
Citation: Akundi, A.; Ontiveros, J.;

Luna, S. Text-to-Model Transformation:

Natural Language- Based Model

Generation Framework. Systems 2024,

12, 369. https://doi.org/10.3390/

systems12090369

Received: 12 June 2024

Revised: 3 September 2024

Accepted: 6 September 2024

Published: 14 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Text-to-Model Transformation: Natural Language-Based Model
Generation Framework
Aditya Akundi 1,* , Joshua Ontiveros 2 and Sergio Luna 3

1 Industrial and Manufacturing Engineering Department, College of Engineering and Applied Sciences,
University of Wisconsin Milwaukee, Milwaukee, WI 53211, USA

2 College of Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
joshua.ontiveros01@utrgv.edu

3 Industrial, Manufacturing and Systems Engineering Department, College of Engineering, University of Texas
El Paso, El Paso, TX 79936, USA; salunafong@utep.edu

* Correspondence: akundivy@uwm.edu

Abstract: System modeling language (SysML) diagrams generated manually by system modelers
can sometimes be prone to errors, which are time-consuming and introduce subjectivity. Natural
language processing (NLP) techniques and tools to create SysML diagrams can aid in improving
software and systems design processes. Though NLP effectively extracts and analyzes raw text
data, such as text-based requirement documents, to assist in design specification, natural language,
inherent complexity, and variability pose challenges in accurately interpreting the data. In this paper,
we explore the integration of NLP with SysML to automate the generation of system models from
input textual requirements. We propose a model generation framework leveraging Python and
the spaCy NLP library to process text input and generate class/block definition diagrams using
PlantUML for visual representation. The intent of this framework is to aid in reducing the manual
effort in creating SysML v1.6 diagrams—class/block definition diagrams in this case. We evaluate the
effectiveness of the framework using precision and recall measures. The contribution of this paper to
the systems modeling domain is two-fold. First, a review and analysis of natural language processing
techniques for the automated generation of SysML diagrams are provided. Second, a framework to
automatically extract textual relationships tailored for generating a class diagram/block diagram
that contains the classes/blocks, their relationships, methods, and attributes is presented.

Keywords: MBSE; machine learning; SysML; class diagram; block definition; systems architecture;
system model; systems design

1. Introduction

Natural language processing (NLP) assists in extracting and analyzing text data
gathered from documents to help specify assembling, classifying, and recording require-
ments. Although NLP has many advantages in machine learning and software requirement
specification, it can be highly ambiguous and complex when analyzing and extracting
requirements from a text. Various tools help reduce errors and issues when extracting infor-
mation from text documents. These techniques enable the development of algorithms for
machines to process and understand human language, which benefits information retrieval,
translation, data analysis, and extraction using NLP techniques. Significant advancements
in NLP have been made in areas such as word segmentation, part-of-speech tagging, and
syntactic analysis [1].

Unified modeling language (UML) and system modeling language (SysML) are visual
modeling languages used to design, specify, and document system artifacts. UML is widely
used to create models of software systems. In contrast, SysML v1.6, an extension of UML, is
used for systems engineering applications to support the specification, requirements, anal-
ysis, design verification, and validation of systems and systems of systems [2]. It is critical

Systems 2024, 12, 369. https://doi.org/10.3390/systems12090369 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems12090369
https://doi.org/10.3390/systems12090369
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0002-9545-7753
https://orcid.org/0000-0003-3058-410X
https://doi.org/10.3390/systems12090369
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems12090369?type=check_update&version=2


Systems 2024, 12, 369 2 of 21

to identify that SysML v1.6 and UML are similar but do not share an identical graphical
modeling language, each having unique implementation and modeling requirements.

Typically, systems engineers manually synthesize engineering documentation, such
as requirement documents, to generate system architectures for a streamlined systems
development process, widely considered robust. However, the manual process of develop-
ing SysMLv1.6 diagrams can vary in consistency, leading to various interpretations and
representations by a systems modeler. Furthermore, creating a model, such as identifying
elements and choosing how they are connected using SysML, also highly depends on a
modeler’s experience.

Integrating natural language processing (NLP) with SysML can enhance engineering
systems’ design experience. A few attempts include aspects of NLP for requirements’
elicitation, tracing, and classification, with a substantial need to preprocess and structure
input data [3]. Three approaches to implementing NLP in creating system models are
explored, namely rule-based, machine learning-based, and hybrid [4,5]. A rule-based
approach implies a set of predefined rules that analyze and transform information from
text-based requirements to create a system model. The machine learning approach involves
training a model on large datasets of natural language text using algorithms to recognize
elements and generate diagram components from a structured text representation [6,7].
A hybrid approach combines rule-based and machine learning techniques; it can use a
rule-based approach to identify relationships and entities from NL text and use a machine
learning model to generate a diagram. The integration of these approaches needs careful
attention, considering the risk of automation bias. Several attempts have been observed to
introduce automated processes aiming to standardize and expedite the creation of archi-
tectural diagrams from text-based requirements. However, it is essential to acknowledge
the potential for automation bias in such scenarios. This paper proposes a text-to-model
transformation (T2M) framework that allows a modeler to be flexible in mitigating these
errors where selecting elements from an input text is subjective to the modeler’s experience.
The proposed framework does not create new knowledge but transforms information
from one form to another. The framework accommodates a range of input texts, from
formal statements of stakeholder needs or requirements to potentially less structured, free
descriptions of the intended system.

Please note that from here onward, the term SysML in this paper refers to SysMLv1.6.
Further, A class diagram in UML and a block definition diagram in SysML similarly
represent a system’s structural aspects. A class is a primary block representing a system’s
attributes (properties) and operations (methods). At the same time, a block is a core
element in a block definition diagram representing properties (attributes) and operations
(methods). Considering their notation, both utilize rectangles to define the system elements.
Names, attributes, and operations are categorized within these rectangles, with lines and
arrows depicting relationships. Though UML class diagrams and SysML block definition
diagrams are defined in different contexts, their foundation stems from their similarities,
considering SysML is an extension of the system engineering domain from UML. The
text-to-model framework applied to the case studies illustrated in this paper—generates
a class diagram. The similarities between the UML Class Diagram and the SysML block
definition diagram led to the assumption of the framework’s applicability to generate the
SysML block definition diagram.

This paper first briefly reviews (Section 2) the NLP techniques using rule-based,
machine learning-based, and hybrid approaches in generating baseline models that could
act as a starting point for a system design. Subsequently, Section 3 introduces a rule-
based text-to-model transformation framework to create a class/block definition diagram
from text-based input, followed by case studies used to implement the framework and
a discussion of the metrics for measuring the approach’s effectiveness in Section 4. The
challenges, roadblocks, and the path forward are discussed in the concluding sections.



Systems 2024, 12, 369 3 of 21

2. A Review of NLP-Based Systems Model Generation
2.1. Rule-Based Approach

The rule-based approach generates system diagrams based on rules that define how
architectural elements should be represented and formed into diagrams. It helps to structure
and generate diagrams consistently and avoid misunderstandings, which creates accurate
diagrams and saves time manually generating them.

Rule-based NL processing techniques using spell checking, segmentation, tokenization,
chunking, and POS tagging to extract required information from text have been used to
identify the elements of a use case diagram, such as actors (identifying subjects and
pronouns of a text), relationships, and use cases (identifying verbs in text) [8]. A similar
approach involves using a text-to-model framework to improve productivity while creating
SysML models. The process includes techniques such as pre-NLP text cleaning, structural
analysis, and named-entity recognition (NER) to identify actors and their responsible
actions for a set of machine-readable natural language-based policy documents. NER
refers to labeling words of a text with their grammatical category, such as nouns, verbs,
etc. This aids in ensuring all the sets of actions required are first captured using NLP and
then translated and compiled into a proper SysML model [9]. Another approach to assist
in developing system models is to use a set of heuristic rules based on the frequency of
unique verbs and actions in a text to help in identifying objects, attributes, relationships,
and actors for developing a use case diagram [10,11]. Chen and Zheng used the semantic
representation of text through an intermediate graphic language called the recursive object
model (ROMA) to generate use case and class diagrams [12]. This approach depends on
the capability of the intermediate ROMA system used, which is typically used to capture
the semantics of the natural language used.

Meziane et al. developed a set of rules for attributes, class, and relationship naming
conventions using 45 class diagrams taken from academic textbooks for a syntactic analysis
based on the frequency of how often the textbook used a specific rule in identifying classes
and relationships. The association identified in most cases is reported to be composed of
a single verb in the third person singular or a verb followed by a preposition. The rules
developed aimed to understand and disambiguate the names given to classes, relationships,
attributes, and operations in a UML class diagram [13]. Arumugam and Uma used a similar
rule-based approach, where a given text input was split into sentences for tagging and
marking the parts of speech of each word. The text input was simplified into constructs
by using a normalizer for the ease of mapping words to object-oriented constituents [14].
Biase et al. proposed a high-level model through a semi-automatic approach containing
rules that improved the initial models by creating transitions and annotating them with
triggers, conditions, and actions. This enabled fragments of SysML state machine diagrams
to be generated from a set of text requirements [15]. For illustrative purposes, we provide
an excerpt of a rule-based technique identified by Salih and Sahraoui for generating class
diagrams [16] in Table 1. We represent a set of rules, each separated by a semicolon, that
helps identify components of a class diagram from a natural language text document.

2.2. Machine Learning-Based Approach

The machine learning approach trains a model to study relationships and patterns
between NL text and architectural elements. It automates the process of translating a
NL text of requirements that helps generate SysML diagrams, which can sometimes be
a tedious task to do manually. Using machine learning helps reduce time and errors
in creating diagrams. Machine learning algorithms can study the extent of meaningful
understanding in categorizing and identifying patterns to generate diagrams, depending
on the data analyzed. Limited articles exist on machine learning in developing automated
system architectures using NLP.

Narawita and Vidanage developed a web-based UML generator that extracted use
cases and identified actors and attributes using a combination of NLP preprocessing
techniques and Extensible Markup Language (XML) rules to generate class diagrams. Once



Systems 2024, 12, 369 4 of 21

identified, a Weka module helped rate the use cases and extract associations [7]. The Weka
module is a popular Java-based machine learning library that provides users with access
to visualization tools and algorithms for data analysis and modeling [17]. Kochbati et al.
proposed a machine learning model in which pre-processed text was transformed into
numerical vectors to compute semantic similarity among the words in a text input and
identify clusters to generate use case models [18].

Table 1. A rule-based technique to generate class diagrams.

Components of a Class Diagram Classification Rules

Classes
NN + NNP + VBP; NN + NNP; NNP + NN + VBZ; NN +

VBZ, base form + NN; NNP + NNS, NNP + NN, NNS, NNP
+ NNS; NNP, NNP + VBZ past tense

Methods

NN + NN + NNP; NNP + NNP + NN + NN; non-3rd person
singular present VBP + NN; third person singular present
VBZ + NN + NN; non-third person singular present VBP +

CC + NN + any words; IN + JJ + NN

Attributes JJ + NN

Relationships VBP + NN; VBP + NNP; VBP + VBG
Note: singular noun (NN), plural noun (NNP), verb (VBP), plural noun (NNS), cardinal number (CC), preposition
(IN), adjective (JJ), verb third person singular present (VBZ), verb present participle (VBG).

Chami et al. proposed a text-to-model framework that labeled the uploaded raw text
data to identify the actors, use cases, blocks, and associations. Approximately 100 sentences
were labeled and fed into an open-source library for advanced NLP to train and customize
a machine learning model. This framework was applied to identify actors textually, use
cases, and associations from a text input [19]. Qie et al. proposed a deep learning technique
that first extracted semantic relationships from input texts to identify relationships such as
composition, aggregation, and generalization for developing a block definition diagram.
The semantic analysis involved entity recognition and entity relation extraction that gath-
ered domain-specific words and used word embedding to implement a deep convolutional
neural network (CNN). Once the relationships were identified, an API in Rhapsody was
used to create models dynamically [1]. The proposed techniques highlight the potential
of ML models to streamline and aid the automatic translation of natural language text to
system models and primarily, use case diagrams.

2.3. Hybrid Approach

The hybrid approach combines rule-based and machine learning approaches to help
generate UML diagrams from textual requirements and model training. It can be used in
parts to process textual data and locate patterns to create diagrams, combining the strengths
of manual and automated approaches. Generating diagrams with this approach can benefit
the overall design quality; it can accommodate using both automatic and manual methods
to resolve complex problems that are impractical to solve with one method. Hybrid
approaches use NL processing techniques such as tokenizing, POS tagging, sentence
splitting, word chunking, and other tasks to extract text information, eventually identifying
components such as elements, actors, and relationships to make up SysML diagrams.
Machine learning algorithms are trained to identify relationships between the processing
data and categorize applicable components of SysML diagrams. The combination of both
rule-based and machine learning approaches allows for a more robust and accurate system.

Narawita and Vidanage saved time and increased the precision in generating use
case and class diagrams using machine learning and NLP techniques. A text input of
requirements was first analyzed using an NLP module for tokenizing and POS tagging to
classify potential actors and classes using POS tag value nouns. An XML rule removed
unwanted words from a list of nouns, followed by word chunking to find verbs, nouns to
represent actions, and two consecutive nouns where the second noun was a number to de-



Systems 2024, 12, 369 5 of 21

fine attributes in a use case diagram. A Weka machine learning model evaluated and rated
the actions and relationships to determine their validity [7]. Riesener and Dölle proposed
a structured model-based system engineering (MBSE) requirement table for processing
unstructured text using the spaCy NLP module. The text was tokenized and POS is tagged
to group noun phrases to identify subjects and objects within a sentence by co-referencing
pronouns to nouns. NER identified entities added to the requirement table for training
machine learning models to detect requirement properties based on context [20]. Zhong
et al. proposed removing relationships and critical phrases from raw text input to identify
blocks and relationships based on documents such as specifications, manuals, technical
reports, and maintenance reports to generate SysML diagrams, specifically structure and
requirement diagrams. The steps involved the manual selection of corpus text documents,
extracting key nouns, extracting relationships, generating a list of phrases and relations,
generating SysML model elements, and the manual iterative selecting of the profiles and
blocks to be plotted [4,21].

2.4. Challenges

Natural language is inherently complex, and developing a set of rules to aid in the
automation of generating a system architecture would require rules that address language
variability among different actors of a team while generating text-based requirements.

This demands the use of contexts and synonyms when considering the development
of a set of rules. However, from a domain-specific outlook, as one develops a set of rules,
the number of rules to be created can increase exponentially, and maintaining consistency
and scale will become increasingly difficult. We also acknowledge that rules, once defined,
are rigid, meaning that with changes in technology and terms used across domains, a
standard set of terms and keywords are not applicable across domains and the change to
new terms and what they mean in a sentence structure needs to be continually updated
with significant manual input. Another challenge could be the propagation of errors if the
parts of speech that define a rule must be tagged appropriately, leading to incorrect set
assumptions on constituent SyML diagram elements from text.

When using machine learning models, large amounts of data are required. Considering
the nature of SysML diagrams and their context-specific models, collecting data to train
the models could prove difficult. While machine learning models can analyze substantial
amounts of data, one issue is that these methods demand extensive datasets to tune the
model for optimal outcomes to ensure the output is interpretable in the context of SysML.
Training machine learning models with large datasets to account for variability in natural
language is a challenge, and the key is to ensure that a cohesive set of data, such as manually
annotated diagrams, is used for training. Table 2 dissects these challenges, identifying and
categorizing them according to the type of system diagram.

Table 2. Challenges identified for generating individual SysML diagrams using NLP.

Diagram Type Associated Challenges

Use Case Diagrams

• The lack of tools for grouping English language text into
different bits of meaningful information [8];

• Requirement specification issues due to continually
emerging technical jargon and frequently observed
inconsistencies in large requirement textual documents [22];

• The lack of NLP plugins that support complex
part-of-speech relationships, such as compound nouns
between use cases [23];

• The lack of a standardized format in which domain
requirements are specified [7,12,24];

• The lack of the ability for the user to modify a diagram once
automatically generated as an image [7,12].



Systems 2024, 12, 369 6 of 21

Table 2. Cont.

Diagram Type Associated Challenges

Activity and Sequence
Diagrams

• The ambiguity of natural language could generate different
versions of the activity diagram based on how a model
interprets the natural language text [13];

• The difficulty of NLP tools to understand variable
terminology across domains that may not accurately
represent the required transition and the order of actions
among different activities [10].

Class Diagram

• The ambiguity and imprecision of natural language may
lead to not extracting the relevant information and
relationships between concepts [25];

• Tools such as CM-Builder can generate UML class diagrams.
However, they cannot identify operations for candidate
classes, and despite being proficient in analyzing NL
requirements, their efficiency in generating UML models
from analyzed requirements is in question [25];

• Using grammatical knowledge patterns by machine learning
algorithms while training could lead to assumptions like
that core classes are always connected, leading to incomplete
diagrams and the inability to identify the multiplicity of
relationships [10,11].

Package Diagram

• A poor writing style and document structure, such as
implicit headings, can lead to difficulty in automatically
creating a package diagram [9]. An example includes the
accuracy of text-to-model results, which was challenging to
evaluate, as differences in writing style between documents
could affect the accuracy [9].

Block Definition Diagram

• Lexical-level features cannot capture compound semantics
as they only describe word similarities, making it difficult
for a model to understand NL text, leading to a failure to
capture entity relationships [1,9].

Requirement Diagram

• Factors such as writing style and domain expertise can vary
the input text’s quality, directly affecting the generated
diagram’s quality. Developing accurate diagrams requires
obtaining a sufficient corpus of text documents, which can
be challenging in specific domains or topics [21].

Internal Block Diagram
• Like block definition diagrams, writing style, domain

expertise, and document complexity affect quality and
accuracy [9,21].

3. Automated System Model Generation Framework
3.1. Motivation

Several challenges have been reported in transforming natural language descriptions
into automated system models. These include the inherent complexity of natural language,
the difficulty in keeping rule-based systems updated and working, the strictness of rules,
and the amount of data needed to make machine learning models more effective. Based
on the review, approaches have been implemented to overcome problems by utilizing
tokenization, spell-checking, parsing, and named-entity recognition to refine the accuracy
of rule-based methods. Additionally, machine learning techniques are implemented with
semantic analysis, deep learning, and NLP methods to help with the ambiguity and
variability of natural languages.



Systems 2024, 12, 369 7 of 21

The proposed framework takes a step to aid in understanding textual complexities and
further clarifies natural language while reducing ambiguity and further providing flexibility
to understand linguistic contexts, a challenge observed typically in rule-based techniques
when interpreting natural language. An open-source library uses pre-trained machine
learning models to organize and understand the text and mitigate the need for linguistic
learning from scratch. Furthermore, the information extraction and selection process
integrated into the framework includes user-friendly features that allow stakeholders to
interact directly with the model, making diagram generation more accessible and adaptable
to their needs.

3.2. Model Generation Framework—An Approach to Generate Class/Block Definition Diagram

The proposed framework utilizes Python’s programming strengths and spaCy NL
libraries’ [26] natural language processing features. It specializes in tasks like tokenization,
part-of-speech tagging, lemmatization, dependency parsing, and the attributes included
with each task to process textual descriptions from .docx files for automatic system model
representation. Spyder [27] and PyCharm [28] Community Edition IDEs are used for
development along with PlantUML [29], a PyCharm add-in that generates system rep-
resentations, alleviating manual labor in software design documentation and providing
an effective transition from textual analysis to visual modeling. Figure 1 illustrates the
proposed framework.

Systems 2024, 12, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 1. Proposed model generation framework. 

1. Normalization—Step 1 
The first step involves processing textual documents using the Python docx library 

to work with a Word document. This library can read paragraphs as structured objects 
from any Word document while maintaining the original format [30]. This step is crucial 
for normalization as it is used to clean and structure the document for analysis. The 
‘docx’ library is imported to work specifically with Microsoft Word (.docx) files, allow-
ing textual descriptions to be pulled from input text documents and preparing text for 
paragraph segmentation [31]. 

Once gathered, the next step involves text cleaning and preprocessing to manipu-
late and prepare text for further analysis. These steps include transforming all words to 
lowercase [32] using the regular expression library tool to remove numerical data and 
pattern-matching techniques [33], using the string library tool to remove punctuation 
symbols [34], and using the spaCy library tool to identify and remove stop words [35]. 
Specific numerical representation can be retained when specific numerical values are 
necessary to show how a system functions. 

The aim is to help ensure uniformity and simplification of the text during the nor-
malization process, establishing a solid foundation for the advanced parsing tasks that 
follow into the NLP module. 
2. NLP Module—Step 2 

After the text is cleaned and prepared, extracting meaningful information is next. 
The spaCy library was chosen over the Natural Language Toolkit (NLTK) because of its 
user-friendly quality. It provides an object-oriented approach rather than just serving as 

Figure 1. Proposed model generation framework.



Systems 2024, 12, 369 8 of 21

1. Normalization—Step 1

The first step involves processing textual documents using the Python docx library
to work with a Word document. This library can read paragraphs as structured objects
from any Word document while maintaining the original format [30]. This step is crucial
for normalization as it is used to clean and structure the document for analysis. The ‘docx’
library is imported to work specifically with Microsoft Word (.docx) files, allowing textual
descriptions to be pulled from input text documents and preparing text for paragraph
segmentation [31].

Once gathered, the next step involves text cleaning and preprocessing to manipulate
and prepare text for further analysis. These steps include transforming all words to
lowercase [32] using the regular expression library tool to remove numerical data and
pattern-matching techniques [33], using the string library tool to remove punctuation
symbols [34], and using the spaCy library tool to identify and remove stop words [35].
Specific numerical representation can be retained when specific numerical values are
necessary to show how a system functions.

The aim is to help ensure uniformity and simplification of the text during the normal-
ization process, establishing a solid foundation for the advanced parsing tasks that follow
into the NLP module.

2. NLP Module—Step 2

After the text is cleaned and prepared, extracting meaningful information is next.
The spaCy library was chosen over the Natural Language Toolkit (NLTK) because of its
user-friendly quality. It provides an object-oriented approach rather than just serving
as a tool [36]. It is well known for its speed and efficiency in processing large amounts
of textual data, making it an ideal choice for the system’s requirements [37]. The core
of information extraction is establishing a pipeline to analyze text for tagging, parsing,
lemmatization, and named-entity recognition. These pipelines can be tailored by preference
regarding the language, capability features, the type of text it is trained on, and package
size [38]. The ‘en_core_web_sm’ trained model is a small, English, web–text pipeline that
uses basic NLP features, used for its optimal balance between the speed execution and
accuracy the NLP tasks have to offer [26,38]. These tasks, such as part-of-speech tagging
and identifying dependencies from text, are instrumental in identifying potential classes,
methods, attributes, and relationships within a text input.

The first step is to examine the text and split it into sentences to determine the sentence
boundaries and define word structuring. Each sentence then undergoes word tokenization,
where every word is broken down into its building blocks [15]. These two steps are crucial
in creating a linguistic and semantic structure for both sentences and word levels. The next
step involves analyzing each token using several attributes, namely its part of speech (POS),
its role in sentence structure (DEP), its base form of the word (LEMMA), and the token
itself within each sentence. This process involves iterating over each token to capture and
record these essential details and successfully storing each token in a structured format,
making organizing each token’s information possible. This analysis provides a clear view
of the input text’s linguistic structure, aiding in extracting elements for system model
representation.

(2a) Sentence Tokenization

Sentence tokenization allows for examining each sentence as a distinct unit, which is
essential for the further analysis of input text [15]. Iterating over each sentence ensures a
more focused and accurate analysis in identifying specific elements and relationships that
assist in creating accurate models [39].

(2b) Word Tokenization

Sentence tokenization breaks down the text into fundamental building blocks known
as tokens [36]. Word tokenization involves segmenting the text into words, punctuation,
numbers, etc., found within sentences throughout an input text document. This breakdown



Systems 2024, 12, 369 9 of 21

is necessary for understanding the grouping of tokens to recognize relationships, a crucial
step in extracting meaningful elements necessary to create architectural diagrams. Organiz-
ing the text through tokenization lays the foundation for further analysis, paving the way
toward insightful model generation.

(2c) Part-of-Speech (POS) Tagging

Speech tagging is necessary to identify the grammatical role of each token within
the sentence and determine whether it’s a noun, verb, adjective, etc. [40]. These POS
tag descriptions distinguish lexical and grammatical properties of words [38]. The syn-
tactic structure of these tokens plays a crucial role in determining what words can be
considered for potential class names, actions, or methods and identifying relationships and
attributes. By distinguishing the syntactic structure, POS tagging can precisely map textual
descriptions to determine which tokens can be assigned to the models.

(2d) Lemmatization

Lemmatizing transforms words based on their tagged token to their root or dictionary
form based on their POS tag [15]. This step normalizes words such as changing “installed”
to “install” or “engines” to “engine”, ensuring consistency and uniformity in the terminol-
ogy used across diagram elements. It is performed by iterating over tokens to access each
token’s base form [41]. It helps refine the extraction process, permitting a more accurate
depiction of classes and methods.

(2e) Dependency Parsing

Dependency parsing builds a categorized tree of relationships between tokens, illus-
trating their grammatical structure and clarifying how words interact [41]. This tree analogy
helps determine and visualize connections like trailing family ties, which helps identify re-
lationships between entities within the text. It analyzes which tokens function as modifiers
or are associated with others to confirm potential attributes or relationships in architectural
diagrams. It helps distinguish syntactic roles, including subjects, objects, and modifiers,
essential for mapping characteristics and relationships within system diagrams [41].

(2f) Noun Chunking

Noun chunking splits sentences into noun phrases tagged with nouns from the POS
tagger, typically comprising a head noun and its modifiers [41]. It highlights critical entities
and their descriptions, helping extract information and providing a deeper understanding
of the text’s structure.

3. Information Extraction—Step 3

After the text is cleaned and processed, the next step is extracting information. A
dependency visualizer is a feature within the spaCy library that connects word relationships
within a sentence, known as a dependency tree [26]. It visualizes how tokens are related,
using arrows to connect child tokens to their parents, illustrating a sentence’s grammatical
structure. This visualization helps understand how words work together, which can be
used to define attributes and identify relationships between potential classes in the system.
Figure 2 illustrates the grammatical structure of sentences, highlighting how tokens relate
to each other, which assists in defining attributes and identifying relationships between
potential classes. Each word in the sentence is tagged with its respective part of speech.
For example, in the phrase “the conveyor belt”, “the” is a determiner for “conveyor”, and
“conveyor” is connected to “belt” as a compound relationship, indicating that two nouns
combine to form a single noun entity.



Systems 2024, 12, 369 10 of 21

Systems 2024, 12, x FOR PEER REVIEW 10 of 22 
 

 

analogy helps determine and visualize connections like trailing family ties, which helps 
identify relationships between entities within the text. It analyzes which tokens function 
as modifiers or are associated with others to confirm potential attributes or relationships 
in architectural diagrams. It helps distinguish syntactic roles, including subjects, objects, 
and modifiers, essential for mapping characteristics and relationships within system di-
agrams [41]. 
(2f) Noun Chunking 

Noun chunking splits sentences into noun phrases tagged with nouns from the POS 
tagger, typically comprising a head noun and its modifiers [41]. It highlights critical enti-
ties and their descriptions, helping extract information and providing a deeper under-
standing of the text’s structure. 
3. Information Extraction—Step 3 

After the text is cleaned and processed, the next step is extracting information. A 
dependency visualizer is a feature within the spaCy library that connects word relation-
ships within a sentence, known as a dependency tree [26]. It visualizes how tokens are 
related, using arrows to connect child tokens to their parents, illustrating a sentence’s 
grammatical structure. This visualization helps understand how words work together, 
which can be used to define attributes and identify relationships between potential clas-
ses in the system. Figure 2 illustrates the grammatical structure of sentences, highlight-
ing how tokens relate to each other, which assists in defining attributes and identifying 
relationships between potential classes. Each word in the sentence is tagged with its re-
spective part of speech. For example, in the phrase “the conveyor belt,” “the” is a deter-
miner for “conveyor,” and “conveyor” is connected to “belt” as a compound relation-
ship, indicating that two nouns combine to form a single noun entity. 

 
Figure 2. Illustration of dependency visualizer use. 

(3a) Extracting Potential Classes 
The process identifies potential classes by inspecting singular, multiword, and 

chunking nouns, capturing the combination of simple and complex entities within each 
sentence[42]. The rules below illustrate how class elements can be extracted from textual 
descriptions and an example description. We refer to the term “rule” as a predefined cri-
terion that is used to identify specific pieces of information from text. 
• Class rule 1: If the POS tag contains [NOUNS] or [PROPN—Proper Noun], singular 

nouns are extracted for potential classes, capturing the lemmatized noun. These 
singular nouns form the base of potential class identification. 

• Class rule 2: Multiword nouns adjacent to each other, which represent class names 
such as [NOUN] [NOUN] or [NOUN] [PROPN], are extracted. 

• Class rule 3: Noun chunks that contain [NOUNS] and their modifiers are extracted 
to capture a class description. These chunks include a combination of [NOUNS] 
with their modifiers, which can be [VERBS], [ADJ—Adjective], or both their combi-
nations. Noun chunking helps capture the full description of class attributes from 
simple to complex forms. 

Figure 2. Illustration of dependency visualizer use.

(3a) Extracting Potential Classes

The process identifies potential classes by inspecting singular, multiword, and chunk-
ing nouns, capturing the combination of simple and complex entities within each sen-
tence [42]. The rules below illustrate how class elements can be extracted from textual
descriptions and an example description. We refer to the term “rule” as a predefined
criterion that is used to identify specific pieces of information from text.

• Class rule 1: If the POS tag contains [NOUNS] or [PROPN—Proper Noun], singular
nouns are extracted for potential classes, capturing the lemmatized noun. These
singular nouns form the base of potential class identification.

• Class rule 2: Multiword nouns adjacent to each other, which represent class names
such as [NOUN] [NOUN] or [NOUN] [PROPN], are extracted.

• Class rule 3: Noun chunks that contain [NOUNS] and their modifiers are extracted to
capture a class description. These chunks include a combination of [NOUNS] with
their modifiers, which can be [VERBS], [ADJ—Adjective], or both their combinations.
Noun chunking helps capture the full description of class attributes from simple to
complex forms.

• Class rule 4: If the DEP tag, i.e., the syntactic dependency, the relation between tokens
contains [NSUBJ—Nominal Subject] and [NSUBJPASS—Nominal Subject Passive],
their tokens are extracted for potential classes, capturing the lemmatized token. If
modifiers such as [COMPOUNDS] or [ADJ] precede the subjects, the subject and
modifier are extracted to create a descriptive entity. These subjects are potential
entities since they are assigned to the syntactic heads of nouns or pronouns.

The singular nouns, multiword nouns, and chunking nouns are then added to a list of
potential classes, identifying the entities to be considered for the system.

(3b) Extracting Potential Methods

Potential methods are identified by analyzing verbs in a text within sentences [40].
The process begins by examining each sentence’s structure, looking for verbs that denote
actions with nouns or proper nouns as potential objects of these actions. Before forming
verb–noun pairs, a set list is created for each sentence to capture unique pairings and
avoid word overlapping. This step helps examine the interactions within each sentence to
find elements suitable for potential methods. It also filters out any digits and stop words
and takes each token’s lemmatized form in each sentence. The rules below illustrate how
potential methods are identified and extracted, along with a description and example.

• Method rule 1: Begin by creating a new set at the start of each sentence to capture verb–
noun pairs to ensure the sentence is analyzed independently. This step helps prevent
duplications in potential method identification and pairs actions with their objects.

• Method rule 2: Singular [VERBS] are identified after iterating over each sentence
token and added to the potential method set considering their lemmatized word. The
[VERB] is also stored for a possible pairing with the following noun in the next step.

• Method rule 3: Verb–noun pairs are extracted by identifying a [NOUN] or [PROPN]
that is found after a [VERB] from the pairing list to capture a potential method by



Systems 2024, 12, 369 11 of 21

combining an action and their object. This step takes both lemmatized words for
the pair.

• Method rule 4: The pairs are then added to a list of potential methods, identifying the
actions and their respective objects within the system.

• Method rule 5: To provide deeper insight, this analysis can be extended to capture verb–
noun triples that comprise a [VERB], its direct [NOUN], and an additional [NOUN].
This expands the context of understanding an action and extracts additional elements
for a system being designed.

(3c) Extracting Potential Attributes

Potential attributes are identified by words describing a class entity’s characteristics
or properties [43]. These attributes are found by locating nouns modified by adjectives or,
less commonly, by a compound relationship. This step analyzes child tokens to identify
class characteristics by examining the child tokens and the adjectives, modifying them
to present an accurate representation of elements in a diagram. Using child tokens in
the analysis helps identify a thorough range of attributes, providing enhanced details of
class characteristics. The rules below illustrate how potential attributes are identified and
extracted, along with a description and an example.

• Attribute rule 1: POS tagging is used to identify [NOUNS] after iterating over each
token in a sentence. These nouns are used for the next step to help capture a represen-
tative attribute.

• Attribute rule 2: For each [NOUN] captured, children tokens connected to it labeled
[ADJ] or [compound] are identified with it. These modifiers provide a descriptive
context for the noun.

• Attribute rule 3: The modifiers collected with the noun create a complete attribute
phrase. This phrase captures a more sophisticated description of the attribute.

• Attribute rule 4: These attributes are added to a set to ensure each is unique and not
duplicated, creating a list of potential attributes.

(3d) Extracting Potential Relationships

Relationships are identified by connecting entities associated with one another [40].
The extraction of potential relationships identifies patterns where verbs are paired with
nouns, suggesting an association among entities. The process focuses on each verb and
examines dependent children to see if it matches with any nouns or proper nouns that are
possible subjects related to potential classes. Relationships are recorded between the verb
in its lemmatized form and the child token’s text when a match is found. This method can
be further altered by identifying verb–noun pairs between classes, where the two nouns
bridging the pair are considered potential classes from the first extraction step. This method
can identify any relationship between classes stated in the text document, illustrating the
system’s structure. The rules below illustrate how potential relationships are identified and
extracted, along with a description and an example.

• Relationships rule 1: The text is scanned for [VERBS] using the POS tagger, identifying
actions within sentences for relationship identification.

• Relationships rule 2: For each [VERB] found, its child tokens are examined to see if it
is associated with potential subjects. These subjects are considered among previously
identified potential classes, such as [NOUNs] or [PROPN].

• Relationships rule 3: The [VERB] is matched with any potential subjects to see if it
acts upon any entity recognized as a class from the previous analysis.

• Relationships rule 4: A relationship entry is created if a match is found, indicating
that the subject is recognized as a potential class. This entry pairs the [VERB] in its
lemma form with the subject’s text, capturing the action–entity relationship within the
relationship set.

• Relationships rule 5: Relationships can be extracted by examining verb–direct object
connections, capturing another action–entity within the text.



Systems 2024, 12, 369 12 of 21

• Relationships rule 6: For each [VERB] found, its [dobj—direct object] is identified
among the verb’s child tokens. If the direct object is found to the verb, they are both
paired in their lemma form, creating a relationship entry.

• Relationships rule 7: Another relationship can be formed by identifying a [VERB] and
a DEP tag [PREP—Preposition] that follows it. If the [PREP] is present, both [VERB]
and [PREP] are paired, creating an association within the text.

4. Data Selection and Serialization Process

After extraction, all potential elements are documented in a JSON file and are now
pending user selection. These files are used due to their simplicity and handling of large
amounts of data to help verify the extraction of essential elements [44]. This format offers
the advantage of re-executing the extraction method with modified rules if any elements
were missed or not correctly captured, ensuring the data serialization remains current
without storing any previous markers.

An interactive interface allows users to finalize the appropriate classes, methods, and
attributes. This process prompts the user to select the proposed elements from the file to
form classes with their corresponding characteristics and operations. After creating each
class, the process further engages users to refine and specify relationships. This involves
selecting the relationships found in the text and combining them with the classes chosen for
the system. Once all necessary elements are assigned, they are saved in a JSON file. This
file is then utilized to generate PlantUML syntax, successfully transforming the extracted
data into a structured representation of a system. PlantUML is a tool that allows users to
create diagrams from textual descriptions, particularly UML diagrams.

5. Visualization Script Generator—Step 4

The final step involves visualization, where the extracted data generate a system
model. It begins with the selection process phase, where potential elements, such as
classes, corresponding methods, attributes, and relationships, are chosen. The elements
are translated and stored into the PlantUML syntax required to generate system models.
Its syntax is user-friendly and straightforward, making creating, sharing, and modifying
multiple diagrams easy. PlantUML can also handle and represent JSON formats, as it
can turn them into visual diagrams, which helps in the understanding and visualization
of data structures. It can be integrated through various IDEs (integrated development
environments), such as Spyder or Pycharm, to help modify and create diagrams within the
coding environment, making it an easy, productive process [45]. An example of PlantUML
syntax is shown in Figure 3, showcasing how a hypothetical Class 1 is connected to Class 2,
with both classes having methods and attributes.

Systems 2024, 12, x FOR PEER REVIEW 13 of 22 
 

 

that allows users to create diagrams from textual descriptions, particularly UML dia-
grams. 
5. Visualization Script Generator—Step 4 

The final step involves visualization, where the extracted data generate a system 
model. It begins with the selection process phase, where potential elements, such as clas-
ses, corresponding methods, attributes, and relationships, are chosen. The elements are 
translated and stored into the PlantUML syntax required to generate system models. Its 
syntax is user-friendly and straightforward, making creating, sharing, and modifying 
multiple diagrams easy. PlantUML can also handle and represent JSON formats, as it can 
turn them into visual diagrams, which helps in the understanding and visualization of 
data structures. It can be integrated through various IDEs (integrated development envi-
ronments), such as Spyder or Pycharm, to help modify and create diagrams within the 
coding environment, making it an easy, productive process [45]. An example of Plan-
tUML syntax is shown in Figure 3, showcasing how a hypothetical Class 1 is connected 
to Class 2, with both classes having methods and attributes. 

 
Figure 3. Representation of PlantUML syntax. 

4. Framework Implementation and Case Studies 
We generated a hypothetical requirement specification for a surveillance scenario 

involving unmanned aerial vehicles (UAVs) to demonstrate the framework’s applicabil-
ity. Potential classes, attributes, methods, and relationships are extracted for the text il-
lustrated in Figure 4. The elements are saved to a JSON file for the next step, enabling 
the user to select possible aspects for the selection process to generate a class diagram. 
The user is prompted first to identify an entity in the selection process. The process goes 
in order of creating a class, its methods, and its attributes, and then the user is asked if 
another class creation is necessary. 

Figure 3. Representation of PlantUML syntax.



Systems 2024, 12, 369 13 of 21

4. Framework Implementation and Case Studies

We generated a hypothetical requirement specification for a surveillance scenario
involving unmanned aerial vehicles (UAVs) to demonstrate the framework’s applicability.
Potential classes, attributes, methods, and relationships are extracted for the text illustrated
in Figure 4. The elements are saved to a JSON file for the next step, enabling the user to
select possible aspects for the selection process to generate a class diagram. The user is
prompted first to identify an entity in the selection process. The process goes in order of
creating a class, its methods, and its attributes, and then the user is asked if another class
creation is necessary.

Systems 2024, 12, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 4. A set of requirements for a hypothetical UAV surveillance scenario. 

A list of nouns, noun chunks, and multiple nouns tagged from the textual require-
ments are generated to be classified as potential classes. Next, a list of words is tagged 
by verbs that denote nouns to characterize an object’s action. After choosing a class, the 
user can pick relevant methods, separated by dashes, to be incorporated. For instance, 
methods that pertain to the entity UAV based on the textual description can be that it ex-
ecutes a ‘pinpoint destination’ or ‘utilizes a camera.’ Next, nouns are tagged in the list of 
words and their modifiers using children tokens to identify class characteristics repre-
senting properties that pertain to entities. After selecting the methods for a particular 
class, the user can pick as many attributes as appropriate, separated by dashes, to incor-
porate them into a specific class. After the entity’s methods and attributes are chosen, the 
user can select and associate potential relationships with the previously chosen classes. 
These lists of relationships are tagged by verbs paired with nouns or direct objects using 
the dependent children to suggest possible subjects being associated between entities. 

Finally, the selections are saved into a JSON file as an object-oriented class represen-
tation. This file saves the selection data for the visualization script generator to generate 
the selections of PlantUML syntax for model generation. Figures 5 and 6 illustrate the in-
stances of the user interface prompting the user to choose appropriate classes, methods, 
attributes, and their relationships for the text illustrated in Figure 4. 

 
Figure 5. An instance of a user interface prompt to enable the selection of appropriate classes. 

Figure 4. A set of requirements for a hypothetical UAV surveillance scenario.

A list of nouns, noun chunks, and multiple nouns tagged from the textual requirements
are generated to be classified as potential classes. Next, a list of words is tagged by verbs
that denote nouns to characterize an object’s action. After choosing a class, the user can
pick relevant methods, separated by dashes, to be incorporated. For instance, methods that
pertain to the entity UAV based on the textual description can be that it executes a ‘pinpoint
destination’ or ‘utilizes a camera’. Next, nouns are tagged in the list of words and their
modifiers using children tokens to identify class characteristics representing properties that
pertain to entities. After selecting the methods for a particular class, the user can pick as
many attributes as appropriate, separated by dashes, to incorporate them into a specific
class. After the entity’s methods and attributes are chosen, the user can select and associate
potential relationships with the previously chosen classes. These lists of relationships are
tagged by verbs paired with nouns or direct objects using the dependent children to suggest
possible subjects being associated between entities.

Finally, the selections are saved into a JSON file as an object-oriented class representa-
tion. This file saves the selection data for the visualization script generator to generate the
selections of PlantUML syntax for model generation. Figures 5 and 6 illustrate the instances
of the user interface prompting the user to choose appropriate classes, methods, attributes,
and their relationships for the text illustrated in Figure 4.

Once the class representation data is saved, the visualization script generator converts
it into appropriate PlantUML syntax and pastes its output for visualizing the class diagram.
Figure 7 illustrates the class diagram representation of the UAV requirement specification.
Each class shows the named entity located on the top, the methods toward the bottom of
the class, and the attributes in between them. The lines with an arrowhead going from
one class to another represent the relationship between the two entities, labeled with an
association description specifying their connection’s nature. This approach in generating a
class diagram not only focuses on word-to-word matches but also employs an adaptable



Systems 2024, 12, 369 14 of 21

approach to account for semantic similarities and recognize phrases with similar meanings
from text input.

Systems 2024, 12, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 4. A set of requirements for a hypothetical UAV surveillance scenario. 

A list of nouns, noun chunks, and multiple nouns tagged from the textual require-
ments are generated to be classified as potential classes. Next, a list of words is tagged 
by verbs that denote nouns to characterize an object’s action. After choosing a class, the 
user can pick relevant methods, separated by dashes, to be incorporated. For instance, 
methods that pertain to the entity UAV based on the textual description can be that it ex-
ecutes a ‘pinpoint destination’ or ‘utilizes a camera.’ Next, nouns are tagged in the list of 
words and their modifiers using children tokens to identify class characteristics repre-
senting properties that pertain to entities. After selecting the methods for a particular 
class, the user can pick as many attributes as appropriate, separated by dashes, to incor-
porate them into a specific class. After the entity’s methods and attributes are chosen, the 
user can select and associate potential relationships with the previously chosen classes. 
These lists of relationships are tagged by verbs paired with nouns or direct objects using 
the dependent children to suggest possible subjects being associated between entities. 

Finally, the selections are saved into a JSON file as an object-oriented class represen-
tation. This file saves the selection data for the visualization script generator to generate 
the selections of PlantUML syntax for model generation. Figures 5 and 6 illustrate the in-
stances of the user interface prompting the user to choose appropriate classes, methods, 
attributes, and their relationships for the text illustrated in Figure 4. 

 
Figure 5. An instance of a user interface prompt to enable the selection of appropriate classes. Figure 5. An instance of a user interface prompt to enable the selection of appropriate classes.

Systems 2024, 12, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 6. An instance of a user interface prompt to enable the selection of appropriate methods. 

Once the class representation data is saved, the visualization script generator con-
verts it into appropriate PlantUML syntax and pastes its output for visualizing the class 
diagram. Figure 7 illustrates the class diagram representation of the UAV requirement 
specification. Each class shows the named entity located on the top, the methods toward 
the bottom of the class, and the attributes in between them. The lines with an arrowhead 
going from one class to another represent the relationship between the two entities, la-
beled with an association description specifying their connection’s nature. This approach 
in generating a class diagram not only focuses on word-to-word matches but also em-
ploys an adaptable approach to account for semantic similarities and recognize phrases 
with similar meanings from text input. 

 
Figure 7. Generated class diagram using the framework for the UAV requirement specification. 

The effectiveness of the extraction framework in identifying the appropriate ele-
ments to create a class diagram and identifying essential elements of a class diagram, 
such as classes, methods, attributes, and relationships, from an input text is evaluated 
using precision and recall measures. 

Figure 6. An instance of a user interface prompt to enable the selection of appropriate methods.

The effectiveness of the extraction framework in identifying the appropriate elements
to create a class diagram and identifying essential elements of a class diagram, such
as classes, methods, attributes, and relationships, from an input text is evaluated using
precision and recall measures.

Precision and recall are commonly used metrics for measuring a machine learning
model’s performance. They are vital measures to help understand how well a system
identifies and selects appropriate elements [44–47]. Precision helps measure the proportion
of positively identified elements predicted, whereas recall helps measure the proportion of
actual elements identified.

• Precision = (Number of correct entities detected)/(Total number of correct and incorrect entities
detected)

• Recall= (Number of correct entities detected)/(Total numbers of correct entities)

To illustrate this, Table 3 shows two sample sentences segmented from the UAV re-
quirements text with the actual and extracted classes, methods, attributes, and relationships
with the precision and recall calculated. In this case, precision is calculated by counting the
number of correctly predicted classes, methods, attributes, and relationships divided by
the total number of entities in each class predicted.



Systems 2024, 12, 369 15 of 21

Systems 2024, 12, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 6. An instance of a user interface prompt to enable the selection of appropriate methods. 

Once the class representation data is saved, the visualization script generator con-
verts it into appropriate PlantUML syntax and pastes its output for visualizing the class 
diagram. Figure 7 illustrates the class diagram representation of the UAV requirement 
specification. Each class shows the named entity located on the top, the methods toward 
the bottom of the class, and the attributes in between them. The lines with an arrowhead 
going from one class to another represent the relationship between the two entities, la-
beled with an association description specifying their connection’s nature. This approach 
in generating a class diagram not only focuses on word-to-word matches but also em-
ploys an adaptable approach to account for semantic similarities and recognize phrases 
with similar meanings from text input. 

 
Figure 7. Generated class diagram using the framework for the UAV requirement specification. 

The effectiveness of the extraction framework in identifying the appropriate ele-
ments to create a class diagram and identifying essential elements of a class diagram, 
such as classes, methods, attributes, and relationships, from an input text is evaluated 
using precision and recall measures. 

Figure 7. Generated class diagram using the framework for the UAV requirement specification.

Table 3. Precision and recall metrics for sample segmented sentences.

Segmented Sentences from Requirements
Sentence # 1: The system integrates a sophisticated UAV network, streamlining both surveillance and logistical deliveries.

Sentence # 2: Each UAV, at the core of the network, is outfitted with leading-edge navigational tech and cameras for comprehensive
monitoring tasks, alongside cargo bays designed for precise delivery missions.

Classes Extracted Classes Precision Recall

System; UAV; network;
surveillance; logistical

delivery

‘delivery’, ‘network’, ‘system’, ‘sophisticated uav network’,
‘surveillance’, ‘logistical delivery’ 0.66 1.0

UAV; network; navigational
tech; camera; monitoring task;

cargo bay; delivery mission

‘delivery mission’, ‘tech’, ‘uav’, ‘delivery’, ‘comprehensive
monitoring task’, ‘leading edge navigational tech’, ‘core’,
‘monitoring task’, ‘leadingedge’, ‘task’, ‘network’, ‘bay’,

‘monitoring’, ‘cargo’, ‘mission’, ‘camera’, ‘precise delivery mission’,
‘cargo bay’

0.38 1.0

Methods Extracted Methods Precision Recall

Integrates network;
surveillance; deliveries

‘streamline’, ‘streamline surveillance’, ‘integrate network’,
‘integrate’, ‘streamline deliveries’ 0.6 1.0

Tech; cameras; monitoring;
task; delivery

‘design’, ‘outfit’, ‘design delivery’, ‘design missions’, ‘outfit
cameras’, ‘outfit tech’, ‘outfit cargo’, ‘outfit monitoring’, ‘outfit

bays’, ‘outfit leadingedge’, ‘outfit tasks’
0.45 1.0

Attributes Extracted Attributes Precision Recall

UAV network; logistical
delivery; surveillance

‘logistical deliveries’, ‘system’, ‘sophisticated uav network’,
‘surveillance’ 0.75 1.0

Navigational tech; monitoring
task; precise delivery; cargo

bays; cameras

‘monitoring tasks’, ‘uav’, ‘delivery’, ‘core’, ‘network’, ‘monitoring’,
‘cargo’, ‘navigational tech’, ‘cargo bays’, ‘precise delivery missions’,

‘cameras’
0.45 1.0

Relationships Extracted Relationships Precision Recall

System integrates; integrates
network; integrates;

streamline

‘streamline surveillance’, ‘streamlining’, ‘integrates’, ‘integrate
system’, ‘integrate network’ 0.8 1.0

outfitted with; designed for;
outfitted ‘outfitted with’, ‘outfit uav’, ‘design for’, ‘outfitted’ 0.75 1.0



Systems 2024, 12, 369 16 of 21

Recall is measured by counting the number of correctly predicted classes, methods,
attributes, and relationships, each divided by the number of entities that must be extracted.
The observed high recall value across the sentences indicates the framework’s effectiveness
in predicting the required elements of classes, attributes, methods, and relationships.
Relatively low precision values, when compared to the recall, indicate the framework’s
ability to capture a broader list of potential elements. One must consider the tradeoff
between precision and recall, where a high precision value reduces recall and vice versa.
In Table 3, low precision values indicate that the framework extracts entities more than
required from the input text, increasing false positives, and high recall values suggest that
it predicted elements accurately.

Case Studies

The proposed framework is tested against two case studies which consider different
sizes of input text in terms of word count and writing style. Precision and recall measures
are calculated for each text input [47].

Text 1: “A university consists of a number of departments. Each department offers
several courses. A number of modules make up each course. Students enroll in a par-
ticular course and take modules towards the completion of that course. Each module is
taught by a lecturer from the appropriate department, and each lecturer tutors a group of
students.” [47].

Text 2: “Participants at the summer school are either students or teachers. Each student
registers for the NEMO Summer School providing, amongst others, their level of study
(Bachelor, Master or PhD) and their field of study. Additionally each student provides
her/his first name, last name, their country of provenience and e-mail address. Students
attend courses during the summer school. Courses can be a lecture, a fundamentals exercise
or application exercises. [The fundamental exercise is considered as one unit as it covers
one topic, although it takes place in several sessions.] Each course has a title, is being given
by one or more lecturers and takes places in a room. Every room has a name, a seating
capacity, and technical equipment. Lectures and application exercises take place in a lecture
hall, while fundamental exercises are conducted in PC-labs. Within the fundamentals
exercise students are split in groups. Each group has a group number, a room (i.e., PC-lab)
and a tutor. Teachers can be either lecturers or tutors. Each teacher has a first name, last
name, host institution, and country.” [47].

Similar to the previous example, potential classes, attributes, methods, and relationships
are extracted from each input text. Figures 8 and 9 illustrate the class diagrams generated.

The metric results shown in Table 4 indicate that for Text 1, the framework identified all
correct elements with a 100% recall for classes and relationships compared to the previous
work [47]. However, precision is observed to be relatively low, indicating a broader capture
of potential classes, attributes, and relationships.

Table 4. Precision and recall measures for selected text inputs.

Text 1 Text 2

Extracted Elements Precision Recall Precision Recall

Classes/Entities 0.5 1.0 0.17 1.0

Attributes 0.57 1.0 0.45 0.96

Relationships 0.58 1.0 0.18 0.93

For Text 2, the framework correctly identified more elements than the previous
work [48] but still captured a broad list of potential elements as the system’s precision
values are low.

The rules for extracting potential elements ensure that no possible elements are over-
looked, showing that a broad list can inspire more flexible design decisions. Low precision



Systems 2024, 12, 369 17 of 21

serves as a strategy by providing a more extensive set of elements that cater to various user
needs and scenarios when developing a system model.

Systems 2024, 12, x FOR PEER REVIEW 17 of 22 
 

 

framework’s ability to capture a broader list of potential elements. One must consider 
the tradeoff between precision and recall, where a high precision value reduces recall 
and vice versa. In Table 3, low precision values indicate that the framework extracts enti-
ties more than required from the input text, increasing false positives, and high recall 
values suggest that it predicted elements accurately. 

Case Studies 
The proposed framework is tested against two case studies which consider different 

sizes of input text in terms of word count and writing style. Precision and recall 
measures are calculated for each text input [47]. 

Text 1: “A university consists of a number of departments. Each department offers 
several courses. A number of modules make up each course. Students enroll in a particu-
lar course and take modules towards the completion of that course. Each module is 
taught by a lecturer from the appropriate department, and each lecturer tutors a group 
of students.” [47]. 

Text 2: “Participants at the summer school are either students or teachers. Each stu-
dent registers for the NEMO Summer School providing, amongst others, their level of 
study (Bachelor, Master or PhD) and their field of study. Additionally each student pro-
vides her/his first name, last name, their country of provenience and e-mail address. 
Students attend courses during the summer school. Courses can be a lecture, a funda-
mentals exercise or application exercises. [The fundamental exercise is considered as one 
unit as it covers one topic, although it takes place in several sessions.] Each course has a 
title, is being given by one or more lecturers and takes places in a room. Every room has 
a name, a seating capacity, and technical equipment. Lectures and application exercises 
take place in a lecture hall, while fundamental exercises are conducted in PC-labs. With-
in the fundamentals exercise students are split in groups. Each group has a group num-
ber, a room (i.e., PC-lab) and a tutor. Teachers can be either lecturers or tutors. Each 
teacher has a first name, last name, host institution, and country.” [47]. 

Similar to the previous example, potential classes, attributes, methods, and relation-
ships are extracted from each input text. Figures 8 and 9 illustrate the class diagrams 
generated. 

 
Figure 8. Class diagram generated for Text 1. Figure 8. Class diagram generated for Text 1.

Systems 2024, 12, x FOR PEER REVIEW 18 of 22 
 

 

 
Figure 9. Class diagram generated for Text 2. 

The metric results shown in Table 4 indicate that for Text 1, the framework identi-
fied all correct elements with a 100% recall for classes and relationships compared to the 
previous work [47]. However, precision is observed to be relatively low, indicating a 
broader capture of potential classes, attributes, and relationships. 

For Text 2, the framework correctly identified more elements than the previous 
work [48] but still captured a broad list of potential elements as the system’s precision 
values are low. 

Table 4. Precision and recall measures for selected text inputs. 

 Text 1 Text 2 
Extracted Elements Precision Recall Precision Recall 

Classes/Entities 0.5 1.0 0.17 1.0 
Attributes 0.57 1.0 0.45 0.96 

Relationships 0.58 1.0 0.18 0.93 

The rules for extracting potential elements ensure that no possible elements are 
overlooked, showing that a broad list can inspire more flexible design decisions. Low 
precision serves as a strategy by providing a more extensive set of elements that cater to 
various user needs and scenarios when developing a system model. 

5. Discussion 
Previous attempts to automatically generate system architectures from natural lan-

guage text, such as requirements, can be categorized into rule-based, machine learning-
based, or hybrid methods. Even though these three approaches are used differently in 
steps and phases to develop models across the literature, the overall importance of text 

Figure 9. Class diagram generated for Text 2.



Systems 2024, 12, 369 18 of 21

5. Discussion

Previous attempts to automatically generate system architectures from natural lan-
guage text, such as requirements, can be categorized into rule-based, machine learning-
based, or hybrid methods. Even though these three approaches are used differently in
steps and phases to develop models across the literature, the overall importance of text
preprocessing, which is essential in transforming NL text into structured data, is prominent.
This paper proposes a rule-based architectural generation framework that uses heuristic
rules and predefined patterns to help map natural language text to a SysML element. The
rule-based approach requires manual effort to define and update the rules. In contrast,
the machine learning-based approach refers to statistical techniques that help glean and
learn from data to map natural language text to SysML elements. It requires training data
sets based on which the model depends on identifying elements for a SysML diagram
from a natural language text. It implies a need for extensive structured data sets to train
the models to understand the subtle differences of natural language written by various
stakeholders. The roadblocks observed can be categorized into the following:

• The inflexibility of rules in a rule-based system: A uniform set of rules developed for a
context in a rule-based approach must accurately consider the language variability
among different stakeholders while generating natural language-based text. Machine
learning tools and techniques can aid in creating and adjusting rules and recognizing
contexts in natural language text to address this inflexibility as data are augmented
over time.

• The lack of ability to manually change a diagram once generated by an algorithm: This refers
to the need to develop an interactive ML system where one can provide manual input
during the training phase to improve accuracy when generating SysML diagrams
from natural text. The proposed framework takes a step in this direction by enabling
an interactive user interface for users to create a streamlined model.

• The lack of ML models to better interpret natural language nuances: This refers to the lack of
advanced ML models that can capture contexts and compound semantics from natural
language text in the context of SysML. This stresses the importance of deep learning
models such as transformers [48] designed to understand context more effectively,
leading to the development of famous large language models like GPTs (generative
pretrained transformers). A similar model could be developed for tasks such as SysML
diagram generation.

6. Scalability

Many systems design tasks for complex systems contain requirements that can number
in the thousands. As the volume of the text input increases, so does the complexity, thus
requiring the integration of deep learning models in the proposed framework, which
requires significant computational resources. Furthermore, large complex systems have
interdependencies that can be challenging to parse and analyze accurately. Future research
is needed to scale the framework and accommodate modular components such as text
preprocessing, entity recognition, and relationship extraction. Integrating more advanced
NLP and machine learning algorithms, such as transformer-based models, could effectively
transform text into models. Testing its applicability with incrementally large data sets is
suggested to validate the framework further.

7. Conclusions

The contribution of this paper to the systems modeling domain is two-fold. First, a re-
view and analysis of natural language processing techniques for the automated generation
of SysML diagrams are provided, broadly categorized into three approaches: rule-based,
machine learning-based, and hybrid. Challenges for generating SysML diagram types
using natural language processing techniques are also mapped. Second, a framework to
extract textual relationships tailored for generating a class diagram/block diagram that
contains the classes/blocks, their relationships, methods, and attributes is presented. The



Systems 2024, 12, 369 19 of 21

process involves utilizing NLP techniques to analyze and interpret text descriptions of
a system and then transforming that information into a graphical representation. This
transformation does not create new knowledge but changes the form of existing informa-
tion. The applicability of this approach is presented in two case studies from the previous
literature and is validated against precision and recall measures. The framework’s perfor-
mance largely depends on how well the NLP model captures a diverse dataset. Tailoring
the model for hardware- or software-dominant systems would involve refining the rules
with feedback from domain experts to capture domain-specific terminologies. Finally, to
mitigate the bias generated by the rules, future work would include testing the framework
on various texts generated by varying levels of domain experts so that the framework can
handle valuable natural language descriptions.

Author Contributions: Conceptualization, A.A. and J.O.; methodology, A.A. and J.O.; validation,
A.A., J.O. and S.L.; writing—original draft preparation, A.A. and J.O.; writing—review and editing,
A.A., J.O. and S.L.; visualization, A.A. and J.O. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors would like to acknowledge the funding and support provided by the National
Science Foundation (NSF) Award No. 2235999 and the CREST Center for Multidisciplinary Research
Excellence in Cyber-Physical Infrastructure Systems (MECIS) under NSF Award No. 2112650. Any
opinions, findings, conclusions, or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing does
not apply to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qie, Y.; Zhu, W.; Liu, A.; Zhang, Y.; Wang, J.; Li, T.; Li, Y.; Ge, Y.; Wang, Y. A Deep Learning Based Framework for Textual

Requirement Analysis and Model Generation. In Proceedings of the 2018 IEEE CSAA Guidance, Navigation and Control
Conference (GNCC), Xiamen, China, 10–12 August 2018; pp. 1–6.

2. Theobald, M.; Tatibouet, J. Using fUML Combined with a DSML: An Implementation using Papyrus UML/SysML Modeler.
In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development, Prague, Czech
Republic, 20–22 February 2019; pp. 248–255.

3. Zhao, L.; Alhoshan, W.; Ferrari, A.; Letsholo, K.J.; Ajagbe, M.A.; Chioasca, E.-V.; Batista-Navarro, R.T. Natural language processing
for requirements engineering: A systematic mapping study. ACM Comput. Surv. (CSUR) 2021, 54, 1–41. [CrossRef]

4. Zhong, S.; Scarinci, A.; Cicirello, A. Natural Language Processing for systems engineering: Automatic generation of Systems
Modelling Language diagrams. Knowl.-Based Syst. 2023, 259, 110071. [CrossRef]

5. Ahmed, S.; Ahmed, A.; Eisty, N.U. Automatic Transformation of Natural to Unified Modeling Language: A Systematic Review.
In Proceedings of the 2022 IEEE/ACIS 20th International Conference on Software Engineering Research, Management and
Applications (SERA), Las Vegas, NV, USA, 25–27 May 2022; pp. 112–119.

6. Petrotta, M.; Peterson, T. Implementing Augmented Intelligence In Systems Engineering. INCOSE Int. Symp. 2019, 29, 543.
[CrossRef]

7. Narawita, C.R.; Vidanage, K. UML generator—Use case and class diagram generation from text requirements. Int. J. Adv. ICT
Emerg. Reg. (ICTer) 2017, 10, 1–10. [CrossRef]

8. Hamza, Z.A.; Hammad, M. Generating UML Use Case Models from Software Requirements Using Natural Language Processing.
In Proceedings of the 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama,
Bahrain, 15–17 April 2019; pp. 1–6.

9. Chen, M.; Bhada, S.V. Converting natural language policy article into MBSE model. INCOSE Int. Symp. 2022, 32, 73–81. [CrossRef]
10. Shinde, S.K.; Bhojane, V.; Mahajan, P. NLP based Object Oriented Analysis and Design from Requirement Specification. Int. J.

Comput. Appl. 2012, 47, 30–34. [CrossRef]
11. Abdelnabi, E.A.; Maatuk, A.M.; Abdelaziz, T.M.; Elakeili, S.M. Generating UML Class Diagram using NLP Techniques and

Heuristic Rules. In Proceedings of the 2020 20th International Conference on Sciences and Techniques of Automatic Control and
Computer Engineering (STA), Monastir, Tunisia, 20–22 December 2020; pp. 277–282.

12. Chen, L.; Zeng, Y. Automatic Generation of UML Diagrams From Product Requirements Described by Natural Language. In
Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, San Diego, CA, USA, 30 August 2009. [CrossRef]

https://doi.org/10.1145/3444689
https://doi.org/10.1016/j.knosys.2022.110071
https://doi.org/10.1002/j.2334-5837.2019.00619.x
https://doi.org/10.4038/icter.v10i1.7182
https://doi.org/10.1002/iis2.12897
https://doi.org/10.5120/7475-0574
https://doi.org/10.1115/DETC2009-86514


Systems 2024, 12, 369 20 of 21

13. Meziane, F.; Athanasakis, N.; Ananiadou, S. Generating natural language specifications from UML class diagrams. Requir. Eng.
2008, 13, 1–18. [CrossRef]

14. Anandha Mala, G.S.; Uma, G.V. Automatic Construction of Object Oriented Design Models [UML Diagrams] from Natural
Language Requirements Specification. In PRICAI 2006: Trends in Artificial Intelligence, Proceedings of the 9th Pacific Rim International
Conference on Artificial Intelligence, Guilin, China, 7–11 August 2006; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4099,
pp. 1155–1159. [CrossRef]

15. de Biase, M.S.; Marrone, S.; Palladino, A. Towards Automatic Model Completion: From Requirements to SysML State Machines.
In Proceedings of the 18th European Dependable Computing Conference (EDCC 2022), Zaragoza, Spain, 12–15 September 2022.
[CrossRef]

16. Dawood, O.S. Toward requirements and design traceability using natural language processing. Eur. J. Eng. Technol. Res. 2018, 3,
42–49.

17. Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and
Techniques”, 4th ed.; Morgan Kaufmann: Burlington, MA, USA, 2016.

18. Kochbati, T.; Li, S.; Gérard, S.; Mraidha, C. From User Stories to Models: A Machine Learning Empowered Automation. In
Proceedings of the 9th International Conference on Model-Driven Engineering and Software Development, Online Streaming,
8–10 February 2021. [CrossRef]

19. Chami, M.; Zoghbi, C.; Bruel, J.M. A First Step towards AI for MBSE: Generating a Part of SysML Models from Text Using AI. In
Proceedings of the AI4SE 2019: INCOSE Artificial Intelligence for Systems Engineering, Madrid, Spain, 12–13 November 2019.

20. Riesener, M.; Dölle, C.; Becker, A.; Gorbatcheva, S.; Rebentisch, E.; Schuh, G. Application of natural language processing
for systematic requirement management in model-based systems engineering. In Proceedings of the INCOSE International
Symposium, Virtual Event, 17–22 July 2021; Volume 31, pp. 806–815. [CrossRef]

21. Buchmann, R.; Eder, J.; Fill, H.G.; Frank, U.; Karagiannis, D.; Laurenzi, E.; Mylopoulos, J.; Plexousakis, D.; Santos, M.Y. Large
language models: Expectations for semantics-driven systems engineering. Data Knowl. Eng. 2024, 152, 102324. [CrossRef]

22. Seresht, S.M.; Ormandjieva, O. Automated assistance for use cases elicitation from user requirements text. In Proceedings of the
11th Workshop on Requirements Engineering (WER 2008), Barcelona, Spain, 12–13 September 2008; Volume 16, pp. 128–139.

23. Elallaoui, M.; Nafil, K.; Touahni, R. Automatic Transformation of User Stories into UML Use Case Diagrams using NLP Techniques.
Procedia Comput. Sci. 2018, 130, 42–49. [CrossRef]

24. Osman, M.S.; Alabwaini, N.Z.; Jaber, T.B.; Alrawashdeh, T. Generate use case from the requirements written in a natural language
using machine learning. In Proceedings of the 2019 IEEE Jordan International Joint Conference on Electrical Engineering and
Information Technology (JEEIT), Amman, Jordan, 9–11 April 2019; pp. 748–751.

25. Joshi, S.D.; Deshpande, D. Textual Requirement Analysis for UML Diagram Extraction by using NLP. Int. J. Comput. Appl. 2012,
50, 42–46. [CrossRef]

26. Fantechi, A.; Gnesi, S.; Livi, S.; Semini, L. A spaCy-based tool for extracting variability from NL re-quirements. In Proceedings of
the 25th ACM International Systems and Software Product Line Conference—Volume B, Leicester, UK, 6–11 September 2021;
pp. 32–35.

27. Spyder IDE Contributors. Spyder (Version 5.4.1) [Software]. 2023. Available online: https://www.spyder-ide.org/ (accessed on 1
August 2024).

28. JetBrain. PyCharm 2023.2.1 (Community Edition) [Software]. Build #PC-232.9559.58, Built on 22 August 2023. Available online:
https://www.jetbrains.com/pycharm/ (accessed on 1 August 2024).

29. PlantUML Integration. PlantUML Integration (Version 7.0.0-IJ2023.2) for PyCharm [Software Plugin]. 2023. Available online:
https://plugins.jetbrains.com/plugin/7017-plantuml-integration (accessed on 1 August 2024).

30. Claghorn, R.; Shubayli, H. Requirement Patterns in the Construction Industry. In Proceedings of the INCOSE International
Symposium, Virtual Event, 17–22 July 2021; Volume 31, pp. 391–408. [CrossRef]

31. Kulkarni, A.; Shivananda, A. Natural Language Processing Recipes; Apress: Berkeley, CA, USA, 2019.
32. Octavially, R.P.; Priyadi, Y.; Widowati, S. Extraction of Activity Diagrams Based on Steps Performed in Use Case Description

Using Text Mining (Case Study: SRS Myoffice Application). In Proceedings of the 2022 2nd International Conference on Electronic
and Electrical Engineering and Intelligent System (ICE3IS), Yogyakarta, Indonesia, 4–5 November 2022; pp. 225–230.

33. Mande, R.; Yelavarti, K.C.; JayaLakshmi, G. Regular Expression Rule-Based Algorithm for Multiple Documents Key Information
Extraction. In Proceedings of the 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli,
India, 13–14 December 2018; pp. 262–265.

34. Ismukanova, A.N.; Lavrov, D.N.; Keldybekova, L.M.; Mukumova, M.Z. Using the python library when classifying scien-
tific texts. In European Research: Innovation in Science, Education and Technology; 2018; pp. 9–13. Available online: https:
//internationalconference.ru/images/PDF/2018/46/using-the-python-1.pdf (accessed on 1 August 2024).

35. Srinivasa-Desikan, B. Natural Language Processing and Computational Linguistics: A Practical Guide to Text Analysis with Python,
GenSim, SpaCy, and Keras; Packt Publishing Ltd.: Birmingham, UK, 2018.

36. Jugran, S.; Kumar, A.; Tyagi, B.S.; Anand, V. Extractive automatic text summarization using SpaCy in Python & NLP. In
Proceedings of the 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE),
Greater Noida, India, 4–5 March 2021; pp. 582–585.

37. Uysal, A.K.; Gunal, S. The impact of preprocessing on text classification. Inf. Process. Manag. 2014, 50, 104–112. [CrossRef]

https://doi.org/10.1007/s00766-007-0054-0
https://doi.org/10.1007/11801603_152
https://doi.org/10.48550/arXiv.2210.03388
https://doi.org/10.5220/0010197800280040
https://doi.org/10.1002/j.2334-5837.2021.00871.x
https://doi.org/10.1016/j.datak.2024.102324
https://doi.org/10.1016/j.procs.2018.04.010
https://doi.org/10.5120/7795-0906
https://www.spyder-ide.org/
https://www.jetbrains.com/pycharm/
https://plugins.jetbrains.com/plugin/7017-plantuml-integration
https://doi.org/10.1002/j.2334-5837.2021.00844.x
https://internationalconference.ru/images/PDF/2018/46/using-the-python-1.pdf
https://internationalconference.ru/images/PDF/2018/46/using-the-python-1.pdf
https://doi.org/10.1016/j.ipm.2013.08.006


Systems 2024, 12, 369 21 of 21

38. Explosion AI. SpaCy: Industrial-Strength Natural Language Processing in Python. 4 April 2024. Available online: https://spacy.io
(accessed on 1 August 2024).

39. Vasiliev, Y. Natural Language Processing with Python and SpaCy: A practical Introduction; No Starch Press: San Francisco, CA,
USA, 2020.

40. Bashir, N.; Bilal, M.; Liaqat, M.; Marjani, M.; Malik, N.; Ali, M. Modeling class diagram using NLP in object-oriented designing.
In Proceedings of the 2021 National Computing Colleges Conference (NCCC), Taif, Saudi Arabia, 27–28 March 2021; pp. 1–6.

41. Shuttleworth, D.; Padilla, J. From Narratives to Conceptual Models via Natural Language Processing. In Proceedings of the 2022
Winter Simulation Conference (WSC), Singapore, 11–14 December 2022; pp. 2222–2233. [CrossRef]

42. Herchi, H.; Abdessalem, W.B. From user requirements to UML class diagram. arXiv 2012, arXiv:1211.0713.
43. Almazroi, A.A.; Abualigah, L.; Alqarni, M.A.; Houssein, E.H.; AlHamad, A.Q.M.; Elaziz, M.A. Class diagram generation from

text requirements: An application of natural language processing. In Deep Learning Approaches for Spoken and Natural Language
Processing; Springer: Cham, Switzerland, 2021; pp. 55–79.

44. Arachchi, K.D. AI Based UML Diagrams Generator. Ph.D. Thesis, University of Colombo School of Computing, Colombo,
Srilanka, 19 August 2022.

45. PlantUML. Available online: https://plantuml.com/ (accessed on 1 August 2024).
46. Bozyiğit, F. Object Oriented Analysis and Source Code Validation Using Natural Language Processing. Ph.D. Thesis, Dokuz Eylül

University, Izmir, Turkey, 2019.
47. Baginski, J. Text analytics for conceptual modelling. Master’s Thesis, University of Vienna, Vienna, Austria, 2018.
48. Islam, S.; Elmekki, H.; Elsebai, A.; Bentahar, J.; Drawel, N.; Rjoub, G.; Pedrycz, W. A Comprehensive Survey on Applications of

Transformers for Deep Learning Tasks. Expert Syst. Appl. 2024, 241, 122666. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://spacy.io
https://doi.org/10.1109/WSC57314.2022.10015274
https://plantuml.com/
https://doi.org/10.1016/j.eswa.2023.122666

	Introduction 
	A Review of NLP-Based Systems Model Generation 
	Rule-Based Approach 
	Machine Learning-Based Approach 
	Hybrid Approach 
	Challenges 

	Automated System Model Generation Framework 
	Motivation 
	Model Generation Framework—An Approach to Generate Class/Block Definition Diagram 

	Framework Implementation and Case Studies 
	Discussion 
	Scalability 
	Conclusions 
	References

