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Abstract: In recent years, the escalation in emergency occurrences has underscored the pressing
need for expedient responses in delivering essential supplies. Efficient integration and precise al‑
location of emergency resources under joint government–enterprise stockpiling models are pivotal
for enhancing emergency response effectiveness andminimizing economic repercussions. However,
current research predominantly focuses on contract coordination and cost‑sharing within these joint
reserve modes, overlooking significant discrepancies in emergency supply classification standards
between government and enterprise sectors, as well as the asymmetry in cross‑sectoral and cross‑
regional supply information. This oversight critically impedes the timeliness and accuracy of emer‑
gency supply responses. In practice, manual judgment has been used to match the same materials
under differing classification standards between government and enterprise reserves. Still, this ap‑
proach is inefficient and prone to high error rates. To mitigate these challenges, this study proposes
a methodology leveraging the BERT pre‑trained language model and TextCNN neural network to
establish a robust mapping relationship between these classification criteria. The approach involves
abstracting textual representations of both taxonomical classes, generating comparable sentence vec‑
tors via average pooling, and calculating cosine similarity scores to facilitate precise classification
mapping. Illustrated with China’s Classification and Coding of Emergency Supplies standards and
Global Product Classification standards, empirical validation on annotated data demonstrates the
BERT‑TextCNN model’s exceptional accuracy of 98.22%, surpassing other neural network method‑
ologies such as BERT‑CNN, BERT‑RNN, BERT‑BiLSTM, etc. This underscores the potential of ad‑
vanced neural network techniques in enhancing emergency supply management across diverse sec‑
tors and regions.

Keywords: emergency supplies; supplies classification standard; category mapping; BERT; TextCNN

1. Introduction
In recent years, global emergencies have become more prevalent, presenting a sub‑

stantial risk to the survival and development of humanity. Data from the Emergency
Events Database (EM‑DAT) indicates that over 22,000 major emergencies transpired glob‑
ally from 1990 to 2020, leading to direct economic losses amounting to trillions of dollars.
Events such as the 2015 Nepal earthquake, the 2017 Hurricane Harvey in the United States,
the 2018 Indonesia earthquake and tsunami, the 2018 Yarlung Tsangpo landslide weir on
China’s Jinsha River, and the 2019 outbreak of the global COVID‑19 epidemic pose a se‑
rious threat to the national economy and the safety of life and property, resulting in a
large number and variety of demands for emergency supplies [1]. Because of the uncer‑
tainty of emergencies and the severity of the disaster, it is often difficult to respond quickly
to emergency demands by relying solely on a single, limited variety of emergency mate‑
rials stockpiled by governments, so governments must mobilize the material resources
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of businesses and society to provide collaborative relief [2]. In this context, the develop‑
ment of the government–enterprise joint reserve model has emerged as a contemporary
research hotspot.

The emergency supplies joint reserve mode (ESJRM) [3] coordinates and dispatches
supplies across sectors, regions, and disasters. Although the problem of resource scarcity
has been solved through contractual coordination [4] and cost‑sharing [5], the government
and enterprises have adopteddifferent classification standards for emergency supplies due
to their different purposes of use and demands, and different classification standards have
different classification numbers and levels, resulting in the phenomenon of emergency sup‑
plies not being “found or deployed”. The government generally classifies emergency sup‑
plies according to their purpose, such as the US government’s FEMA’s Authorized Equip‑
ment Catalogue (AEL) and the Interagency Advisory Board’s (IAB) Standardized Equip‑
ment List (SEL) [6], Japan’s Emergency Supplies Reserve and Rotation System (ESSRS) [7],
and Australia’s Federal EmergencyManagement Agency (FEMA)’s Overseas Disaster Res‑
cue Plan (ODRP), which sets out detailed resources for relief supplies [8], the Chinese
government adopts the national standard GB/T 38565‑2020 Classification and Coding of
Emergency Supplies [9] (hereinafter referred to as GB/T 38565), etc. Enterprises generally
classify their emergency supplies based on commerce and trade demands, and they use
common product standards such as the Global Product Classification (hereinafter referred
to as GPC) [10] and The United Nations Standard Products and Service Codes (hereinafter
referred to as UNSPSC) [11]. However, due to the differing objectives and purposes of the
government and enterprises, it is difficult to accept or build a new unified supply classifi‑
cation standard.

With the advancement of artificial intelligence and other technologies, constructing
the mapping relationship between the emergency supplies classification standard and the
general supplies classification standard can becomemore efficient, precise, and convenient
to achieve information sharing of joint reserve supplies between government and enter‑
prises, thereby providing a solution to the aforementioned problems. The mapping of
supply classification standards falls under the area of taxonomy category mapping, which
has been a research hotspot in natural language processing (NLP). Traditional machine
learning algorithms, such as NB [12], KNN [13], and SVM [14], rely too heavily on manu‑
ally set features and have poor model generalization capabilities. Deep learning methods
based on neural networks are preferred for their powerful feature extraction capabilities,
such as RNN [15], LSTM [16], CNN [17], TextCNN [18], etc., which provide good map‑
ping classification results. With the use of pre‑trained language models such as BERT [19],
BERT can train finer‑grained dynamic word vectors than classic word vector models such
as Word2vec [20] and TF‑IDF [21].

As a result, several researchers are merging BERT with neural networks, such as
BERT‑RNN [22], BERT‑CNN [23], etc., to improve their performance in domain‑specific
text categorization mapping tasks. Emergency supplies classification category mapping
includes issues such as data sparsity and a strong reliance on context, and little study has
been conducted on emergency supplies classification standard category mapping using
this combined approach.

Therefore, this uses BERT’s sophisticated semantic extraction of supply classes to char‑
acterize full‑text features and the TextCNN convolutional layer to extract additional local
features. It is believed that this combination will outperform any network working alone.
The purpose of this study is to propose a novel combination of BERT and TextCNN net‑
work formore accurate categorymapping of two separate supply categorization standards,
as well as to give technical assistance for the subsequent development of a collaborative
government–enterprise reserve supply information exchange system.

The rest of this study is shown below. Section 2 presents the literature review. Section 3
constructs an algorithmic model for emergency supplies classification standard category
mapping. Section 4 details the experimentalmethodology employed in themodel. Section 5
describes the experimental results and analyses them in depth. The paper concludes with
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the appropriate conclusions and discussion, including the significance of the study, limi‑
tations, and future research directions.

2. Literature Review
2.1. Analysis of Emergency Supplies Classification Standard for Joint Government–
Enterprise Reserve

In the government–enterprise joint reserve model, the government will cooperate
with several enterprises, and scientifically determine the reserve varieties, scale, and struc‑
ture [24], and the government–enterprise joint reserve has been a hot research direction
in the academic community. The research focuses mainly on determining the supplier
selection [25], emergency reserve quantity [26], cooperation period [27], and benefit dis‑
tribution [28] between the government and enterprises by establishing framework agree‑
ments [29,30], quantity elasticity contracts [31], option contracts [32,33], incentive con‑
tracts [34], and game models [35]. In terms of research themes, these studies are all based
on the cooperation between governments and enterprises anddo not address how tomatch
and share information on emergency supplies and how to operate quickly and efficiently
after the cooperation.

The government–enterprise cooperation contract incentives to cope with the uncer‑
tain demand for supplies [36], but the problem of uniformity in the classification and la‑
beling of emergency supplies is relatively neglected [37,38], which often leads to the phe‑
nomenon that the government–enterprise parties are unable to locate the supplies even
though they have signed the contract. Because government and enterprises are indepen‑
dent of each other in decision making and have different service objectives, the two parties
are bound to adopt different classification labels for supplies. Take the situation in China
as an example, as shown in Table 1; the Chinese government’s emergency departments fol‑
low the national standard GB/T 38565‑2020 Classification and Coding of Emergency Sup‑
plies [9], while enterprises mainly focus on the demand for statistics, trade, etc., and adopt
different classification standards according to the different purposes and service objects,
such as the Global Product Classification (GPC) and other common domestic and inter‑
national standard systems [10]. It can be found that each supplies classification standard
adopted by the government and enterprises organizes and manages supplies according to
different knowledge systems, resulting in the difficulty of sharing information and inter‑
operability between the supply systems of government and enterprises in joint reserve of
emergency supplies, which in turn affects the timeliness of supplies rescue. Establishing
the mapping between the government purchaser and the enterprise supplier supplies clas‑
sification standards is of great significance to achieve the matching of demand and supply
information of joint government–enterprise reserve supplies, as well as the cross‑retrieval
and sharing between the organizational systems of the government and the enterprises.

Table 1. Mainstream supplies classification standard systems adopted by the Chinese government
and enterprises.

Demand‑Side of Government
Procurement Supply‑Side of Enterprise Production

GB/T 38565‑2020 Classification and Coding
of Emergency Supplies

Global Product Classification (GPC)
The Harmonized Commodity Description and

Coding System (HS)

Classified catalog of priority supplies for
emergency protection (2015)

United Nations Standard Products and Services
Code (UNSPSC)

GB/T 7635.1‑2002 National central product
classification and codes—Part 1: Transportable

product [39]

The GPC standard is the goods classification standard adopted by The Article Num‑
bering Center of China (also known as GS1 China), and all goods retailed and listed by
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Chinese enterprises must be licensed by the GS1 China to obtain a GPC classification code
before being assigned a commodity barcode. GS1 China, as an affiliate of the General
Administration of State Administration for Market Regulation, is in charge of organizing,
coordinating, and administrating article numbering and Auto‑ID work throughout China,
and represents China’s accession to the Global Standard 1 (GS1). Therefore, this paper
takes China as an example and selects the national standard GB/T 38565 adopted by the
Chinese government, as well as the GPC standard adopted by enterprises with global uni‑
versality, as the object of this paper, to realize the mapping between the supply classifica‑
tion standards adopted by the government and enterprises, respectively.

2.2. Taxonomy Category Mapping
A taxonomy is a classification system with a hierarchical structure, organized accord‑

ing to different contents and attributes. Although the hierarchical structure and compi‑
lation principles of different taxonomies vary greatly, the basic principles and purposes
of their compilation are the same, and they are a series of markers expressing concepts
and conceptual relationships compiled to improve retrieval efficiency. Therefore, there is
a certain similarity between different taxonomies in terms of conceptual expression, so a
mapping relationship between them can be established [40]. Category mapping refers to
the process of establishing links between the classification codes of different knowledge
classification systems. The supplies classification standard system is a classification estab‑
lished using different knowledge systems, so the mapping of the emergency supplies clas‑
sification standard for the joint reserve of government and enterprises can be regarded as a
categorymapping problembetweenmultiple classifications. As shown in Table 2, columns
1 and 2 give the classification code and category name of supplies related to “drinking wa‑
ter” in GB/T 38565, and columns 3 and 4 give the classification code and category name of
supplies related to “water” in GPC. Both classification standards have a strict hierarchical
structure, and each level has a classification code.

Table 2. Examples of the structure of GB/T 38565 taxonomy and GPC taxonomy.

Hierarchy Classification Code and Category
Name of GB/T 38565 Hierarchy Classification Code and Category

Name of GPC

Large category 1,000,000: Basic life support supplies Segment 50,000,000: Food/Beverage
Medium category 1,100,000: Processed foods Family 50,200,000: Beverages

Small category 1,100,400: Beverages Class 50,202,300: Non‑Alcoholic
Beverages—Ready to Drink

Fine category
1,100,401: Drinking water (including
natural, purified, and mineral water

for drinking)
Brick 10,000,232: Packaged Water

The methods of category mapping between taxonomies include manual labeling and
automatic mapping. Although the accuracy of manual labeling is guaranteed to a certain
extent, it has high manpower cost and strong subjectivity, which is not conducive to the
construction of mapping relationships between large‑scale categories in two taxonomies.
With the development of computer technology, automatic mapping methods have made
great progress, and they can be broadly classified into four types. (1) Method based on
Same‑occurrence [41]: when the same supplies are labeled with the classification codes
of two classification standards, a certain relationship can be established between the clas‑
sification codes of these two standards. (2) Method based on category similarity [42,43]:
each entry of the classification criteria is described by several subject words or sentences,
and the matching degree of the two categories of classification codes can be obtained by
calculating the degree of similarity of words and sentences between different categories.
(3) Method based on cross‑searching [44]: collect a collection of supplies with a certain
classification code under classification standard A, and use the keywords of this collection
of supplies to retrieve the classification name indicated by another classification standard
B. Then, the high‑frequency classification codes “b1, b2, b3,…, bn” in the retrieved classifi‑
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cation standard B are counted, so that the association between them and the classification
code a can be established. However, the accuracy and coverage of this mapping method
are not high and often establish a one‑to‑many relationship. (4) Method based onMachine
learning [45]: this method trains the text information of a category labeled with a certain
classification code to obtain a two‑class classifier for the text of this category, and then the
classifier is used to classify the corpus of another classification criterion labeled with cat‑
egory “b1, b2, b3, …, bn” to determine whether there is any difference between category
a and category “b1, b2, b3, …, bn”. Then, we can use this classifier to classify the corpus
identified by another classification criterion “b1, b2, b3,…, bn” and judge whether category
a can be mapped with category “b1, b2, b3,…, bn” or not. Later, some scholars combined
manual annotation and automatic mapping for category mapping, applying the idea of
crowdsourcing to taxonomy category mapping, in which crowdsourced users use the au‑
tomatic mapping results as a preliminary mapping between categories, and manually re‑
labeled on its basis [46]. The mapping efficiency and accuracy of this method vary with
the labeling differences of crowdsourcing users, and the mapping controllability is poor.

2.3. Category Mapping Based on Deep Learning
In the beginning, traditional machine learning methods were used for text classifi‑

cation and mapping. NB [12] was the first model used for text classification tasks. Sub‑
sequently, general‑purpose models, such as KNN [13], SVM [14], RF [47], DT [48], Cen‑
tre Vector Method, and Ada Boost technique [49], were widely used for text classification
mapping. However, traditional machine learning is shallow feature extraction, ignoring
the relationship between words and words as well as between sentences and sentences,
insufficient understanding of the semantics, structure, sequence, and context behind the
text, poor processing and generalization of high‑dimensional data, and low classification
mapping results due to the limited representational ability of the model.

Pre‑trained languagemodelswith strong semantic understanding such asGPT [50,51],
BERT [52,53], ELMo [54], etc. have gained wide attention in the field of natural language
processing (NLP). They are pre‑trained on massive monolingual texts to obtain a general‑
ized linguistic modal edge [55], which is then applied to downstream tasks and fine‑tuned
according to the characteristics of the tasks. This pre‑training plus fine‑tuning approach
not only greatly improves the performance of the downstream task, but also drastically
reduces the size of the annotated corpus required for the downstream task. ERNIE (En‑
hanced Representation through kNowledge IntEgration), released in 2019, is an improved
pre‑training model for BERT [56]. ERNIE masks entities and phrases during pre‑training
to obtain a priori semantic knowledge about them,which ismore suitable for Chinese noun
phrase recognition.

With the development of deep learning, many neural network models have been suc‑
cessfully applied to text sequence modeling tasks. Recurrent neural network RNN [15]
is commonly used to obtain the evolutionary direction of the sequence through recursive
computation, which makes it easy to capture the positional information in all the words
for the text classification task, but at the same time, there is the problem of exploding or
vanishing gradient [16]. LSTM can effectively alleviate the problem of vanishing gradi‑
ent due to the RNN in successive multiplication [57], which provides the basis of the text
classification model. GRU with joint attention uses the attention mechanism to find out
the keywords in the text for Chinese text classification [58]. The convolutional neural net‑
work CNN [17] was initially proposed for image classification due to its convolutional
filter that extracts features from images. Based on CNN networks, an unbiased model of
convolutional neural networks TextCNN was proposed [18]. It can better determine the
distinguished phrases in themaximumpooling layer by one layer of convolution and learn
hyperparameters other thanwordvectors by keeping thewordvectors static, which has the
advantages of simple network structure, small number of parameters, low computational
effort and fast training [59]. Later, Transform [60] was successfully applied to the text se‑
quence modelling task. Algorithms combining BERT and neural networks have received
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more attention. Some scholars proposed BERT‑CNN for multi‑label text classification [61],
BERT‑DCNNmethod for sentiment analysis of new crown tweets [62], etc. Therefore, this
paper proposes a BERT‑based TextCNN method to construct a category mapping model
for GB/T 38565 andGPC, combining the advantages of both the BERTmodel and TextCNN
to improve the mapping performance.

3. Construction of a BERT‑TextCNN Category Mapping Model
3.1. Introduction of the BERT Pre‑Training Model

BERT [19] is a pre‑trained contextual language model characterized by its deep bi‑
directional encoded representations. It employs bi‑directional pre‑training to mitigate the
limitations associated with information leakage in the predictions of the Generative Pre‑
Training (GPT) model. Consequently, this study selects BERT for the conversion of text
into word vectors within the word embedding layer. The fundamental architecture of
BERT is illustrated in Figure 1, which comprises three primary components: the word vec‑
tor encoding layer, the multi‑head self‑attention mechanism, and the position‑wise fully
connected feed‑forward networks. The model streamlines the normalization layer that
follows the multi‑head self‑attention mechanism and the position‑wise fully connected
feed‑forward networks. The notation N on the left side denotes the number of stacked
Transformer encoder layers. The output of the word vector encoding layer of a given sen‑
tence S = {w1, w2, · · · , wn} is processed through N integrated layers of the multi‑head
self‑attention mechanism and the position‑wise fully connected feed‑forward network, re‑
sulting in a profound abstract representation O = {o1, o2, · · · , on} of each word within
the sentence.
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3.2. Text Convolutional Neural Networks
TextCNN [63], a variant of convolutional neural networks, employs a sliding window

approach with convolutional kernels of varying scales to sample text, thereby facilitating
the extraction of local features of diverse sizes and enabling the capture of different levels
of semantic information within the text [64]. Each convolutional kernel is characterized
by distinct sliding window dimensions and quantities, which allows the model to extract
features across multiple scales, a factor that is crucial for effective category mapping. Fur‑
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thermore, the convolutional kernels in TextCNN are designed to be shared across the en‑
tire input, which contributes to a reduction in the number of parameters, simplifies the
model’s complexity, and enhances its generalization capabilities. The TextCNN architec‑
ture demonstrates both high computational efficiency and a robust capacity to capture
semantic features at various scales and levels within textual data, rendering it particularly
suitable for the analysis of large‑scale and lengthy text datasets. The structural representa‑
tion of the TextCNN model is illustrated in Figure 2.
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3.3. A Category Mapping Model of BERT‑TextCNN
The architecture of the BERT‑TextCNN‑based model for classifying emergency sup‑

plies into standard categories is illustrated in Figure 3. The BERT model serves as an effec‑
tive approach for processing textual data, adeptly capturing the contextual relationships
within sentences. In contrast, the TextCNNmodel employsmultiple convolutional kernels
of varying sizes to extract critical information from sentences, akin to utilizing multiple
window‑sized n‑grams, thereby enhancing the ability to identify local relevance. Conse‑
quently, this study integrates both models to leverage comprehensive textual information
while effectively capturing local features. The detailed structure of the model can be delin‑
eated into six distinct components.

(1) To prepare the manually annotated corpus for processing, it is necessary to eliminate
punctuation and special symbols. Subsequently, the BERT layer converts the input
Chinese text into a format compatible with the pre‑trained ERNIE model by utilizing
the Tokenizer. This component is tasked with segmenting sentences into words or
subwords and assigning a distinct numerical identifier to each word or subword.

(2) The output generated by the Tokenizer serves as the input for the ERNIE model,
where it is processed by the multi‑layer TransformerEncoder inherent to the model.
Each layer comprises amulti‑head self‑attentionmechanismalongside a feed‑forward
neural network, facilitating the model’s ability to incrementally extract abstract fea‑
ture representations and attain a more profound comprehension of the text. Ulti‑
mately, the word sequences input into the model are transformed into a uniform‑
lengthmatrix ofword vectors, encapsulating both semantic andpositional information
about thewords. Theseprocesseddata are subsequently directed to theTextCNN layer.

(3) The TextCNN layer is designed to extract significant features from textual data. It
employs window widths of 2, 3, 5, and 1. The Rectified Linear Unit (ReLU) function
serves as the activation mechanism, while the parameter (padding = same) is imple‑
mented tomaintain consistent output vector dimensions despite the varyingwindow
sizes during the convolution process. This approach ensures that the four resultant
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outputs retain the same dimensions as the input, thereby facilitating subsequent op‑
erations. Additionally, the utilization of four distinct window widths allows for a
more comprehensive understanding of local features within the text.

(4) The output vectors generated by the TextCNN are subsequently processed through
a mean pooling layer, which is configured with a window size of 2 and a stride of 2.
This configuration effectively reduces the dimensionality of the final sentence vectors
by fifty percent while simultaneously preserving certain contextual relationships.

(5) Following the mean pooling operation within the fully connected layer, the outputs
from the TextCNN, which utilizes three different window sizes, are concatenated.

(6) The final layer of the model is a softmax layer dedicated to text classification predic‑
tions. This layer receives input from the fully connected layer and performs classifica‑
tion by evaluating the relative magnitudes of the values within the output dimension
vector, thereby facilitating the determination of category alignment.
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In the process of categorizing emergency supplies according to a classification stan‑
dard, the textual descriptions provided as input to the model undergo a series of transfor‑
mations. Initially, the text is processed through a word embedding layer, followed by a
convolutional layer, a pooling layer, and ultimately a fully connected layer, culminating in
the generation of categorymapping results. When the textual description about the classifi‑
cation of supplies is input into themappingmodel, it is segmented into token1_ids and seg‑
ment1_ids via the Tokenizer. These identifiers are subsequently fed into the BERT model,
which produces an embedded representation known as seq_output. This seq_output then
serves as the input for the TextCNN architecture. Through a sequence of operations in‑
volving convolution, activation functions, pooling, and fully connected layers, the model
generates an output from the output layer, which is ultimately converted into classifica‑
tion predictions for the two texts. The BERT‑TextCNN category mapping algorithm is
illustrated in Figure 4.
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3.4. Evaluation Indicators
This study employs accuracy, precision, recall, and F1‑Score as metrics for evaluation,

with the confusion matrix of the prediction outcomes presented in Table 3. In this context,
TP refers to instances where both the model’s predicted mapping and the actual mapping
are positive, TN indicates instances where both the model’s predicted mapping and the
actual mapping are negative, FP signifies instances where the actual mapping is negative
while the model predicts it as positive, and FN represents instances where the actual map‑
ping is positive but the model predicts it as negative.

Table 3. Confusion matrix.

Actual Result
Predicted Results

Predicted Positive Predicted Negative

Actual Positive TP FN
Actual Negative FP TN

(1) Accuracy is the ratio of correct model predictions to total forecasted data, and the
formula is as follows:

Accuracy =
TP+ TN

TP+ TN+ FN+ FP
(1)

(2) Precision is the proportion of data predicted positively and properly by the model
out of all data projected positively, and the formula is as follows:

Precision =
TP

TP+ FP
(2)
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(3) Recall indicates the ratio of data identified as positive by the model to the total actual
positive data, and the formula is as follows:

Recall =
TP

TP+ FN
(3)

(4) The F1‑Score is an equally weighted reconciling average of precision and recall, with
the following formula:

F1 − Score =
2

1
precision + 1

recall
= 2 × precision× recall

precision+ recall
(4)

3.5. Cross‑Entropy Loss Function
During the training of the model, cross‑entropy loss [65] is employed to optimize fea‑

tures within cosine space by creating hyperplanes that delineate distinct classes of features
across various subspaces. This loss function quantifies the divergence between themodel’s
predicted probability distribution and the actual labels. Given that the GB/T 38565 training
set utilized in this study comprises three categories, the selection of the cross‑entropy loss
function is particularly appropriate for addressing classification problems involving C cat‑
egories. Furthermore, the parameter weights are designated as a one‑dimensional tensor,
with specific weights assigned to each category, thereby enhancing the effectiveness of the
model in scenarios characterized by unbalanced training sets.

Lc = −∑N
i=1 qiloge

eWT
i f

∑N
k=1 eWT

k f

{
qi = 0, y ̸= i
qi = 1, y = i

, (5)

whereN represents the total number of categories present in the training dataset, y denotes
the true label, andW signifies the weight vector associated with the fully connected layer
for category i.

4. Experimental Methods
4.1. Manual Labeling of the Corpus

Previous studies have primarily conducted experimental evaluations on select cat‑
egories from two taxonomies, resulting in a relatively homogeneous corpus that limits
the comprehensive assessment of the model’s generalization capabilities. The GB/T 38565
taxonomy comprises three categories totaling 739 items, while the GPC taxonomy encom‑
passes 44 categories with a total of 5250 items, each representing distinct domains, as il‑
lustrated in Figure 4. To develop a mapping corpus with comprehensive coverage, this
study utilizes the categories from the GB/T 38565 taxonomy as a reference point. Three ex‑
perts were engaged to manually annotate the mappings between the GB/T 38565 and GPC
categories. Subsequently, a single expert undertook the task of uniformly correcting and
validating the annotated corpus, which includes both one‑to‑one and one‑to‑many map‑
ping relationships. Ultimately, a total of 798 fully mapped category pairs, encompassing
200 categories from the GB/T 38565 taxonomy, were established for model testing.

Figure 5a presents the statistical distribution of categories within the three classifica‑
tions of GB/T 38565. There are significant disparities in the number of categories across the
various classifications of GB/T 38565. Employing a straightforward hierarchical sampling
approach to extract categories for manual mapping within these three classifications may
result in an uneven distribution of sampled categories. To maintain the distinctions in the
number of categories among each classification and to enhance the model’s generalization
capabilitieswhen utilized as a training set, this study adopts themethod of randompolyno‑
mial sampling from diverse languages as implemented in the cross‑language pre‑training
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model XLM [66]. The polynomial sampling formula utilized for determining the number
of categories sampled from the three classifications of GB/T 38565 is as follows:

qi =
pα

i

∑M
j=1 pα

j
, pi =

ni

∑M
k=1 nk

, (6)

where the parameter α serves to regulate the sampling ratio, with the reference value for
XLM set at α = 0.5,M denotes the total number of categories within the GB/T 38565 frame‑
work, ni represents the number of categories encompassed in the i‑th GB/T 38565 category,
pi indicates the proportion of categories included in the i‑th GB/T 38565 category, and qi
reflects the proportion of the sampling for the i‑th GB/T 38565 category.
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The final count of categories derived from the application of the polynomial sampling
method for each GB/T 38565 category is presented in Table 4. It is evident that employ‑
ing simple stratified sampling results in a highly disproportionate distribution of samples
across the GB/T 38565 categories, which is detrimental to the effective training of subse‑
quent models. This issue of imbalance can be mitigated through the implementation of
polynomial post‑sampling techniques.

Table 4. Number of samples for each category of GB/T 38565.

Sampling Methods
1,000,000: Basic
Life‑Support
Supplies

2,000,000: Emergency
Equipment and Supporting

Supplies

3,000,000: Engineering
Materials and Machining

Equipment
Totals

Simple stratified
sampling 34 157 9 200

Polynomial sampling 55 118 27 200

As illustrated in Table 2, both GB/T 38565 and GPC exhibit a rigorous hierarchical
framework. The hierarchical structure of GB/T 38565 encompasses categories classified
as Large, Medium, Small, and Fine, whereas the GPC structure is organized into Seg‑
ment, Family, Class, and Brick. In the present study, a mapping corpus has been estab‑
lished between the large and fine categories of GB/T 38565, utilizing a polynomial sampling
method for manual labeling from the large categories to the fine categories. Additionally,
a mapping corpus has been constructed between the broad categories and subcategories of
GB/T 38565, with selectionsmade randomly from the broad categories andmanually anno‑
tated to the subcategories. The classification levels of GPCs are also determined through
manual annotation. The subsequent section provides a comprehensive description of the
data composition of themanually annotated corpus. For instance, to ascertain theGPC clas‑
sification code corresponding to the GB/T 38565 classification code “1100401”, an expert
identifies theGPC classification code “10000232”within theGPCmapping target, based on
theGPC category name associatedwith theGB/T 38565 classification name. Following this,
the expert performs data cleaning by consolidating all category names from the preceding
levels corresponding to the GB/T 38565 code “1100401” into a single sentence, separated by
semicolons, and applies the same procedure for the GPC code “10000232”. Ultimately, the
class description texts for both GB/T 38565 and GPC are generated, resulting in a mutually
mapping corpus. It is noteworthy that the manually annotated corpus encompasses both
one‑to‑one and one‑to‑many mapping relationships, as detailed in Table 5.

Table 5. Examples of text labeling for GB/T 38565 and GPC category descriptions.

GB/T Code GB/T Category Text GPC Code GPC Category Text

1,100,401

Basic life support supplies; Processed
foods; Beverages; Drinking water
(including natural, purified, and
mineral water for drinking)

10,000,232 Food/Beverage; Beverages; Non‑Alcoholic
Beverages‑Ready to Drink; Packaged Water

1,130,201
Basic life support supplies; Daily

necessities; Household refrigeration
appliances; Refrigerators (cabinets)

10,003,698 Home Appliances; Major Domestic Appliances;
Refrigerating/Freezing Appliances; Freezers

10,003,694 Home Appliances; Major Domestic Appliances;
Refrigerating/Freezing Appliances; Refrigerators

10,003,695
Home Appliances; Major Domestic Appliances;

Refrigerating/Freezing Appliances;
Refrigerator/Freezers
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Table 5. Cont.

GB/T Code GB/T Category Text GPC Code GPC Category Text

2,090,300

Emergency equipment and
supporting supplies; Logistical
support equipment Fuel storage

equipment; Including coal, oil, and
gas fuel storage equipment

10,005,306
Fluids/Fuels/Gases; Fluids/Fuel Storage/Transfer;

Fluids/Fuel Storage; Fluids/Liquid Fuel
Bottles/Containers (Empty)

10,005,258
Fluids/Fuels/Gases; Fluids/Fuel Storage/Transfer;

Fluids/Fuel Storage; Pressurized Gas Fuel
Bottles/Canisters (Empty)

3,010,300
Engineering materials and

machining equipment; engineering
materials; asphalt

10,003,898 Building Products; Building Products;
Asphalt/Concrete/Masonry; Asphalt/Concrete Patching

4.2. Building the Datasets
Utilizing a manually annotated corpus comprising 798 entries, a dictionary known as

GBT2GPC has been developed to document the associations between each GBT category
and its initial occurrence within the GPC list. The next step involves iterating through this
dictionary to generate positive samples for each key–value pair, assigning a label of (1) to
these positive samples. To ensure a balanced dataset, four randomly selected negative
samples—specifically, GPC Category Texts that do not correspond to the same category—
are produced for each positive sample, with these negative samples being labeled as (0).
Subsequently, the entire dataset is randomized and partitioned into training and testing
sets at a ratio of 9:1, facilitating the subsequent training and evaluation of the model, as
illustrated in Figure 6.
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4.3. Experimental Setup
In the course of the experiment, the configuration of parameters is crucial to the ef‑

ficacy of the final training model. The model is designed to accommodate a maximum
sentence length of 256 characters; any annotated text exceeding this limit is truncated,
while text shorter than 256 characters is padded with zeros. The training of the BERT‑
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based ERNIE [56] framework is fine‑tuned utilizing a substantial Chinese corpus, includ‑
ing resources such as Baidu Encyclopedia and Baidu Literature Library. This framework
comprises a 12‑layer Transformer encoder, 12 multi‑head self‑attention mechanisms, and
768 hidden units. Following the hyperparameter recommendations outlined in the BERT
literature [67], the following parameters were established: 20 epochs, a learning rate of
2 × 10−5, and a batch size of 16.

Given the brevity of the category target annotation corpus, smaller convolutional ker‑
nels were employed within the TextCNN layer. After identifying the optimal single con‑
volutional kernel, further exploration of adjacent values revealed that a combination of
kernels yielded superior results compared to the singular best kernel. Consequently, the
selected combination of convolutional kernels is (2, 3, 5, 1). The ReLU activation function is
utilized, with the Adam optimizer employed for optimization. The mean pooling strategy
demonstrated enhanced performance, and a dropout mechanismwith a rate of 0.1 was im‑
plemented tomitigate overfitting. To facilitate comparative analysis ofmodel performance
on the dataset, all other neural networkmodels were configuredwith identical parameters
to those of TextCNN. The experimental environment is detailed in Table 6.

Table 6. Experimental environment.

Development Environment Parameter

CPU Intel(R) Core(TM) i7‑10510U CPU@ 1.80 GHz 2.30 GHz
Graphics card NVIDIA GeForce MX350

Operating system Win11X64
RAM 16 GB

Programming Tools Pycharm
Programming language Python3.9.7
Development Framework Tensorflow + keras

5. Results and Analysis
5.1. Results

Table 7 presents the accuracy, precision, recall, and F1 scores for the GB/T 38565 and
GPC category mapping across various models. Notably, the BERT‑TextCNN approach
introduced in this study achieves the highest accuracy at 98.22%, significantly surpass‑
ing other deep learning models optimized on the training dataset, including BERT‑DSSM,
BERT‑S2Net, BERT‑RNN,BETR‑CNN,BERT‑BiLSTM, andBERT‑BiLSTM‑CNN.This find‑
ing suggests that the BERT and TextCNN‑based methodology proposed herein substan‑
tially enhances the accuracy of GB/T 38565 and GPC category mapping. Furthermore, the
BERT‑TextCNNmodel achieved the highest F1 score of 97.14%, indicating that the predic‑
tions were the most accurate among all models, as well as the strongest identification of
positive samples. Lastly, the accuracy of all seven models evaluated in this study exceeds
90%, which indirectly reflects the high quality of the manually annotated corpus and the
significant improvement in the performance of the models trained on this dataset.

Table 7. Results of category mapping for different models in percentages.

Model Accuracy Precision Recall F1

BERT‑S2Net 92.88 87.64 89.66 88.64
BERT‑DSSM 94.66 97.37 85.06 90.80
BERT‑RNN 97.51 93.48 98.85 96.09
BERT‑CNN 97.51 93.48 98.85 96.09

BERT‑BiLSTM 97.86 93.55 100.00 96.67
BERT‑BiLSTM‑CNN 97.51 94.44 97.70 96.05
BERT‑TextCNN 98.22 96.59 97.71 97.14

The performance comparison between BERT‑S2Net and BERT‑DSSM, both of which
employ a two‑tower language model architecture, reveals only a marginal difference of
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0.36 percentage points. This minimal variance may be attributed to the incorporation of
two deep neural network (DNN) structures (f1, f2) within both models, which possess
nearly identical parameters, thereby yielding comparable performance outcomes. In the
analysis of BERT‑RNN and BERT‑CNN models, the results demonstrate a notable consis‑
tency, likely due to their reliance on shared textual features derived from the pre‑training
of the foundational BERT model. This configuration enables the RNN to capture global
information from text sequences, while the CNN is oriented toward local information, re‑
sulting in aligned mapping results.

When examining the performance of BERT‑RNN, BERT‑BiLSTM, and BERT‑BiLSTM‑
CNN, BERT‑BiLSTM achieves an accuracy of 97.86% with the highest recall of 100%. This
notable performance can be attributed to the BiLSTM’s capacity to establish a more ef‑
fective contextual relationship by processing information in both forward and backward
directions, thereby enhancing its understanding of the deep semantics of the text. How‑
ever, the introduction of a CNN layer on top of the BiLSTM may complicate the model,
potentially leading to overfitting or increased training difficulty, which could elucidate
why BERT‑BiLSTM‑CNN does not perform as well as BERT‑BiLSTM. Furthermore, the
evaluation metrics for the BERT‑TextCNN model exceed those of the BERT‑CNN model,
likely due to the superior capability of CNNs in handling image features, while TextCNN
is more proficient in efficiently capturing the textual features extracted by BERT, resulting
in all its evaluation metrics surpassing 95%.

5.2. Analysis
Figure 7 illustrates the variations in accuracy, precision, recall, and F1 score for the

BERT‑TextCNN model presented in this study, as evaluated on both the training and test
datasets. The red dashed curve represents the training set, while the green solid curve de‑
notes the testing set. The results indicate that the model achieves an accuracy exceeding
95% on the training set following the training process. After 20 epochs, the training accu‑
racy reached 99.80%, with a corresponding testing accuracy of 98.22%. Throughout the
training process, the model’s accuracy exhibited minor fluctuations within a narrow range
of values after each training stage. Notably, the performance metrics for the test and train‑
ing sets are closely aligned, with a maximum difference of no more than 2%. This observa‑
tion suggests that themodel possesses robust generalization capabilities and demonstrates
a strong capacity to adapt to new data.
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To further elucidate the performance of themodels, we conducted a comparative anal‑
ysis of the training outcomes across various models. Figure 8 illustrates the accuracy, pre‑
cision, recall, and F1 scores associated with different models engaged in categorymapping
on the testing dataset. The findings indicate that as the number of epochs increases, the
performance metrics for the seven models generally improve, suggesting that all models
are capable of learning and adapting to the dataset’s features throughout the training pro‑
cess. Notably, the models BERT‑RNN, BERT‑LSTM, BERT‑CNN, BERT‑LSTMCNN, and
BERT‑TextCNN exhibit exceptionally high performance from the outset, with all metrics
surpassing 90%. In contrast, while the BERT‑DSSM and BERT‑S2Net models gradually
approach the highest accuracy, their performance remains significantly inferior to that of
the other models, indicating a need for enhancement in their ability to capture and learn
from the dataset features. Furthermore, the performance metrics for all models tend to sta‑
bilize at higher epochs, particularly for the BERT‑TextCNN model, which demonstrates
robust adaptability and learning capacity regarding the dataset features. Concurrently, all
models exhibit indications of overfittingwith an increasing number of epochs, particularly
after 15 epochs, suggesting that the optimal number of epochs is influenced by both the
dataset size and the model complexity.
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In Table 3, the terms True Positive (TP) and True Negative (TN) represent the number
of samples accurately classified by the classifier, and thus, the sum of TP and TN reflects
the total number of correctly classified samples. Analyzing the confusionmatrix presented
in Figure 9, it is evident that the BERT‑TextCNN model achieves the highest number of
correct predictions, totaling 276 (comprising 191 TP and 85 TN) out of 281 test samples,
thereby establishing it as the model with the superior performance and highest accuracy.
Although the BERT‑BiLSTMmodel reports zero false negatives, it exhibits a false positive
rate of 2.14%, which is the highest among the evaluated models. In contrast, when consid‑
ering both false positive and false negative rates, BERT‑TextCNN demonstrates the lowest
combined rate of 1.78% (0.71% false positives and 1.07% false negatives). This further sub‑
stantiates that BERT‑TextCNN not only attains the highest accuracy but also maintains a
minimal incidence of false positive and false negative classifications, thereby minimizing
the potential for erroneous mappings.
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Figure 10 illustrates the variation in the loss function across various models through‑
out the training process on the dataset. The findings indicate that the loss values for all
models exhibit a consistent decline as the number of epochs increases, suggesting that the
models are capable of effectively learning the features of the category description text dur‑
ing training and are continuously enhancing their mapping performance. Notably, the
BERT‑TextCNN model demonstrates the lowest loss value within the dataset, signifying
its superior generalization capability and stability, as well as its enhanced ability to extract
both local and global features of the text through model fusion.
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6. Conclusions and Discussion
6.1. Conclusions

Recent advancements in the research and implementation of collaborative government–
enterprise reserve supplies have largely overlooked the establishment of standardized clas‑
sification systems for emergency supplies. The absence of consistency in the classification
standards utilized by both governmental bodies and enterprises hampers the efficiency of
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supply responses during coordinated relief operations, potentially resulting in significant
adverse outcomes.

This study integrates the strengths of the BERT model, which excels in semantic ab‑
straction, and the TextCNN model, known for its differential representation capabilities.
The proposed approach, termed BERT‑TextCNN, is applied to the task of mapping cate‑
gories between emergency supplies taxonomy and general‑purpose supplies taxonomy, fa‑
cilitating the automatic alignment of these two classifications. Training, learning, and test‑
ing experiments are conducted using a high‑quality, manually annotated corpus. When
compared to six other models, including BERT‑RNN and BERT‑CNN, the BERT‑TextCNN
model demonstrates superior prediction accuracy and exhibits the highest level of stabil‑
ity among the models evaluated. The experimental findings indicate that: (1) the hybrid
model introduced in this study effectively integrates the strengths of BERT and TextCNN,
successfully capturing local correlations while preserving comprehensive textual infor‑
mation with notable accuracy and stability. (2) In comparison to the suboptimal BERT‑
BiLSTMmodel, the target model BERT‑TextCNN demonstrates enhancements in the eval‑
uation metrics of accuracy, recall, and F1 by 0.36%, 2.3%, and 0.61%, respectively, thereby
proficiently accomplishing the task of categorymapping by the supplies classification stan‑
dard. (3) Each component of the target model is essential; the fine‑tuned ERNIE (an en‑
hanced pre‑training model based on BERT) is particularly well‑suited for the semantic
representation of the emergency supplies classification standard data, thereby enhancing
text comprehension. Additionally, the TextCNN module adeptly extracts significant fea‑
ture information from the text and accurately identifies keywords, resulting in relatively
precise category mapping.

6.2. Theoretical Significance
This study contributes to the field of supply chain management for emergency sup‑

plies by developing a novel methodology aimed at optimizing both performance and sta‑
bility. The approach is grounded in established emergency supplies classification standards
and an automatedmapping knowledge base. Ourmethod comprises threemain components:
(1) Dataset Pre‑processing: Weperformedpre‑processing on categorydescriptiondatasets

aligned with two supply classification standards: the GB/T 38565 dataset, which in‑
cludes three classes and739 categories, and theGPCdataset, which consists of 44 classes
and 5250 categories. Through random polynomial sampling, we manually labeled
200 categories from the GB/T 38565 dataset, creating a category mapping pair dataset
with 798 pairs.

(2) Semantic Representation Generation: We developed and fine‑tuned a BERT‑based
word embedding model using the category mapping pair dataset to generate global
semantic representations. These word vectors were then integrated into a TextCNN
framework, which analyzes the semantic representations and extracts locally signifi‑
cant features. Our approach involves a comprehensive comparative analysis to eval‑
uate the accuracy of each model’s category mapping.

(3) Model Evaluation and Selection: We retained the highest‑performingBERT‑TextCNN
model for further computations involving the inference dataset. This model enables
the derivation of mappings between all categories from the GB/T 38565 dataset and
the GPC categories.

6.3. Practical Significance
The practical implications of the proposed methodology are significant for address‑

ing inefficiencies in emergency supplymanagement. The BERT‑TextCNNmappingmodel
developed in this study offers a robust solution for both governmental and private entities,
enabling the automated assessment of correspondence between two supply classification
standards. This model can be seamlessly integrated into software applications to facilitate
automated mapping between the GPC and GB/T 38565 standards.
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From an application perspective, the model demonstrating optimal performance dur‑
ing experimental trials can be utilized to infer mappings for new datasets, thus aiding in
the determination of relationships between novel supply classification standards. Addi‑
tionally, due to the normative and stable nature of classification standards, the mapping
results produced by this methodology are expected to remain valid over extended periods,
pending any updates to the classification standards.

Furthermore, the code, model, and manually annotated corpus used in this research
are made available for free use by other researchers 1, promoting further exploration and
application of the methodology.

6.4. Limitations
The research process is characterized by several significant limitations. Firstly, the

labeling of datasets presents considerable challenges, particularly in terms of selecting the
appropriate quantity and diversity of datasets. An increase in the number of datasets and
the breadth of categories necessitates a greater investment of time, while a limited dataset
may undermine the effectiveness of model training. This study seeks to mitigate these
challenges by employing existing methodologies to optimize dataset selection based on
overall volume.

Secondly, the quality of the dataset has a direct influence on the efficacy of model
learning, which is heavily dependent on the expertise of the individuals conducting the
labeling. Consequently, the accuracy and reliability of the model are contingent upon the
skill level of the personnel involved in this process.

Lastly, the proposed model encounters limitations in terms of interpretability. While
it is proficient in making predictions, it lacks the capability for inference. This limitation
arises from the need to compare each category in the GB/T 38565 classification standard
with all categories in the GPC, which could involve over 3.8 million calculations. Such
extensive computational requirements place significant demands on the experimental en‑
vironment. In light of these constraints, this study primarily assesses the feasibility of the
experimental methodology and the performance of the model, concluding that the pro‑
posed method is practical and capable of addressing real‑world challenges.

6.5. Future Work
Future research should focus on several critical areas to further the advancement of

the field. First, it is essential to enhance the processes involved in manual dataset label‑
ing. This entails refining methodologies to optimize both the quantity and quality of data,
which is vital for improving model performance. Subsequent studies could explore auto‑
mated or semi‑automated labeling techniques to address the limitations inherent in man‑
ual processes, thereby reducing the time and resources required.

Second, within the realm of semantic refinement, there is a pressing need to investi‑
gatemore sophisticatedmodels for semantic comprehension and feature extraction. The in‑
tegration of advanced text enhancement strategies and cutting‑edge feature learning tech‑
niques could substantially enhance the accuracy and interpretability of semantic analyses.
Assessing these enhancements through metrics such as ROC‑AUC curves will ensure the
validity of classifications and contribute to the robustness of the models.

Finally, the utilization of existing text similarity corpora, coupled with the integra‑
tion of deep learning models via transfer learning, represents a promising direction for
future inquiry. Adapting the proposed model to other classification tasks, particularly
those related to supply standard categories, could mitigate the challenges associated with
the labor‑intensive nature of manual labeling. This strategy has the potential to improve
the efficiency and scalability of category‑matching systems, thereby addressing current
limitations and broadening the applicability of the model across diverse contexts.
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