Table S2: Resilience metrics identified through scoping review.
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Porto, RL (2000) Lfor Ny =0 periods of failure over period of observation
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Hassan, D; Burian, SJ; . .
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(2019) : P
m
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sys
T X Q100

T¢: control period




Ty time required for the system to recover
after the strike

Q100: performance measurement when the
system is fully functional

toe: time of the event

t,.: time for the entire system to fully
recover

Verol, AP; Lourenco,
IB; Fraga, JPR;

FRIF Flood Risk Index considering the
project in a future condition
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(FRIgS3eS — FRITSSER project N ,
40 Battemarco, BP; Merlo, mFResl = 1— F R Future the project in the present condition Socio-technical single sudden
ML; de Magalhaes, PC; Doing nothing FRIFUESS s ihing: Flood Risk Index
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41 Wang, ¥; Taylor, JE; FI ~ 4Z[qi - q(m)]z q: root of the probability of an observed Socio-technical multiple sudden
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