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Abstract: Many ranking algorithms and metrics have been proposed to identify high-impact papers.
Both the direct citation counts and the network-based PageRank-like algorithms are commonly
used. Ideally, the more complete the data on the citation network, the more informative the ranking.
However, obtaining more data on citation relations is often costly and challenging. In some cases,
obtaining the citation counts can be relatively simple. In this paper, we look into using the additional
citation counts but without additional citation relations to form more informative metrics for identi-
fying high-impact papers. As an example, we propose enhancing the original PageRank algorithm
by combining the local citation network with the additional citation counts from a more complete
data source. We apply this enhanced method to American Physical Society (APS) papers to verify
its effectiveness. The results indicate that the proposed ranking algorithm is robust against missing
data and can improve the identification of high-quality papers. This shows that it is possible to
enhance the effectiveness of a network-based metric calculated on a relatively small citation network
by including only the additional data of the citation counts, without the additional citation relations.

Keywords: citation network; complete data; PageRank; citation count

1. Introduction

Quantifying the impact of papers is an important research topic in scientometrics.
As the number of publications grows exponentially [1], it has become increasingly impor-
tant. Based on the measured impact of papers, one can design algorithms to automatically
recommend high-quality papers to scientists, which can help them to understand the fron-
tiers of science and create knowledge [2,3]. However, quantifying the impact of a paper is
not an easy task because some mechanisms, such as preferential attachment [4,5], aging [6],
and fitness [7,8], all play critical roles in the citation dynamics of a paper [9]. As such, one
often wants to focus on, or hopefully look into, ultimately measuring the scientific value or
creativity of papers. Until now, many evaluation indicators have been proposed to solve
this problem [10–15]. They all measure proxies of, but do not measure directly, the scientific
value or creativity of papers.

In this work, we are not aiming to solve this problem of defining new metrics to
measure papers’ scientific value or creativity directly. Instead, we want to focus on a very
technical problem: the issue of incomplete data [16,17]. When developing and applying
the impact metrics of papers, we often work with a particular dataset. For example, one
may use the American Physical Society (APS) papers and the citation relation among the
papers within the APS journals, papers in Web of Science (WoS), and their citation relation
within the WoS journal coverage, or Scopus, Dimensions, and so on. We have to note
that even the large datasets, such as WoS, Scopus, and Dimensions, are still incomplete,
meaning that there are missing papers and, thus, missing citation relations, for example,
from journals not covered by the dataset. Let us use APS data as an example. On the one
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hand, APS papers can be more or less regarded as a core set of all physics papers. Let us
even assume that, for now, we only care about APS papers and want to rank them and then
recommend them to readers according to the rank. Thus, ranking other physics papers is
irrelevant for now. On the other hand, those APS papers are not cited by only APS papers.
Therefore, even if we do not want to rank other papers, the citations from other papers
might also help rank the APS papers. Now, the question becomes how we can use the
citations from the other papers to rank the APS papers. Of course, we can include the
other papers in the citation network and apply the analysis to calculate the corresponding
ranking metrics again. However, for that, we will need to incorporate the complete citation
relationships among the other papers and their citations to the APS papers. Gaining access
to the citation relationships among other papers is very costly, and the expanded network
may significantly increase in size. It will be very cost-effective if we can improve the metrics
using the same citation network, but with additional data only on the citation counts from
the other papers to the APS papers.

If we can show that including the additional citation counts but not the citation rela-
tions can improve one of the current network-based metrics (here, the original PageRank
ranking) calculated on a relatively small citation network, then the same can be performed
for all other network-based metrics, including those that have improved upon the origi-
nal PageRank algorithm to deal with, for example, the aging effect [18] and some other
nonlinear considerations [19,20]. Why do we choose the original PageRank as an example
for this investigation, and can we use the counts of direct citations instead? The former
is a network-based metric, which considers both the direct and indirect citation relations,
while the latter uses only the direct citations. For the latter, clearly including the additional
citation counts will improve the metric, but there is no additional gain. The amount of addi-
tional information that is included determines how the amount of gain. However, with the
former, the additional citation counts in the enhanced calculation will be propagated over
the current citation network. Therefore, it is possible that including only the citation counts
in the metric brings more than the citation counts themselves.

More generally speaking, there is a related question of how complete will be enough
for scientometric data. Are APS data complete enough? Are large data such as WoS, Scopus,
or Dimensions complete enough? Are there ways to measure the completeness of the data,
and are there ways to improve the metrics calculated on incomplete data with minimum
cost? In this work, we focus on the last question, and we believe that a study of this
question can help find a criterion of data completeness. For example, one may compare the
gained information among the metrics calculated on the smaller dataset, the larger dataset,
and the minimum cost approach. If expanding the dataset will lead to linear gain, then
the dataset is not that complete, while a sub-linear marginal or diminishing gain might
imply that the dataset is sufficiently complete. We will look into this line of investigation
in future studies. For that, we need to have ways to extract gained information with the
minimum-cost approach. This is the task in the current investigation.

In this paper, we introduce the additional citation counts to the PageRank algorithm
and propose an external citation enhanced PageRank (exPRank) algorithm. We apply the
exPRank algorithm on the APS citation network with additional citation counts of the same
papers from WoS and apply other ranking algorithms on the APS citation network. We
first check the effect of network incompleteness on the evaluation algorithms and then
compare these ranking metrics, especially by looking at their ability to identify widely
recognized high-quality papers, including the Nobel prize-winning papers and milestone
papers selected by peers. The experimental results show that the exPRank algorithm is
more robust and can better identify high-quality papers than other algorithms in the case
of incomplete scientometrics data.
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2. Data and Methods
2.1. Data in the Study

This study uses the APS data as the local citation network data and the Web of Science
as the external citation count data. The American Physical Society provides the APS
dataset, which includes 9 physics journals: Physical Review A, B, C, D, E, Letters, Series
I & II, Special Topics, and Reviews of Modern Physics, from 1893 to 2010. It contains
482,577 papers with 5,016,422 citations1. In addition, the dataset also provides the DOI, title,
author names, and affiliations of each APS paper. We retrieved their citation counts and the
number of references in the Web of Science Core Collection database for each APS paper
based on their DOIs in December 2019. We obtained 476,848 APS papers’ citation counts
and the number of references within WoS. In addition, we also found that the citation
count of each paper within the APS dataset did not exceed its citation count in the Web of
Science dataset.

2.2. External Citation Enhanced PageRank

The standard PageRank algorithm was originally proposed to evaluate the importance
of web pages [21]. Later, it was extended to quantify the scientific impact of papers based
on the citation network. Given a citation network with N nodes, PageRank is defined as

PRi = α
N

∑
j=1

[
Ai

j

∑k Ak
j

]
PRj +

1 − α

N
(1)

where Ai
j = 1 if paper j cites paper i and Ai

j = 0 otherwise. α ∈ [0, 1] is a tuning parameter,
whose value will affect the scores of nodes. The parameter α is usually set to 0.85.

Equation (1) can be written in the vector equation form as follows:

PR = αLPR + (1 − α)
1
N

e. (2)

where L =

(
Ai

j

∑k Ak
j

)
N×N

is a transition probability matrix and e is a column vector having

each component equal to 1. This equation can either be solved by matrix inverse as

PR = (I − αL)−1 1 − α

N
e. (3)

or more practically by iterations such as

PR(t) = αLPR(t − 1) + (1 − α)
1
N

e. (4)

Finally, we rank the papers by sorting their final PageRank scores in descending order.
To introduce the total citation counts, Ci

ex, from the large-scale database into PageRank,
we proposed the external citation enhanced PageRank. First, we added two virtual nodes
N + 1 and N + 2 into the citation network, where the node N + 1 will cite some nodes in
the original network and the node N + 2 will be cited by some nodes in the original citation
network. Then, for any node i in the original network, we modified the citation matrix
A by

Ai
N+1 = θ

(
Ci

ex − Ci
in

)(
Ci

ex − Ci
in

)
. (5)

AN+1
i = 0. (6)

AN+2
i = θ

(
Cex

i − Cin
i

)(
Cex

i − Cin
i

)
. (7)

Ai
N+2 = 0. (8)
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where θ(x) is the step function; θ(x) = 1 if x ≥ 0, and θ(x) = 0 otherwise. Ci
in = ∑N

j=1 Ai
j

is the citation count of node i within the original citation network, Cin
i = ∑N

j=1 Aj
i is the

number of references of node i within the original citation network, and Cex
i represents the

number of references of node i within the large-scale database.
Plug this newly extended matrix A and vector PR, which, since now being extended

to objects with dimension d = N + 2, is called exPRank score and denoted as exPR, back
into Equation (2) and keep only those exPRi for i ≤ N. Then, we obtain the recursive
equation of exPRank:

exPRi = α
N

∑
j=1

Li
jexPRj − α

N

∑
j=1

N

∑
k=1

Lk
j exPRjQi +

2 + Nα

N + 2
Qi +

1 − α

N + 2
, (9)

where

Qi =
Ci

ex − Ci
in

∑j

(
Cj

ex − Cj
in

) . (10)

In matrix form, it can be written as

exPR = α
(

I − QeT
)

LexPR +
2 + Nα

N + 2
Q +

1 − α

N + 2
e. (11)

Equation (11) is equivalent to

exPR =
(

I − α
(

I − QeT
)

L
)−1

(
2 + Nα

N + 2
Q +

1 − α

N + 2
e
)

=
1

N + 2

∞

∑
n=0

αn
((

I − QeT
)

L
)n

((2 + Nα)Q + (1 − α)e),
(12)

from which we can clearly see how the number of external additional citations Q is
propagated into the system, order by order, via the various powers of L.

It is exactly this propagation, or, in mathematical terms, Ln, that makes it possible that
the gained amount of information output can be more than the input data, and we need to
test it to see whether or not, in practice, on some paper-level indicators, one-bit input can
lead to two-bit (or more accurate more than one bit) output. Using direct citation count Ci

as an example, then there is clearly no such additional bit of gain; since the ∆Ci = Ci
ex, there

is one-bit output for one-bit input. Will a network-based indicator make it possible to have
additional gain? In this paper, we apply the exPRank to the APS local citation network with
additional citation counts and apply the original PageRank to the APS citation network.
We then compare the revealed information from these metrics to check the amount of
gained information.

2.3. Other Compared Metrics

This paper compares the external citation-enhanced PageRank against four other indi-
cators. The first indicator is the standard PageRank. The second indicator is PrestigeRank
(PrRank), which is proposed by Su et al. [22] to reduce the effect of missing data in the
citation database on the results of PageRank. This algorithm also introduces a virtual node
that connects all the nodes. The virtual node is supposed to represent those references not
included in the citation database, and it receives all citations that are from papers in the
database. The formula of the PrestigeRank algorithm is expressed as

π(t) =
[
αL +

e
N

(
αaT + (1 − α)eT

)]
π(t − 1) (13)
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where L =
(

Lij
)
(N+1)×(N+1). When i ≤ N and j ≤ N, Lij =

Ai
j

Cex
j

. L(N+1)j = 1 − ∑N
i=1 Lij,

Li(N+1) =
Ci

in
∑N

i=1 Ci
in+∑N

i=1(Cex
i −Cin

i )
. a is the binary dangling node vector.

The remaining indicators are two types of citation counts that are among the simplest
ways to measure the impact of a paper. One is calculated based on the local citation
network constructed by the APS dataset, and we use CAPS(i) (or Ci

in in Equation (5)) to
represent the citation count within the APS dataset for paper i. Another is the citation count
CWoS(i) (or Ci

ex in Equation (5)) retrieved from the Web of Science, representing the global
citation count.

3. Results
3.1. The Analysis of the Incompleteness of the APS Dataset

Based on the number of citations of APS papers in the APS and WoS datasets, we first
examine the incompleteness of the APS dataset. The total number of citations of APS papers
in the APS dataset is 4,945,687, while the total number of citations of these papers in the WoS
dataset is 24,018,751, which indicates that the APS dataset is a local dataset and it has many
missing data points. In Figure 1, we show the citation count distribution of APS papers
within APS (CAPS) and Web of Science (CWoS). One can see that they both approximately
follow the power-law distribution, and the distribution of CWoS is much broader than
the distribution of CAPS in Figure 1A. We also calculate the cumulative distribution of
(CWoS − CAPS) and the result is shown in Figure 1B. We observe that only 5.18% APS papers
have the same number of citations in the APS and WoS datasets, and 17.96% papers have
a value of (CWoS − CAPS) exceeding 50. Therefore, there is an obvious difference in the
number of citations of papers between large and small citation databases, which will affect
the evaluation of papers in small databases. Now, the question becomes whether or not
we can make efficient and low-cost use of this difference, via the exPRank defined in
Equation (9), to improve the performance of the PageRank algorithm in ranking papers in
a small citation database.
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Figure 1. (A) The distribution of the CAPS and CWoS of papers. (B) The cumulative distribution of the
(CWoS − CAPS) of papers.

3.2. The Effect of an Incomplete Citation Network on Evaluation Algorithms

Assuming that the APS citation network constructed based on APS data is a complete
network (that is, for each paper in the citation network, all its citing papers and cited papers
can be found in this citation network), then many incomplete networks can be obtained by
deleting various different proportions of links in the above complete network. We test the
effect of network incompleteness on the evaluation algorithms. We first apply the PageRank
algorithm to this complete citation network, obtain the PageRank score for each paper,
and calculate the number of citations of papers in the citation network. Then, we consider
the number of citations in the complete citation network as additional citation counts and
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apply the exPRank and PageRank algorithms on these incomplete citation networks, to
obtain the citation counts of papers in these incomplete citation networks. We calculate
the Spearman correlation coefficients between PageRank scores on the complete citation
network and exPRank scores on the incomplete citation networks, as well as PageRank
scores on the incomplete citation networks, for which strong correlation indicates higher
robustness of the evaluation algorithm against network incompleteness. We also calculate
the Spearman correlation coefficients between citation counts within the complete citation
network and citation counts within the incomplete citation networks. The results are
shown in Figure 2. We can find that the exPRank algorithm has higher robustness against
network incompleteness than the PageRank algorithm. By continuously removing links
from the original citation network, we can observe that the correlation coefficients between
PageRank scores on the initial citation network and PageRank scores on the incomplete
citation networks decrease first slowly and then rapidly. The metric of citation counts
also shows similar results to PageRank. However, the correlation coefficients between
PageRank scores on the initial citation network and exPRank scores on the incomplete
citation networks have been decreasing relatively slowly, with correlation coefficients
basically above 0.9. This analysis shows that the exPRank algorithm can bring much
information just by using the additional citation counts.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Proportion of randomly deleting links in the original network

0.6

0.7

0.8

0.9

1

C
or

re
la

tio
n

exPRank vs PageRank*
PageRank vs PageRank*
citation counts vs citation counts*

Figure 2. The correlation between the PageRank algorithm on the complete citation network and
exPRank algorithm on the incomplete citation network, as well as the PageRank algorithm on the
complete citation network. “PageRank*” represents the results of PageRank algorithm applied to the
complete citation network. “citation counts*” represents the results of citation counts of papers in the
complete citation network. Each point in the figure is averaged over 20 realizations of the networks
by randomly deleting links in the complete citation network.

3.3. Correlation between Evaluation Algorithms

We apply the exPRank and other algorithms to the citation network constructed based
on APS data. We then calculate the Spearman correlation coefficient between the scores
of these algorithms, and the results are presented in Table 1. One can see that there is
a positive correlation in the exPRank, PageRank, PrestigeRank, citation count based on
APS data, and citation count based on WoS data. The exPRank shows a higher correlation
with CWoS, but a relatively low correlation with the PageRank, PrestigeRank, and CAPS.
The PageRank shows a higher correlation with PrestigeRank and CAPS, but a relatively low
correlation with the exPRank and CWoS. These can show that the exPRank is different from
PageRank. The Spearman correlation coefficient between CAPS and CWoS is only 0.7541,
which also indicates that there are obvious differences between these two indicators in
terms of numerical value and ranking.

We further investigate the overlap of the top-ranking papers identified by these
indicators. As can be seen from Table 2, among these pairs of indices, the pairs of exPRank–
CWoS and PrestigeRank–CAPS have a higher overlap ratio, and their overlap ratios are both
more than 0.6. The pairs of PageRank–CWoS and PageRank–CAPS have a lower overlap rate,



Systems 2024, 12, 377 7 of 11

which does not exceed 0.25. In addition, although PageRank has a high correlation with
PrestigeRank and CAPS, we find that the overlap ratio of the top 1% of papers between
PageRank and any other indicator is not high.

Table 1. The Spearman rank correlation coefficients of different ranking algorithms.

Algorithms exPRank PageRank PrestigeRank CAPS CWoS

exPRank 1 0.7223
(p < 0.01)

0.7717
(p < 0.01)

0.7766
(p < 0.01)

0.9750
(p < 0.01)

PageRank 0.7223
(p < 0.01)

1 0.9366
(p < 0.01)

0.8905
(p < 0.01)

0.6448
(p < 0.01)

PrestigeRank 0.7717
(p < 0.01)

0.9366
(p < 0.01)

1 0.9844
(p < 0.01)

0.7178
(p < 0.01)

CAPS 0.7766
(p < 0.01)

0.8905
(p < 0.01)

0.9844
(p < 0.01)

1 0.7541
(p < 0.01)

CWoS 0.9750
(p < 0.01)

0.6448
(p < 0.01)

0.7178
(p < 0.01)

0.7541
(p < 0.01)

1

Table 2. The overlap ratio of the top 1% of papers identified by different ranking algorithms.

Algorithms exPRank PageRank PrestigeRank CAPS CWoS

exPRank 1 0.2905 0.5104 0.4827 0.6376
PageRank 0.2905 1 0.3593 0.2366 0.1912

PrestigeRank 0.5104 0.3593 1 0.6370 0.3587
CAPS 0.4827 0.2366 0.6370 1 0.4501
CWoS 0.6376 0.1912 0.3587 0.4501 1

Table 3 lists the top-10 papers ranked by the exPRank and their corresponding rankings
under different algorithms. We can observe that the rankings of these top-10 papers in
Prestigerank, CAPS, and CWoS are relatively high, but their ranking in PageRank is relatively
low. Overall, the ranking results of these 10 papers under the exPRank are very close
to those of CWoS, but it is not that close to those of PageRank. For example, the rank
of the paper (10.1103/PhysRevLett.77.3865) based on the exPRank is 2, but its rank in
PageRank is 3073. In addition, we can clearly see the effect of the scale of the citation
database on the evaluation of papers. For instance, the CAPS values of some papers (e.g.,
10.1103/PhysRevB.37.785, 10.1103/PhysRevA.38.3098) are relatively small, but their CWoS
values are relatively large. Paper 10.1103/PhysRevB.37.785 was selected as one of Physical
Review B’s 50th Anniversary Milestones in 2020. It has been cited 72,092 times in the WoS
dataset, but it has been cited only 656 times in the APS database. The citation count of
Paper 10.1103/PhysRevA.38.3098 is only 728 times in the APS dataset but 38,670 times in
the WoS dataset. It was selected as one of Physical Review A’s 50th Anniversary Milestones
in 2020.

Table 3. The top-10 papers selected by exPRank and their corresponding rankings in other algorithms.

Paper
Rank Citation Counts

exPRank PageRank Prestigerank CAPS CWoS APS WoS

PhysRevLett.77.3865 1 273 5 3 1 3690 91,229
PhysRevB.37.785 2 3073 365 107 2 656 72,092

PhysRev.140.A1133 3 8 1 1 4 5560 39,460
PhysRevB.54.11169 4 567 13 6 3 2818 48,754
PhysRev.136.B864 5 13 2 2 9 4399 32,749
PhysRevA.38.3098 6 2106 193 87 5 728 38,670
PhysRevB.13.5188 7 257 7 5 8 2843 35,842
PhysRevB.50.17953 8 1391 38 10 6 1801 36,268
PhysRevB.59.1758 9 1517 43 11 7 1784 35,893
PhysRevB.23.5048 10 83 3 4 14 3325 15,436
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3.4. Identifying High-Quality Papers

Finally, we select some high-quality papers recognized by scientists as benchmarks
to evaluate the performance of the ranking algorithms. Our benchmarks are the 70 Nobel
prize-winning papers in Physics, 87 Physical Review Letters (PRL) milestone papers,
23 Physical Review A (PRA) milestone papers, 47 Physical Review B (PRB) milestone
papers, 23 Physical Review E (PRE) milestone papers, and 74 selected papers for celebrating
125 years of the Physical Review journals. The Nobel prize-winning physics papers reflect
the main contributions or work of the Nobel laureates in Physics. We collected these
Nobel prize-winning physics papers based on some of the influential literature [23,24].
The milestone papers in the other five datasets were chosen by the editors of APS journals
to be regarded as the most significant contributions to Physics from each journal. These
five datasets can be obtained from these links2.

Taking the Nobel prize-winning physics papers and PRL milestone papers as examples,
we compare the rank of these recognized high-impact papers on exPRank and other ranking
algorithms in Figure 3. We can first find that, compared with ordinary papers, these high-
quality papers are usually ranked higher with respect to any pairs of those four quantities,
i.e., more or less concentrated towards the top-right corner in all four figures. Second, more
or less, it is more in the right direction than in the up direction, especially in Figure 3A–C.
This implies that the exPRank algorithm is more informative in identifying those high-
quality papers. Lastly, those high-quality papers are more or less concentrated along the
diagonal line in Figure 3D. This means that, for those high-quality papers, their exPRank
scores are very similar to CWoS.

To make the difference among the five indicators more visible, for each dataset, we
calculate the average rankings of high-quality papers under the scores of the different
indicators, and the results are shown in Figure 4. The lower the average ranking value
of high-quality papers, the higher their ranking. Overall, the exPRank performs the best
in identifying high-quality papers among these indicators. PageRank and CWoS perform
second to exprank, while CAPS performs worst. It should be pointed out that PageRank has
a better performance in identifying Nobel Prize-winning papers and PRL milestone papers.
CWoS performs best in identifying PRA, PRB, and PRE milestone papers.

Figure 3. The scatter plots of ranking results for exPRank versus other ranking algorithms. (A) Com-
parison of the ranking of all papers under exPRank and PageRank. (B) Comparison of the ranking
of all papers under exPRank and PrestigeRank. (C) Comparison of the ranking of all papers under
exPRank and CAPS. (D) Comparison of the ranking of all papers under exPRank and CWoS. Nobel
prize-winning physics papers and PRL milestone papers are typical high-quality papers, and their
rankings under different algorithms are represented by red and purple dots.
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Figure 4. The mean rank of (A) 70 Nobel prize-winning papers in Physics, (B) 87 Physical Review
Letters milestone papers, (C) 23 Physical Review A milestone papers, (D) 47 Physical Review B
milestone papers, (E) 23 Physical Review E milestone papers, and (F) 74 selected papers for celebrating
125 years of the Physical Review journals in different ranking algorithms. “exPR” represents the
external citation enhanced PageRank, “PR” represents PageRank, and “PrR” represents Prestigerank.

The fact that, overall, the exPRank performs better than CWoS shows that the gained
information from exPRank with additional data on citation counts but without citation
networks is more than that from CWoS, which leads to exactly one bit of information out
with each bit of additional input data.

4. Conclusions and Discussion

In this paper, we have shown that, by including only the additional citation counts
but not the additional citation relations from a large dataset (Web of Science data) into
a small dataset, the performance of a metric of impact, particularly, the PageRank score,
on a relatively smaller dataset (the American Physical Society data) can be significantly
improved. This same approach of utilizing the less expensive additional citation count data,
instead of the more costly citation relationship data, can also be applied to other metrics
calculated on smaller datasets.

We want to point out that the additional data on citation counts can only modify the
direct citation counts of papers in the small dataset. Thus, at most, the gained informative-
ness using the additional citation counts can be as high as the complete citation counts,
which in our case is the CWoS. However, we can see from our results in Figure 4 that the
gained improvement on exPRank is more than that of CWoS. This is because exPRank is a
network-based indicator.

We should also note that, although exPRank seems more informative than the other
four indicators, much of the gain is due to the effectiveness of CWoS. In fact, exPRank
can be viewed as a hybrid of PageRank and CWoS, and it takes and combines the better
of PageRank and CWoS. While this shows that network-based indicators can turn one
bit of additional input data into more than one bit of output gain in indicators and their
performances, there might be an even better way to do it. In addition, there are also cases
where exPRank is even slightly worse than CWoS, and, in those cases, the performance
of PageRank is much worse than that of CWoS. This might be used to indicate the severe
degree of the incompleteness of the small dataset.
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More generally, since we now have ways to improve metric calculated on small
datasets with a not-so-costly approach, we should be able to come back to the question of
measuring the degree of the completeness of data on citation relations (or any network,
for that matter). We can compare the effectiveness of the metric calculated on the smaller
dataset, the one calculated on the larger dataset, and the one calculated on the smaller
dataset but enhanced by cheap data from the larger dataset. The lower the gain from
metrics that use additional data on the small dataset, the more complete the original dataset.
Additionally, the function of each edge in the network is not the same, and some edges
play a more important role than others in defining the structures and functions of the
network. Thus, some simple statistics, such as link density, will not be a good measure of
the completeness of the data. The present work might help investigate such a measure and
find ways to improve upon it in the future.
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Notes
1 These data can be obtained by submitting a request via https://journals.aps.org/datasets (accessed on 21 November 2021).
2 • https://journals.aps.org/prl/50years/milestones (accessed on 21 November 2021);

• https://journals.aps.org/pra/50th (accessed on 21 November 2021);
• https://journals.aps.org/prb/50th (accessed on 21 November 2021);
• https://journals.aps.org/pre/collections/pre-milestones (accessed on 21 November 2021);
• https://journals.aps.org/125years (accessed on 21 November 2021).
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