i.e., formal criteria for the maximum level of decomposition in each category must
be provided.

Requirements are formalized conditions or capabilities that the system must provide.
They can be functional, defining what the system should do, for example, a certain amount
of produced goods, or non-functional, describing the characteristics of the system, such as
reliability and safety.

Functions describe the operations or actions that the system performs to achieve its
goals. They are related to the requirements and define what actions the system must take
to meet those requirements.

Components are the physical or logical elements that make up the system. Physical
elements are parts of the equipment and infrastructure of the EIO. Logical elements are
software modules, databases, or interfaces.

Processes are sequences of operations or actions involving various functions and
components aimed at achieving specific requirements.

Within the system architecture, these elements are interconnected. Requirements for-
mulate goals, functions describe the actions that components must perform, and processes
integrate everything into a whole, describing the interaction and sequence of work in
the system.

The result of step B is digital information about the EIO, distributed into four groups:
requirements, functions, components, and processes within defined system boundaries.

C. Formulation of System Architecture Development Rules
Next, it is necessary to compile a document containing rules for developing the system

architecture of the project to ensure the consistency of actions of all project participants.
Based on the information obtained in the previous step and the principles of MBSE [47],

rules for forming the EIO’s system architecture, considering its specifics, are developed.
The document includes the following:

• Procedures for validating initial data;
• Rules for compiling the semantic model of the system;
• Rules for compiling entity relationship matrices;
• Rules for forming the hierarchy of the system architecture;
• Rules for assembling the system architecture;
• Other rules as necessary.
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Similar documents used in BIM modeling are EIR (Employer’s Information Require-
ments) and BEP (BIM Execution Plan). BEP and EIR describe the information requirements
of the project. The existence of such documents in similar fields indicates the necessity of
pre-agreed conditions for processing data about the EIO.

D. Compilation of the Semantic Model. Identification and Attribution of Entities
D1. Compilation of the Semantic Model in the Form of a Hierarchical Structure
Based on the groups obtained from the annotation of requirements, functions, compo-

nents, and processes, entities for the semantic model are identified.
An entity in the system architecture is an individually identifiable element of the

system that can be specified as a physical object or an abstract concept. Entities have
unique attributes and characteristics that define their behavior and interaction within the
system. In the context of the system architecture, each entity contributes to the functional
and structural construction of the system, playing a specific role and interacting with
other entities. They can be organized into hierarchical structures, where each level of the
hierarchy reflects the nesting and dependence of entities on each other.

Each entity is entered into a dictionary containing definitions for each entity with the
following columns. Dictionary is presented in our case in Section 4.2:

• Serial number of the entity in the dictionary;
• Entity number in the hierarchy;
• Source of the semantic value of the definition;
• Entity name;
• Entity definition.

This step is necessary for two reasons:

• Semantic unambiguity of the used entities;
• Justification of the hierarchical arrangement of entities, as the definition includes an

indication of the class to which the entity belongs;
• Based on this dictionary, a semantic model is constructed. The dictionary contains

definitions for all entities, including classes, subclasses, and attributes.

The semantic model is formed in the format of a hierarchical structure to formalize the
description of all entities in the system architecture. Formats for displaying the hierarchical
structure include XML, JSON, CSV, and others. Entities include the elements that make up
the system architecture. The semantic model must include the following:

• Hierarchical nesting, including classes, subclasses;
• Entity identifier corresponding to the hierarchical nesting;
• Semantic description of the entity, including attributes;
• The semantic model is formed for the considered system and for the subject area.

Such semantic models are constructed for the four groups identified earlier: require-
ments, functions, components, and processes.

A hierarchical system implies a system in which one component is nested within
another. Creating a hierarchical structure allows defining the constituent components of
elements and tracing the nesting of these elements.

When compiling the hierarchical structure for the considered system, the main ques-
tion is: “Can this EIO entity exist separately, or does it only make sense within the frame-
work of the considered EIO?” For example, a support grid is useless without a water canal
and a hydroelectric station, so in the hierarchical structure, it will belong to the components
group and be at the third level of the hierarchy. At the same time, in the subject area
semantic model, it will be an element in another place in the hierarchy.

D2. Attribution of Semantic Model Elements
After compiling the semantic model, the attributes of the system architecture entities

are identified. An attribute is a constant characteristic of an entity that does not change
during processes. The value of an attribute is a characteristic that changes over time during
processes. For example, for the entity “Reinforced concrete wall in room A”, the class will
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be “Wall”, the attribute “Location”, the attribute value “Room A”, the attribute “Material
type”, and the attribute value “Reinforced concrete”.

At the same time, attributes and their values are classes and subclasses from the subject
area semantic model. For example, in the ontological model for the construction domain,
there will be a class “Material”, a subclass “Material type”, and subclass values “Reinforced
concrete”, “Aerated concrete”, etc. In the ontological model for the considered system, there
will be several entities with the attribute “Material” and the value “Reinforced concrete”.

The key difference between an ontological model and a semantic model is the presence
of relationships between the entities of the studied system. Although relationships partially
appear due to attribution, this is not the final form of their representation.

E. Identification of Relationships between Semantic Model Elements
E1. Formation of Entity Relationship Matrices
Formation of entity relationship matrices in accordance with the MBSE approach.

Relationships between entities are described in the form of a relationship matrix based on
the compiled semantic model (point D). In the classic MBSE approach, it involves forming
a set of key system data, grouped into the following categories:

• Requirements (R);
• Functions (F);
• Components (W);
• Processes (P).

After recording data in these groups, pairwise influence matrices are formed to identify
relationships between system functions, processes, components, and requirements. The
following types of matrices are formed: R–R, F–F, W–W, P–P, R–F, R–W, R–P, F–W, F–P, and
W–P (Figure 5). An influence or relationship matrix is a table with dimensions equal to the
number of entities at all hierarchy levels. Rows and columns contain entities, and the matrix
body records descriptions of entity relationships. Stakeholders determine relationships
between entities considering entity attributes and fill in the matrix cells. Examples of
matrices are provided in Section 5 part E1.
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E2. Recording Relationships in Matrix Cells
At the intersections of entities that make up the matrix, cells are formed where rela-

tionships between elements are recorded. Relationships between elements are formalized
connections established between various entities, essentially indicating how elements influ-
ence each other. Relationships can be represented in the form of models, which may be as
follows:

• Mathematical;
• Computer-based;
• Digital;
• Semantic;
• Ontological;
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• Other types.

If representing relationships in the form of models is not feasible due to certain
circumstances, they can be recorded as textual descriptions, although their further use will
be challenging.

To display relationships when constructing the system architecture in the digital
space, mathematical and computer models will primarily be used, as relationships between
entities need to be recorded in a machine-interpretable format.

To determine the relationships, the authors propose using ontological modeling prin-
ciples. As mentioned earlier, a relationship (or connection) is an attribute whose value is
another object. To determine relationships, it is identified which attributes in the semantic
model of both the system and the subject area are the same. Then, relationships between
elements are recorded in a meta-mathematical or computer model and visualized in the
ontological model.

After determining the relationships, a classifier of models is formed. The classifier
should include the following:

• Model identifier;
• Model name;
• Semantic description of the model;
• List of attributes and parameters used by the model;
• The obtained classifier is agreed upon by all stakeholders.

Examples of matrices are provided in Section 5 part E2.
E3. Using Matrix Cells to Record the Degree of Influence between Entities
The matrix cells can also be used to record the degree of influence between entities.

These are criteria for forming pairwise matrices, aimed at answering the question, “Is
it necessary to consider the relationships between the given elements of the system de-
composition, or can they be disregarded?” This criterion allows significantly reducing the
volume of analysis and modeling, ensuring necessary and sufficient model content. Other
relationships may be considered in subsequent iterations, but they are not needed at the
stage of system description and model development.

The authors propose two methods for forming criteria:

• Expert-based;
• Based on the level of component nesting in the hierarchical model.

The criteria are used during expert evaluation, based on which the pairwise matrices
are formed. This method is applied when the hierarchical model has not been constructed.
The authors propose three conditional gradations:

0—No connection or influence between the entity and the considered entity;
0.5—Implicit or indirect connection through other entities, or uncertainty regarding

the presence of a connection;
1—A connection and direct influence exist.
The authors also propose a method for forming criteria in influence matrices based on

the degree of component nesting. The more entities are nested within each other, the greater
their influence coefficient on each other. The coefficient is calculated based on the total
level of nesting. The total level of component nesting is taken as 100%, and the influence
coefficient for each level is taken as an equal part of these 100%. For example, if the matrix
contains entities with a maximum nesting level of 7, the significance coefficient for one
level is 0.14 (100/70.01 ≈ 0.14). Thus, for the entity “Hydro unit” with the index in the
hierarchy1,12,5,1,6 the influence coefficient concerning the entity “Vertical propeller hydro
turbine” with the index 1,12,5,1,6,1,4 will be 0.7 (5 common levels 50.14 = 0.7); and for the
entity “Water intake” with the index 1,1,1,6,8, it will be 0.14 (1 common level 1 × 0.14 = 0.14).
Examples of matrices are provided in Section 5 part E3.

E4. Repeated Iterations and Balancing Stakeholder Requirements
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The result of the previous steps is checked for balancing stakeholder requirements
and other entities. This means determining the presence of missing, redundant entities, or
incorrect semantics.

An important aspect of repeated iterations is identifying missing entities, their seman-
tics, attributes, and relationships for which information is absent or incomplete. All this
should be restored based on the existing data set, semantic models, and matrices. For exam-
ple, in the system, there are four components, five processes, and seven requirements. For
two requirements in the current system architecture, necessary components (with known
attributes) are missing, but the processes corresponding to these requirements are described
in the system architecture. Additionally, one component is not linked to requirements and
processes. This means that the task of repeated iteration includes restoring the description
of missing components based on their relationships with other entities, as well as refining
the requirements and processes related to the “redundant” component.

F. Assembly of System Architecture. Compilation of the Ontological Model
The ontological model is formed based on the semantic model and entity relationship

matrices. Relationships between elements of the ontological model (i.e., attributed entities)
are reflected in the form of mathematical, computer, digital, and other models, depending
on the nature of the relationship. The use of ontologies is primarily dictated by the need to
record relationships between three or more objects. The ontological model must include
the following:

• Model identifier;
• Model name;
• Semantic description of the model;
• List of attributes and parameters used by the model.

The ontological model is necessary to display all relationships between elements in
one place. Section 3 on materials and methods describes the principles of constructing the
ontological model. The ontological model includes entities that are identifiable elements
of the system, which can be physical objects or abstract concepts. It is formed based
on a semantic model and entity relationship matrices. The model consists of entities
with unique identifiers, names, semantic descriptions, attributes, attribute values, and
relationships. It organizes these entities into a hierarchical structure, reflecting their nesting
and dependencies. Additionally, the model includes a classifier of models, which helps to
ensure a comprehensive and integrated representation of the system’s architecture.

The fundamental difference between an ontological model and system architecture
lies in their focus and scope.

An ontological model primarily provides a formalized, structured representation
of entities within a system, detailing their attributes, relationships, and hierarchical or-
ganization. Its main purpose is to ensure semantic clarity and interoperability of data,
facilitating precise communication and integration across different systems and stakehold-
ers. The ontological model emphasizes the semantic description of elements and their
interconnections, often using standardized languages and formats to support reasoning and
data exchange.

On the other hand, system architecture encompasses the broader structural and func-
tional design of a system. It includes not only the description of components and their
relationships but also the principles, guidelines, and rules that govern the system’s behav-
ior, performance, and lifecycle. System architecture is concerned with both the physical
and logical aspects of a system, addressing how the system meets its requirements and
performs its functions within given constraints. It involves a more comprehensive view,
integrating various perspectives such as technical, operational, and strategic considerations
to achieve a cohesive and optimized system design.
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4.2. Testing the Method for Constructing System Architecture for a Small Hydroelectric
Power Plant

This methodology was tested in the development of a system architecture to create
a digital representation of a small hydroelectric power plant (HPP). The small HPP is a
dam building located on the shore of a reservoir, with a design capacity of approximately
500 kW.

1. Initial Data for Forming the System Architecture of an Existing Industrial Object in
the Digital Space

A. Sources of Initial Data
The following types of sources were used as initial data:

• Design documentation for the small HPP, including drawings, specifications, and
photographs of the structure;

• Open data: terrain modeling using software;
• Construction information classifier.

Based on these data, an information model (BIM model) was constructed, taking into
account changes to the object over time (Figure 6). The components of the BIM model were
then attributed according to the construction information classifier. Thus, the initial data
were supplemented with the BIM model of the small HPP.
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When constructing the BIM model of the object and attributing it according to the
construction information classifier, the following conclusion was reached: despite having
a complete BIM model of the object, it was not possible to obtain the system architecture
for this object. The reason for this is the insufficient amount of data; specifically, merely
attributing 3D elements of the object does not provide a representation of the system
architecture. This observation confirms the necessity of applying the methodology for
creating the system architecture of the existing industrial object (EIO).

B. Processing (Structuring) Initial Data
To fulfill point B—structuring the initial data—all data about the object were manually

processed and distributed into four groups: requirements, functions, components, and pro-
cesses. Parts of the documents containing information about these groups were identified.
As a result, a document was created, consisting of the following:

• Requirements, functions, components, and processes for the considered object;
• Identifiers of the highlighted fragments;
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• Sources of the fragments;
• Content of the fragments.

C. Formulating Rules for Developing the System Architecture of the Project
Next, in fulfilling point C, the main rules for structuring information were determined.

For example:
The index of elements in the semantic scheme was formed based on the level of nesting

of entities. For instance, for level 1 entities, the initial digit of the index was 1. For entities
nested in level 1, the index was 1.1, 1.2, and so on, where the second digit reflected the
sequential number of the entity.

A comprehensive document with rules for developing the system architecture of the
project was not compiled, as the scale of the project did not require it.

2. System Architecture of an Existing Industrial Object for the Formation of Its Digi-
tal Representation

D. Creating the Semantic Model: Identifying Entities and Attributing Them
D1. Creating the Semantic Model in a Hierarchical Structure Format
A dictionary was compiled (Figure 7) containing definitions for each entity with the

following columns:

• Sequential number of the entity in the dictionary;
• Number of the entity in the hierarchy;
• Source of the semantic value of the definition;
• Name of the entity;
• Definition of the entity.
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Figure 7. Semantic model of components for hydraulic engineering domainA partial semantic model
in a hierarchical structure without attribution was constructed for the subject area of hydraulic
engineering based on a normative document containing the main terms and definitions for the
hydraulic engineering sector. The process of creating a complete semantic model for the subject area
is extremely labor-intensive; therefore, the main criterion for compiling such a model is the inclusion
of all entities within the boundaries of the considered system.

This step is necessary for two reasons:

• Semantic unambiguity of the used entities;
• Justification of the hierarchical placement of entities, as the definition indicates to

which class the entity belongs.

Based on this dictionary, a semantic model in a hierarchical structure is built for the
subject area of hydraulic engineering, with boundaries defined for the small hydroelectric
power plant system.

In this case, the semantic model was compiled in Excel and then converted to CVS.
Block 1 in Figure 8 shows how entities are recorded by levels of the hierarchy. Block 2 in
Figure 8 shows the final view of the semantic model, convenient for visual perception.

Such schemes were constructed for four groups: requirements, functions, components,
and processes. Figure 8 provides an example for the components group.

Next, a semantic model is constructed within the boundaries of the studied system.
All entities of the semantic model within the boundaries of the studied system are taken
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from the semantic model of the subject area. If an ontological model of the subject area has
been developed, entities are taken from the ontological model of the subject area.
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Figure 8. Semantic model of components subject area of hydraulic engineering.

Using Excel in this case is the most convenient, as entities (including classes, subclasses,
and attributes) are defined once in the dictionary with definitions, and then referenced in
the semantic models. This method allows for data management across different systems.

Such schemes were constructed for four groups: requirements, functions, components,
and processes. Attribution of elements was not performed. Figure 9 provides an example
for the components group. The difference between the semantic model of the subject area
and the semantic model of the studied system lies in the number of entities that will be
used in constructing the system architecture of the existing industrial object (EIO).
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The hierarchy provides for two-level coding of elements. The first level of coding is
object-based, indicating the unique code of the element. It is necessary to include identical
components in the hierarchical structure, which may be in different subsystems and at
different levels. In this structure, the object-based code is present only in the information
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model of the small hydroelectric power plant, as there are no repeating elements. The
second level of coding is hierarchical, showing how elements are nested within each other.

D2. Attributing Elements of the Semantic Model
To identify entities and attributes, a table was created (Figure 10) that listed the main

parameters of each entity and their association with requirements, functions, components,
and processes. Each entity was considered individually.
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Next, the attribution of entities in the semantic model was separated into distinct
schemas (Figure 11).
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E. Identifying Relationships Between Elements of the Semantic Model
E1. Forming the Entity Relationship Matrix
All matrices of mutual influence of entities were compiled in accordance with the MBSE

approach. Examples of the “components–components” and “requirements–functions” matri-
ces are provided below.

Components–Components Matrix.
For the “components-components” matrix (Figure 12), the influence of components

on each other was determined based on the hierarchy of these components. The deeper a
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component is nested within another, the greater its influence. The matrix is symmetric, as
the relationship is mutual and bidirectional. Based on these data, it is possible to determine
which component is most critical to another component, and accordingly, determine the
degree of detail needed during design. For instance, when reconstructing a hydro unit,
it is essential to first determine the condition of the hydraulic turbine, or when modeling
the water conduit, consider it in conjunction with the intake and channel. An example of
calculating cell values is provided in Section 4.2 part E3.
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Figure 12. Components–components matrix.

Requirements–Functions Matrix.
When examining the matrix (Figure 13) that matches requirements and functions, we

analyze the degree of mutual influence of the elements’ relationships. This allows us to
determine which requirements need to be prioritized when performing certain functions.
In this case, the coefficients were assigned based on expert assessment. Here, 0 (white color
in the table) indicates the absence of a direct relationship and influence of the element and
all its components on the considered element, while 0.5 (yellow color in the table) indicates
an indirect or implicit relationship through other elements, and 1 (green color in the table)
indicates a direct relationship and influence. Further refinement of relationships is possible
as components and parameters of the system and functions are specified.
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E2. Recording Relationships in the Cells of Relationship Matrices
To represent the relationships between entities, a classifier of mathematical models

was created. The classifier consisted of the following columns:
Entity for which mathematical models are built
Attributes. Additionally, attributes of mathematical models were divided into

systemic—describing relationships and physical—measurable characteristics

• Attribute name;
• Unit of measurement;
• Designation (symbol);
• Attribute value range;
• The mathematical models themselves;
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• Attribute type (textual/numerical);
• Components included in the mathematical model. Components are also taken from

the semantic model of the subject area or system.

As an example, the description for the entity “Hydraulic Turbine” is provided
(Figure 14).
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F. Assembling the System Architecture: Creating the Ontological Model
Initially, Portage was used for ontology development, but it was later replaced by

Python with the owlready2 and graphviz libraries to ensure flexibility in development
(Figure 15). The initial data for the demonstration part of the ontological model are shown
in Figure 10.
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Classes are written in ovals, and edges represent the relationships that exist between
entities. The construction of a complete ontological model for the subject area and the
studied system was not carried out within the framework of this method testing.

5. Discussion
5.1. Comparison with Existing Methods

While it is challenging to conduct a detailed comparison with developed method-
ologies within the scope of this article, it is possible to identify several key principles
mentioned in each methodology and compare them exclusively with these principles.

Comparison with these established standards was carried out in order to show the
absence of fundamental contradictions, since the indicated approaches are general and
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verified, and our proposal is a separate way of applying these principles and therefore the
proposed method must contradict them.

5.1.1. Comparison with INCOSE Systems Engineering Principles

Below are the formulations of the principles of systems engineering published by IN-
COSE [87] and a commentary on the compliance of the developed method with each principle:

“Systems engineering in application is specific to stakeholder needs, solution space,
resulting system solution(s), and context throughout the system life cycle”. The algorithm
accounts for balancing the requirements of all stakeholders and aligning the system archi-
tecture (SA) at key stages of its development. The solution space is represented through
entity relationship matrices, and context is provided by the semantic model and rules
formulated based on the goals of SA development.

“Systems engineering has a holistic system view that includes the system elements and
the interactions amongst themselves, the enabling systems, and the system environment”.
The proposed algorithm clearly defines the system boundaries and its components in
classes of requirements, functions, components, and processes, and composes an entity
hierarchy along with relationship matrices. The interactions of system elements with the
overall system and the system environment are considered in the rules.

“Systems engineering influences and is influenced by internal and external resource,
political, economic, social, technological, environmental, and legal factors”. This principle
is not fully accounted for in the algorithm due to its application boundaries—complex
technical systems of existing industrial enterprises, unlike this principle, which is designed
for a broader and more general case. However, this principle should be considered when
identifying stakeholders and forming rules for SA development in the context of the
specific task.

“Both policy and law must be properly understood to not overly constrain or under
constrain the system implementation”. This principle concerns the stage of forming SA de-
velopment rules, which does not contradict it. Overall, this statement should be considered
in the tasks of balancing entities and stakeholder requirements.

“The real system is the perfect representation of the system (only complete, full, or
perfect representation of the system is the system itself)”. This principle underlies the
algorithm since we are dealing with an existing object, and the most accurate information
about the EIO can be obtained from the data source—the EIO itself.

“A focus of systems engineering is a progressively deeper understanding of the inter-
actions, sensitivities, and behaviors of the system, stakeholder needs, and its operational
environment”. This principle is implemented through an iterative approach to SA develop-
ment with constant improvement in understanding the interactions, system components,
and stakeholder needs.

“Systems Engineering addresses changing stakeholder needs over the system life
cycle”. This principle is ensured by the balancing matrix tools and the ability to change
individual requirements over time, embedded in the SA structure formed using the pro-
posed algorithm.

“Systems engineering addresses stakeholder needs, taking into consideration budget,
schedule, and technical needs, along with other expectations and constraints”. This prin-
ciple is considered at all stages, from collecting initial data from stakeholders to the final
formation and agreement of the SA.

“Systems engineering decisions are made under uncertainty accounting for risk”. This
principle also underlies the developed method. The problem statement itself indicated that
information about existing objects is almost always incomplete and partially erroneous.

“Decision quality depends on knowledge of the system, enabling system(s), and inter-
operating system(s) present in the decision-making process”. The developed method does
not contradict this principle, but the method’s boundaries do not include decision-making
procedures for a functioning system and its interaction with external systems. These aspects
should be considered in the formation of rules based on the goals of SA development.
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“Systems engineering spans the entire system life cycle”. The method is designed so
that the resulting SA is adaptable and can be used throughout the entire life cycle.

“Complex systems are engineered by complex organizations”. The method does not
contradict this principle and considers the need for the involvement of all stakeholders,
which increases with the complexity of the system. This principle should also be considered
in the rules, as the more complex the system and organization, the more aspects need to be
regulated by rules for effective operation.

“Systems engineering integrates engineering and scientific disciplines in an effective
manner”. The method is limited to the subject areas of the EIO and does not include the
organizational component. However, it provides for the integration of system components
from various engineering disciplines in the SA.

“Systems engineering is responsible for managing the discipline interactions within
the organization”. In the algorithm, the formation of rules, in which these interactions must
be formalized, is a separate stage.

“Systems engineering is based on a middle range set of theories”. The method con-
siders the need to attribute entities, i.e., bring them to a mathematical representation,
considering the possible different nature of attributes from various subject areas applicable
to the same entity.

In conclusion, the developed method complies with all principles presented by IN-
COSE and provides a refined action algorithm for constructing the system architecture for
a specific application domain in existing industrial objects to form a digital representation.

5.1.2. Comparison with TOGAF Architecture Design Principles

The TOGAF standard [88] presents Core Concepts, which form the basis of the en-
tire methodology. These concepts and a comparison with the developed method are
provided below.

TOGAF’s definition of architecture is as follows: the structure of components, their
inter-relationships, and the principles and guidelines governing their design and evolution
over time. It also provides a definition per ISO/IEC/IEEE 42010: 2022 [27]: the funda-
mental concepts or properties of a system in its environment embodied in its elements,
relationships, and principles of its design and evolution. The definition used for SA formed
as a result of applying the method corresponds to these definitions, as it includes system
elements, relationships, and rules.

Subsets of architectures in the TOGAF standard include business architecture, data
architecture, application architecture, and IT architecture (technology architecture). In our
case, the concept of system architecture is used, which integrates all the above architectures
into a single structure. However, the boundaries of the study and method application
currently include only the technical and operational components.

The architecture development method algorithm differs from the one we proposed.
The TOGAF standard proposes a development sequence with different actions, primarily
focused on establishing rules and management procedures, with an emphasis on balancing
stakeholder requirements at all stages.

If we generalize the goals of the elements of the TOGAF algorithm, they align with
the goals of the stages of our proposed algorithm (rule development, entity identification,
data collection, defining goals and stakeholders, requirement balancing). However, this
approach can be very challenging to apply to existing technical systems. Its sequence is
tailored specifically for enterprise architecture and does not fully consider systematics and is
difficult to adapt to technical systems. Our method addresses a specific technological domain.

TOGAF entities analogs are Deliverables, Artifacts, and Building Blocks. Artifacts are
catalogs and matrices, and blocks are individual architecture clusters that are verified and
reusable. Blocks can be of different levels of detail. The product is the final representation
of the enterprise result, presented in the architectural repository as a model, standard, or
snapshot of the enterprise architecture at a given time.
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The TOGAF standard has a unique term—Enterprise Continuum. It reflects a global
view of the architecture, relative to which all components are considered. There is no
direct analog in the developed algorithm; however, in our case, this concept is effectively
replaced by the systems engineering methodology, providing a systematic understanding of
the architecture.

The architectural repository mentioned in the standard corresponds to the semantic
model used in our method. An independent entity in the TOGAF approach is Establishing
the Architecture Capability as an Operational Entity. Essentially, this is a high-level rep-
resentation of the enterprise’s functions, which is considered in our algorithm alongside
requirements, processes, and components.

In summary, the same principles of system architecture construction are used as in the
proposed algorithm, but the application domain of the principles and architecture differs,
leading to differences in individual procedures.

5.2. Limitations and Challenges in Applying the Method Identified during Testing on a Small HPP

The main challenges in applying the method were as follows:
Manual data processing is extremely labor-intensive. To work effectively, Natural

Language Processing (NLP) methods need to be applied. The application of NLP involves
two key aspects: automatic sorting of data into requirements, functions, components, and
processes, and automation of creating semantic and ontological models.

A ready-made framework or software for creating the system architecture is required.
However, when testing various software for creating system architecture, developing cus-
tom frameworks in Excel proved to be the most convenient. This indicates two things: the
method itself needs further refinement, as the inconvenience of using system architecture
software was due to a lack of flexibility; tools with high flexibility and customization are
necessary when developing system architecture.

Ontological models of subject areas are needed. The availability of open attributed
semantic models in a hierarchical format would significantly facilitate the process of devel-
oping system architecture. The hierarchical component of the semantic model is primarily
driven by the need for machine interpretability of data, as incorporating ontological models
into operational process models requires interoperable digital data content.

Creating the system architecture involves developing an ontological model of the
subject area and an ontological model of the developed system.

Assessing the relationships between entities significantly simplifies the system architec-
ture modeling process, allowing for the identification of the most critical parts for modeling.

An important task related to the system architecture of existing facilities is the devel-
opment of a mechanism for cognitive elements to collect data from these facilities. This
includes perception and analysis systems for photos, audio, documentation, and data,
similar to those proposed in the concept of cognitive digital twins. This task was not
addressed in the present article and remains a subject for further research.

Potential advantages of the method include the ability to find unknown system el-
ements and constraints during balancing. The method is also quite adaptive due to the
customization of local rules, which take into account the specifics of a particular object.
These same local rules can also be considered potential disadvantages of the method since
they can complicate the procedure and are not fully specified. Future studies should proba-
bly pay attention to what exactly can be specified in such rules and what cases can occur in
different industries.

6. Conclusions

This research developed and tested a method for constructing the system architecture
of existing industrial objects using Model-Based Systems Engineering (MBSE) principles.
The methodology is a digital engineering tool designed to create an accurate digital rep-
resentation of an object. The study showed that applying MBSE in the context of digital
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transformation for existing industrial objects can significantly enhance the understanding
of their system architecture.

The key achievement of this work is the creation of a methodology for developing the
system architecture of existing industrial objects. This method allows for the identification
and classification of components and the determination of their interrelationships.

Testing the method on a small hydroelectric power plant demonstrated its effectiveness
in organizing and systematizing data, which is crucial for creating a complete digital
representation of the object. The method was also evaluated against MBSE principles and
enterprise architecture frameworks such as TOGAF and INCOSE.

Despite the method’s promise, several challenges were encountered during its im-
plementation. The manual processing of data proved to be labor-intensive, highlighting
the need for automation through Natural Language Processing (NLP). Additionally, the
limited flexibility of existing software for creating system architectures suggests a need
for specialized frameworks that can adapt to specific project requirements and facilitate
the integration of ontological models. Issues with insufficient initial data, difficulties in
data attribution, and the need for multiple iterations to achieve optimal results were also
identified, indicating a need for methodological improvements.

In summary, the methodology for creating system architecture for existing industrial
objects offers a valuable digital engineering tool for generating accurate digital representa-
tions. However, its effective application requires ongoing development in data collection
and processing methods, as well as the creation of specialized frameworks to support
these processes.
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