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Abstract: Constructed response items that require the student to give more detailed and elaborate
responses are widely applied in large-scale assessments. However, the hand-craft scoring with a
rubric for massive responses is labor-intensive and impractical due to rater subjectivity and answer
variability. The automatic response coding method, such as the automatic scoring of short answers,
has become a critical component of the learning and assessment system. In this paper, we propose an
interactive coding system called ASSIST to efficiently score student responses with expert knowledge
and then generate an automatic score classifier. First, the ungraded responses are clustered to generate
specific codes, representative responses, and indicator words. The constraint set based on feedback
from experts is taken as training data in metric learning to compensate for machine bias. Meanwhile,
the classifier from responses to code is trained according to the clustering results. Second, the experts
review each coded cluster with the representative responses and indicator words to score a rating. The
coded cluster and score pairs will be validated to ensure inter-rater reliability. Finally, the classifier
is available for scoring a new response with out-of-distribution detection, which is based on the
similarity between response representation and class proxy, i.e., the weight of class in the last linear
layer of the classifier. The originality of the system developed stems from the interactive response
clustering procedure, which involves expert feedback and an adaptive automatic classifier that can
identify new response classes. The proposed system is evaluated on our real-world assessment
dataset. The results of the experiments demonstrate the effectiveness of the proposed system in
saving human effort and improving scoring performance. The average improvements in clustering
quality and scoring accuracy are 14.48% and 18.94%, respectively. Additionally, we reported the
inter-rater reliability, out-of-distribution rate, and cluster statistics, before and after interaction.

Keywords: constructed response items; response coding; text clustering; large-scale assessment

1. Introduction

Constructed response items, also known as “open-response” items, have been popular
in various assessments for a long time due to their ability to gauge a student’s depth of
understanding and critical thinking skills [1]. Despite their effectiveness and flexibility,
the scoring of these responses using rubrics is plagued by labor-intensive processes. The
diversity of answers makes scoring tiring and inefficient. For example, the semantics of
student responses vary even within the same score. As a solution to these challenges, the
automatic response coding system [2,3] has emerged as a critical facet within the realm of
education assessment, which benefits many applications such as cognitive diagnosis [4]
and automatic feedback [5].
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The automatic response coding systems consider the existing test log as the training
set, i.e., (response, code) pairs set, and transfer the learnable knowledge into new responses.
The construction of ground truth in the training stage mainly falls into two categories.
One is manually coding all existing responses, which is referred to as the fully-supervised
method. Fine-tuning large language models has been widely used recently because of its
performance in capturing complex semantics, especially in relatively small domain-specific
datasets [6]. Another method is coding the most representative responses and propagating
them to similar ones, which is referred to as the semi-supervised method. The pioneering
semi-supervised work integrated text semantic representation and clustering to improve
scoring efficiency on the OECD PISA 2012 items [7].

A key challenge for semi-supervised automatic coding is clustering, i.e., bringing
together responses that look different but are essentially the same, where each cluster is
called an equivalent response class. (Equivalent responses here mean semantic similarity
responses instead of the exact same responses.) Clustering is also useful in fully supervised
methods for creating scoring rubrics after machine learning [8]. In this paper, we adopt
the latter perspective (i.e., semi-supervised labeling for the training set) and develop an
interactive clustering method incorporating metric learning to correct the clustering result
with the constrained set.

Although relevant research has made significant progress in semi-supervised methods
such as measuring and improving intra-class homogeneity with statistics technique, the
clustering fine-tuning, which most directly affects model performance, has been neglected.
There is a lack of error correction mechanisms for clustering. For example, one response in
a cluster is obviously different from the others and needs to be separated, or an equivalent
response class is mistakenly divided into two clusters, which need to be merged. The
possible wrong clustering assignment is an implicit risk in the training set construction
process. The separated response clustering and expert coding without interaction may
mislead the classifier with inductive bias and cause concerns about fairness.

To this end, we propose a coding system with interactive supervised clustering called
ASSIST. As shown in Figure 1 in this paper, coding is a process that first categorizes student-
generated responses into several discrete classes and then labels the scoring associated
with the specific classes. Figure 2 demonstrates the proposed scoring procedure. First,
pre-trained language models are used to convert textual responses into representation
vectors. Then, the representation is dimensionally reduced and clustered into several
equivalent response classes. We integrate an explanation model into the clustering results
to show the indicator words for each equivalent class. The indicator words are helpful for
experts to understand clustering and discover possible mistakes. To correct the mistakes in
response clustering, a study in [9] introduces the interactive supervised clustering where
experts can provide two types of designated constraints in clustering—cannot-link and
must-link—corresponding to the separation and merging of clusters, respectively. After the
refinement of clustering, the classifier is trained to map responses to codes.

So far, the score of each equivalent response class remains unknown. Therefore, experts
review each class, including indicator words and representative responses, to assign scores
accordingly. Then, to ensure fair and consistent scoring, the proposed method produces
the scorer reliability and re-score classes with insufficient reliability. After that, the trained
classifier of code and associated score is deployed to judge new responses automatically.
Note that the new response may not belong to any existing equivalent class, i.e., not similar
to any historical response as mentioned in [10]. To discover these fresh responses that need
expert scoring, we consider prediction confidence. For example, while considering output
probability as confidence level, responses with “flat” classes probability will be treated as
out-of-distribution samples [11].
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Question: Please describe his temperament based on the 
following events.
He takes care of the paddy field and lotus garden, feeds the 
ducks, and takes care of the shrimp pond.

Response 1：Diligence 
Response 2：Hardworking 
Response 3：Work hard

Response 4: Strong sense of responsibility 
Response 5: Responsible
Response 6: Serious and responsible

Response 7: Love nature    
Response 8: Like animals and plants

Response Clustering

Coding Result
Class 1: (Hardwork, 1)
Class 2: (Responsible, 1)
Class 3: (Nature, 0)

Figure 1. An example of coding for constructed response items. The example question and responses
are translated from Mandarin.

(a) Model Architecture

Responses

Interactive Clustering

Classifier Training
with OOD Detection

(d) Experts Scoring

 Reliability
Report

Experts
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Experts

(b) Interactive Clustering
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Figure 2. Architecture of ASSIST system.

To evaluate the proposed ASSIST system, we conduct experiments using both real-
world assessment datasets and open-sourced benchmark datasets. Furthermore, we carry
out comprehensive hyper-parameter sensitivity studies to showcase the resilience and
efficacy of the proposed interactive supervised clustering approach in enhancing response
representations. The results demonstrate a significant reduction in workforce requirements
while concurrently improving scoring performance and automatic scoring accuracy.

The main contributions of this research work are as follows:

1. We propose a novel and practical response coding approach to obtain better scoring
results for constructed response items in a large-scale assessment setting.

2. State-of-the-art algorithms are integrated into the proposed ASSIST system for cluster-
ing and classifier learning. We propose an interactive clustering method that allows
experts to actively review and refine the code-discovering process. We incorporate
a classifier with out-of-distribution detection for learning to score while explaining
clustering results.

3. We conduct experiments on real-world assessment datasets. The performance and
visualization results highlighted the effectiveness of the developed model, including
clustering quality and automatic scoring accuracy.



Systems 2024, 12, 380 4 of 18

This research work is based on the three-step computational grounded theory method-
ological framework [12]. First, unsupervised clustering is used to help human experts find
patterns in answers. Then, the experts review and commit feedback to correct the clustering.
Finally, the feedback is then fed into a metric learning loss to fine-tune the feature extractor
and generate identified response codes.

The research work is organized as follows. The literature review is summarized in
Section 2. The problem definition and research goal are formally given in Section 3.1, and
the methodology details are described in the rest of Section 3. Experimental studies are
reported in Section 4. Conclusions are offered in Section 5. Limitations and future works
are given in Section 6.

2. Related Works

This section provides an overview of the related works in the area of automatic
response coding systems and related machine-learning techniques, such as text clustering.
We provide a brief introduction to recent advances and establish connections to our research
work in the context of educational automatic scoring. Text clustering is described in the
categories of representation learning, dimensionality reduction, and clustering.

2.1. Automatic Response Coding System

After the transition from traditional paper-and-pencil tests to computer-based testing,
assessment has become more efficient with data mining and Natural Language Processing
(NLP) techniques. The field of automatic response coding systems, especially for fully-
supervised short-answer grading, has been researched for over three decades [13]. Early
works relied on the prior rules such as concept matching and syntax analysis. The c-
Rater [14] of Educational Testing Service (ETS) recognized the main points or concepts
of answers after linguistic processing and automatic score based on pre-prepared rules.
Recent data-driven works leverage statistical learning to learn from large-scale student
responses. Sultan et al. [15] built a random forest classifier using features such as text
similarity and term weight based on it or embedded. Marvaniya et al. [8] considered
class-specific representatives obtained after text clustering as a better scoring rubric. Tan
et al. [16] took the graph neural network as the feature extractor to learn more complex
patterns. Zhu et al. [6] compared the student answers and reference answers with the BERT
model to predict the very most possible score. Nowadays, the large language model is
also explored because of its generalizability for the few-shot datasets. Schneider et al. [17]
compare the GPT-3.5 and humans in assessing bachelor-level German and master-level
English short answers. Chang et al. [18] designed prompts of ChatGPT for scoring Finnish
short answers under zero-shot and one-shot settings. Additionally, some efforts address
the automatic evaluation issues in other materials, such as instructional videos [19].

Another branch is semi-supervised automatic coding for reducing human efforts.
Zesch et al. [20] formulated the clustering approach and analyzed the semi-supervised
performance in the short-answer and essay annotations. Andersen et al. [21] proposed a
strategically querying method that can achieve satisfied intra-cluster homogeneity under
a statistics guarantee. The originality of this research work comes from the fact that the
response clustering procedure is interactive with experts, and the automatic classifier
can identify new response classes adaptively, which differs from the existing work in
the literature.

2.2. Text Clustering

Representation learning. Text representation is a crucial task in the fields of text
mining and NLP, aiming to transform textual data into a format that computers can
comprehend and process. The bag-of-words (BoW) model is the most intuitive and effective
text representation. In the BoW model representation, the focus is solely on the frequency
of each word in a text within the corpus, while much of the structural information in the
input text is disregarded [22]. While the BoW model is simple and easy to understand,
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it neglects semantic relationships between words, resulting in a loss of information in
the representation. To address the limitations of the BoW model, the TF-IDF model is
proposed by considering the importance of vocabulary by calculating the product of term
frequency and inverse document frequency [23]. This assigns lower weights to high-
frequency words, capturing key information in the text more effectively. However, TF-IDF
still falls short in capturing semantic relationships between words, especially when dealing
with complex natural language tasks. With the advancement of deep learning, pre-trained
language models have emerged as a promising force in the field of text representation.
Bidirectional encoder representation from transformers (BERT) is a notable example [24].
Unlike traditional models, BERT undergoes pre-training on large corpora, learning rich
semantic relationships between words. Through bidirectional encoding, BERT not only
considers context information but also comprehends the context of words within a sentence
more effectively. The InferSent model is a sentence embedding model designed for natural
language understanding tasks [25]. The InferSent model employs a BiLSTM network as
its core architecture. The bidirectional nature allows the model to capture contextual
information from both the left and right sides of a given word in a sentence.

Dimensionality reduction. After representation learning, dimensionality reduction is
a necessary step aimed at capturing the essential information while reducing computational
complexity and avoiding the curse of dimensionality. At early stages, principal compo-
nent analysis (PCA) is a generic and long-established method that linearly transforms
high-dimensional data into a lower-dimensional space. After that, t-SNE is a non-linear
dimensionality reduction technique that emphasizes preserving the pairwise similarities
between data points in the lower-dimensional space [26]. It is particularly effective in
capturing local structures and revealing clusters in the data and is widely used in data
visualization. Uniform manifold approximation and projection (UMAP) is a non-linear
dimensionality reduction technique that aims to preserve both local and global structures of
the data. It is known for its efficiency and ability to capture complex relationships in high-
dimensional spaces [27]. Semi-supervised methods combine both partially labeled and
unlabeled data during dimension reduction to leverage the benefits of metric learning [28].
These methods can enhance the quality of the reduced representation by incorporating
labeled information.

Clustering. Clustering is performed in the reduced low-dimension space. K-Means is
a widely used unsupervised clustering algorithm that partitions documents into K clusters
based on their feature representations. The algorithm iteratively refines cluster centroids
to minimize the within-cluster sum of squares [29]. Latent Dirichlet Allocation (LDA) is
a probabilistic model that represents documents as mixtures of topics. It assumes that
documents are generated from a set of topics, and a Dirichlet distribution of words charac-
terizes each topic. LDA has been used for topic modeling and document clustering [30].
Density-based spatial clustering of applications with noise (DBSCAN) is a density-based
clustering algorithm that is particularly effective in identifying clusters of arbitrary shapes
in spatial data, which can effectively identify and ignore noisy data points, making it
suitable for datasets with outliers [31]. Hierarchical clustering organizes documents into a
tree-like structure, where the leaves represent individual documents, and internal nodes
represent clusters at different levels of granularity [32]. Hierarchical density-based spa-
tial clustering of applications with noise (HDBSCAN) is an extension of the traditional
DBSCAN algorithm that introduces a hierarchical approach to clustering, which offers
flexibility in exploring clusters at different levels of granularity [33]. This hard clustering
divides data into a specific cluster, while fuzzy clustering data points may belong to more
than one cluster [34–36]. Interactive clustering involves a collaborative process where a
user interacts with the clustering algorithm, providing feedback and guidance to refine
and improve the clustering results. This interactive approach aims to incorporate human
expertise and domain knowledge to enhance the quality of clustering outcomes, making
the process more transparent and adaptable to user requirements [9]. In other modalities,
such as graph-level clustering, there are many effective methods recently, which are sum-



Systems 2024, 12, 380 6 of 18

marized in this survey [37]. Contrastive learning [38], cluster-enhanced self-supervised
learning [39], and redundancy-free self-supervised relational learning [40] are used to learn
the graph representation better.

3. Methodology
3.1. Problem Definition

The proposed ASSIST system aims to assist experts in efficiently coding responses
for a constructed response item. Suppose that there are M experts and N raw responses
{ri}N

i=1 generated by students.

Definition 1 (Response Coding). Response coding refers to the systematic process of assigning
numerical or category values to student responses to constructed response items. In this research,
we define the code as a doublet (class c, score s). The class is a category variable that represents
response semantics. The score is a numerical variable ranging from zero to full points, indicating
how correct the response is.

Responses are transformed into some categories using clustering. After that, experts
review and modify clustering results interactively.

Definition 2 (Interactive Clustering). Assume that N responses are clustered into C equivalent
response classes. In order to achieve better clustering performance, the expert can specify that
response ri belongs to category ci. The whole constraint set is denoted as {(ri, ci)}K

i=1, where K
is the number of constraints. The algorithm is realized by taking the constraint set as a training
set in metrics learning, see Section 3.3. Note that the number of clusters does change with the
feedback. The feedback is the set of (response_ID, correction_cluster_ID) pairs. If all the responses
in a cluster are reassigned to other clusters, this cluster will be vanished. If some responses from
different clusters are reassigned to a new cluster ID, then the representations of these responses will
be pulled closer and form the new clusters. For the sake of simplicity, there is only one epoch of
feedback aggregating from all experts.

Then, these equivalent response classes are scored, and the scoring results are evalu-
ated for reliability, such as consistency. Scores that meet the reliability requirements will be
stored in the database. Finally, the classifier with out-of-distribution detection is trained
for future assessments. The classifier is a mapping from response r to coding (c, s). The
out-of-distribution samples refer to responses that do not belong to any existing class.

3.2. System Architecture

The architecture of ASSIST involves multiple stages, as shown in Figure 2, including
clustering of ungraded responses, training a response-to-code classifier, expert review, and
automatic scoring. The outline is as follows.

1. Semantic Feature Extraction. After text pre-processing, word embedding and pre-
trained BERT are used to extract semantic features from the raw responses. Then,
to solve the distance failure phenomenon caused by the high dimensionality of the
feature, dimensionality reduction is performed on the feature. For text pre-processing,
see Section 4.2.

2. Interactive Clustering. The dimension-reduced features are clustered, and each cluster
represents an equivalent response class. Experts’ feedback helps correct individual
errors; see Section 3.3.

3. Classifier Training. The input of the classifier contains two parts, namely semantic
features and one-hot bag-of-words vector. The BoW model is used to capture the
word similarity between responses and is used to explain the clustering results. The
output of the classifier is the equivalent response class; see Section 3.4. The backbone
of the classifier is a linear layer. For detailed parameter settings, see Section 4.2.
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4. Scoring and Reliability Report. Representative responses and indicator words, which
are extracted from clustering and classifier, are provided to each expert to score each
equivalent response class. Then, all experts’ scoring will be jointly calculated for
reliability to ensure the objectivity and consistency of the ratings, see Section 3.5.

3.3. Interactive Clustering

We embed the raw response ri to create representations in vector space that reflect
its semantics. We assume that responses in the same equivalent response classes are
semantically similar. The ASSIST uses the pre-trained language model to extract the
semantic representation. First, we segment the original response text and remove stop
words to generate the token series. Then, the tokens are replaced with the d-dimensional
word vectors. Finally, the initial word vector matrix r′i ∈ Rd×nt is obtained, where nt is
the number of tokens. Since the features input to the model must be of fixed length Nt,
the representation vector needs to be modified. If the number of tokens nt < Nt, the
vector is filled with Nt − nt blank vectors, i.e., zero-filling. Otherwise, if nt > Nt, the
excess n − N word vectors will be removed. After the above steps, the word vector matrix
r′′i ∈ Rd×Nt can be obtained. Finally, the sentence representation can be extracted with
any text representation model. In the following section, the word vector and pre-trained
language model is based on an open-source (https://huggingface.co/DMetaSoul/sbert-
chinese-general-v2, accessed on 20 December 2023). Sentence-BERT model [41] and fine-
tuned with the education question and response corpus collected from a Chinese education
platform (https://www.zhixue.com, accessed on 20 December 2023). The semantic sentence
representation generated by Sentence-BERT with frozen parameters is denoted by xi.

The higher the dimension, the more the distances between samples tend to be equal,
so it is impossible to measure the distance relationship between different samples through
distance in the original semantic vector space [42]. Therefore, a dimension reduction tech-
nique is needed to post-process the semantic feature. The uniform manifold approximation
and projection (UMAP), a general non-linear dimensionality reduction algorithm, is used
in the proposed system [27]. There are two steps of UMAP: (1) Learn the manifold structure
in high-dimensional space; (2) Find a low-dimension representation of the manifold. In
step one, the nearest-neighbor-descent algorithm is used, and then the graph is constructed
by connecting the nearest neighbors. The weight in the high-dimension space of edge e
between nodes is denoted as µ(e). The computational details of µ(e) can be found in [43].
In step two, the UMAP wants the topological structure in a low-dimension space to be
preserved in a similar way as possible. Therefore, assume that the weight in low-dimension
space is ν(e) and the edge set is E. The cross-entropy loss function is:

LDR
CE = ∑

e∈E
µ(e) log

(
µ(e)
ν(e)

)
+ (1 − µ(e)) log

(
1 − µ(e)
1 − ν(e)

)
, (1)

where ν(e) = ϕ(||e||L), ϕ(x; a, b) =
(

1 + ax2b
)−1

, and a, b are hyper-parameters of UMAP.
Assume that the nodes connected with edge e are xi and xj, and ||e||L is the distance

in low-dimension space, i.e., ||e||L = ||u(xi)− u(xj)||, where u is the project function.
The reduced semantic features x′ = u(xi) are clustered with HDBSCAN, a hierarchical

density-based clustering algorithm, which considers noise samples as outliers to prevent
unrelated responses from being assigned to any cluster [44]. After initial clustering, every
response x′i is assigned to an equivalent class ci. As mentioned in Definition 2, with the
constraint set {(ri, ci)}K

i=1, the project function u is further trained. The intuition here is to
push the feature x′i to the centroid x̄′i of the class ci. The loss function is:

LDR
DIS =

K

∑
i=1

||u(xi)−
1

nci

nc

∑
j=1

u(x(ci)
j )||, (2)

https://huggingface.co/DMetaSoul/sbert-chinese-general-v2
https://huggingface.co/DMetaSoul/sbert-chinese-general-v2
https://www.zhixue.com
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where nci is the number of samples, x(ci)
j is the j-th sample of class ci, and Euclidean distance

is used here.
Then, the overall metric learning loss is:

LDR = LDR
CE + λLDR

DIS, (3)

where λ is the trade-off hyper-parameter.

3.4. Classifier Training

The corrected clustering result is denoted as {(x′i, c′i)}N
i=1, where c′i is the corrected

assignment with feedback. The corrected clustering results are used in classifier learning.
Here, the BoW model is used to represent the word-level information. For response ri,
the feature wi is the one-hot bag-of-words feature where the length of wi is the size of
dictionary D, and wij = 1 if response ri contains the j-th word of the dictionary, and vice
versa. Therefore, the augmented feature of ri is x′i ⊕ wi. A linear layer with softmax is used
to predict the class of response according to x′i ⊕ wi, i.e.,

ĉi = softmax(W × (x′i ⊕ wi) + b), (4)

where W and b are trainable parameters of linear layer and softmax(xi) =
exp(xi)

∑j exp(xj)
.

With the corrected clustering result, the cross-entropy loss function of this multi-class
classification task is as follows:

LMC
CE =

N

∑
i=1

C

∑
j=1

c′ij log ĉij, (5)

where c′i is the one-hot version of c′i, e.g., c′i = [0, 0, 1, 0] means that c′i = 3.
After training, the weight matrix W is used to discover the indicator words of each

class as inspired by the study in [45]. Specifically, the weight matrix is decomposed into W x
and Ww, corresponding to the semantic feature x′ and bag-of-words feature w, respectively.
Therefore, we rewrite the weight matrix as follows:

W =

[
W (1)

x · · · W (C)
x

W (1)
w · · · W (C)

w

]
. (6)

The weight W (i)
w with size D × 1 is the word-level proxy of class i where each element

represents the importance of the corresponding word. Therefore, for each class i, assign the
top-n words with the highest absolute values in W (i)

w as indicator words. These explanation
results can then be used to measure the clustering quality and help experts review and
score these equivalent response classes.

3.5. Expert Scoring for Equivalent Response Classes

Due to the indicator words being insufficient for experts to score, we select several
representative responses for each equivalent class. In the dimension-reduced semantic
space, the top-k samples closest to the centroid will be selected. For the equation of centroid,
see Equation (2).

The indicator words and representative responses of class i are provided for M experts.
After scoring, we report the inter-rater reliability. Only if the reliability requirement is
satisfied can the score be said to be consistent and stored in the database. For each item,
inter-rater reliability is measured at the rater level and the code level. At the rater level, the
cohen’s kappa is adopted between raters, and the average value of rater pairs is reported.
At the code level, the variance of its scores is adopted, and the average value of codes
is reported.
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Finally, the coding response pool can help automatically score new responses. The
stored average score can be applied directly if a response is similar to an existing equivalent
response class. Only new responses that do not match any class in the response pool are
assigned to experts. However, determining whether a response is entirely new is difficult.
The out-of-distribution detection is used to tackle this challenge [46,47]. Specifically, for a
response ri, assume that the predicted class is c. The similarity between the augmented
feature x′i ⊕ wi and class proxy W (c)

x ⊕ W (c)
w is considered as the confidence:

Sim =
< x′i ⊕ wi, W (c)

x ⊕ W (c)
w >

||x′i ⊕ wi|| · ||W
(c)
x ⊕ W (c)

w ||
, (7)

where < ·, · > refers to dot product.
If the confidence of the multi-class classification is higher than the given threshold,

they can be determined to be similar responses. In all, the pseudo-code of the ASSIST
system is provided in Algorithm 1.

Algorithm 1 The pseudo-code of the ASSIST system.

Input: Raw responses
Output: Trained classifier

1: Pre-processing training responses, extract semantic features, reduce dimension, and
clustering;

2: Experts review clustering result and provide feedback constrained set used in
Equation (2);

3: Metric learning in UMAP as Equation (3);
4: Initialize training set as empty;
5: for cluster i: {xj} do
6: Extract the bag-of-words features {wj} of {xj};
7: Add all samples {(wj, i)} to the training set;
8: Use training set to train the classifier as Equation (4);
9: Extract the importance of each feature in the classifier and arrange it in descending

order. See Section 3.4 and Equation (6);
10: Take the word corresponding to the feature with the highest importance as the

indication word of the cluster;
11: end for
12: Experts scoring and report inter-rater reliability;
13: Output the trained classifier, which is applied in new responses such as test set.

4. Experiments

In this section, we first introduce our real-world responses dataset, baseline methods,
and evaluation metrics of experimental results are described. Then, we show the compara-
tive results of different clustering settings. After that, we report the experimental results
compared with other algorithms to demonstrate the effectiveness of the proposed method
in improving scoring accuracy.

4.1. Dataset Description

We conduct experiments on our large-scale assessment dataset containing Chinese
and History short-answer questions. The dataset comes from final exam questions and
student responses from a high school. There are three Chinese questions and three History
questions, named CHN1 to CHN3 and HIST1 to HIST3, see Figure 3 and Table 1. Among
them, the CHN2, HIST1, and HIST2 are fill-in-blanks about specific knowledge points, and
the CHN1, CHN3, and HIST3 are more complex reading comprehension questions. In the
experiment, 80% of the data were used as the training set, 10% as the validation set, and
10% as the test set. In the validation and the test stage, all answers were scored manually
by eight teachers.
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Table 1. Statistics description of our dataset.

Num. of Samples Num. of Avg Word Score

CHN1 2480 8.42 0-3
CHN2 2391 4.19 0-1
CHN3 2579 15.07 0-5
HIST1 892 4.81 0-2
HIST2 876 3.69 0-2
HIST3 904 7.13 0-3
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Figure 3. Score distribution of items. Orange colour refers to score 0, blue colour refers to score 1,
purple colour refers to score 2, grey colour refers to score 3, yellow colour refers to score 4 and green
colour refers to score 5.

4.2. Experiment Setup
4.2.1. Word Embeddings

For preprocessing, we use LAC (Lexical Analysis of Chinese) [48] word segmentation
toolkit to segment words and remove stop words. We convert numbers, punctuation, and
low-frequency words with a word frequency of less than 2 into specific symbols. Word
embeddings and Sentence-BERT in the semantic feature extraction are fine-tuned on a
large-scale word corpus. Word embeddings do not appear in the pre-trained words that
were randomly initialized.

4.2.2. Parameter Settings

The word embedding dimensionality is 768, and the number of layers of the BERT is
12. In UMAP, the number of neighbors is 5. The effective scale of embedded points is 1, and
the effective minimum distance between embedded points is 0.1. The hyper-parameters a
and b are automatically determined by the above settings. The dimension of the space to
embed into is 20. In HDBSCAN, the minimum number of clustering samples is 4. With
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grid searching, the learning rate is chosen from [0.02, 0.01, 0.001, 0.0005], and λ is chosen
from [0.6, 0.7, 0.8, 0.9]. After tuning on the validation set, the learning rate is 0.01, and λ in
Equation (3) is 0.8 during training.

All network parameters are initialized using the Kaiming method [49], and models
are trained with the Adam optimizer [50]. All models are implemented using the PyTorch
library, and the experiments are conducted on a Linux server equipped with two Intel(R)
Xeon(R) E5-2699 v4 CPUs and four Tesla V100 PCIe GPUs. The user interfaces of the ASSIST
system are shown in Figures 4 and 5.

diligence, work, hard
hardworking

1: Mind of responsibility
2: Serious and responsible

1: Love nature
2: Like animals and plants

Class No. Indicator Word Representative Response Score

1 Details0 1

0 1

0 1

2

3

responsible, serious 
 

1: Hardworking
2: Diligence

nature, animal, plant

Details

Details

Figure 4. User interface of clustering results preview.

Please input new response:

Work hard on farm.

Submit Load from file

Automatic scoring result:

According to the model output, the
highest similarity between this response
and the existing equivalent class 1 is
0.954, the confidence level is high. 
Therefore, the score of this response is 1.

Figure 5. User interface of automatic scoring.
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4.3. Performance on Response Clustering

We evaluate the response clustering performance by Silhouette Coefficient [51], which
takes into account both the compactness (density) and separation (distance) of the clusters.

Baselines contain four clustering methods: K-Means, LDA, HDBSCAN, and interactive
HDBSCAN. We compare the clustering effects of these four methods on the dataset with
10 different parameters, respectively. We adjust the parameter in the clustering algorithm
to control the number of clusters from 5 to 90. The analysis of clustering is based on the
whole dataset. The average of the clustering results of all questions is shown in Figure 6.
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Figure 6. Comparative results of four response clustering methods.

As can be seen from Figure 6, the Silhouette Coefficient value of the interactive
HDBSCAN on the dataset is much higher than other algorithms. Therefore, we choose
interactive HDBSCAN as the clustering algorithm to cluster student responses. In addition,
we can also find that for K-Means and LDA, the larger the number of clusters, the better
the clustering effect will be, and the clustering effect is best when the number of clusters is
around 60 for the HDBSCAN and Interactive HDBSCAN.

4.4. Performance on Automatic Scoring

We choose four code classification metrics and two score agreement metrics for the
evaluation. The Precision is the fraction of True Positive items divided by the total number
of positively predicted items. The Recall is the fraction of True Positive items divided by the
total number of positively classified items. The micro-F1 combines Precision and recall into
a single metric and is often used when significant class imbalances exist. The AUC (Area
Under the ROC Curve) assesses the ability of a model to distinguish between the positive
and negative classes across various probability thresholds. These reported classification
metrics are the averaged values across all codes for a specific item. The RMSE (Root Mean
Square Error) is the average magnitude of the errors between predicted scores and ground
truth scores. The scores are normalized for the sake of comparability. Cohen’s kappa κ̂hc is
the human-computer reliability computed in the test set.

In Figure 2c, we replace the semantic feature extractor from pre-trained Sentence-BERT
to TextCNN [52], BiLSTM [53], and InferSent [25], respectively.

1. BiLTSM and TextCNN. We take BiLSTM in the semantic feature extraction stage.
BiLSTM stands for Bidirectional Long Short-Term Memory. It is a type of recurrent
neural network (RNN) architecture designed to capture sequential dependencies
in data. The bidirectional aspect makes them particularly effective in capturing
dependency patterns in temporal sequences. TextCNN utilizes convolutional layers
to capture local patterns and hierarchical representations in text. The BiLSTM and
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TextCNN are widely used in automatic scoring, such as the rubric-aware model [54]
and the attention-based scoring model [55].

2. BERT-Refine: This method adds a semantic refinement layer after the BERT backbone
to refine the semantics of the BERT outputs, which consists of a Bi-LSTM network and
a Capsule network with position information in parallel [6]. We reproduce the feature
extractor to our pipeline but without the proposed triple-hot loss strategy because we
model the automatic coding as classification instead of regression.

3. SR-Combined: This method proposes a feature extractor based on InferSent and
incorporates class-specific representatives obtained after clustering [8]. We use the
InferSent, combined token-sentence similarity, as mentioned in this work, to gen-
erate the predicted code while keeping the clustering as our result for the sake of
comparability.

4. Sentence-BERT: As mentioned in Section III.C, the pre-trained sentence-BERT is used
as our default feature extractor, and this model is also used in recent automatic scoring
work such as [56].

5. w/o Semantic and w/o bag-of-words: Based on sentence-BERT, We ablate specific
modules to show the effectiveness. The w/o semantic means that we only use bag-of-
words features to train the classifier, and the w/o bag-of-words means that we only
use semantic features to train the classifier.

We report the scoring results of responses using the baseline methods and the proposed
method on the test sets of all Chinese and History questions, respectively. The experiments
are repeated five times with different random seeds, and we count the mean value and
standard derivation as Table 2. The reported performance on test-stage OOD detection
and inter-rater reliability is shown in Table 3. The reported value in each discipline, as
shown in Table 4, is averaged across three items. As can be seen from Table 4, the
proposed method performs significantly better than the baseline, i.e., “w/o interact”, on
both Chinese and History questions, which shows that the feedback from experts can help
to improve the final performance of automatic coding by fine-tuning the representation.
Additionally, the pre-trained model-based methods outperform the BiLSTM and TextCNN,
which show an improvement in feature quality for large-scale corpora. At the same time,
it can also be seen that the proposed method of combining bag-of-words features and
semantic features for classifier training outperforms methods of using only bag-of-words
features or semantic features.

Table 2. The reported performance on automatic scoring and error analysis.

Item Precision Recall micro-F1 AUC RMSE κ̂hc

CHN1 0.723 ± 0.074 0.644 ± 0.066 0.752 ± 0.079 0.671 ± 0.073 0.136 ± 0.021 0.773 ± 0.087
CHN2 0.755 ± 0.069 0.657 ± 0.064 0.741 ± 0.082 0.706 ± 0.068 0.114 ± 0.030 0.826 ± 0.053
CHN3 0.724 ± 0.082 0.685 ± 0.076 0.697 ± 0.069 0.705 ± 0.063 0.152 ± 0.033 0.807 ± 0.059

HIST1 0.787 ± 0.080 0.761 ± 0.072 0.740 ± 0.077 0.808 ± 0.049 0.185 ± 0.026 0.699 ± 0.091
HIST2 0.749 ± 0.087 0.794 ± 0.068 0.764 ± 0.092 0.779 ± 0.074 0.172 ± 0.019 0.724 ± 0.072
HIST3 0.759 ± 0.081 0.719 ± 0.058 0.803 ± 0.047 0.786 ± 0.078 0.139 ± 0.029 0.750 ± 0.083

Table 3. The reported performance on test-stage OOD detection and inter-rater reliability.

OOD Detection on Test Set Inter-Rater Reliability

Item Precision Recall F1 OOD% κ̄hh v̄c

CHN1 0.727 0.667 0.696 4.84% 0.815 0.127
CHN2 0.588 0.909 0.714 4.60% 0.793 0.218
CHN3 0.625 0.769 0.689 5.04% 0.921 0.262

HIST1 0.714 0.833 0.769 6.74% 0.672 0.301
HIST2 0.571 0.800 0.667 5.68% 0.843 0.179
HIST3 0.545 0.750 0.632 8.89% 0.758 0.245
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Table 4. Comparison of the proposed method and other baseline methods on four average metrics in
Chinese and History questions.

CHN HIST

Method Precision Recall micro-
F1 AUC RMSE κ̂hc Precision Recall micro-

F1 AUC RMSE κ̂hc

BiLSTM 0.687 0.635 0.697 0.643 0.132 0.791 0.723 0.704 0.749 0.703 0.145 0.679
w/o interact 0.663 0.475 0.594 0.617 - - 0.618 0.488 0.538 0.544 - -

TextCNN 0.701 0.646 0.721 0.656 0.117 0.748 0.741 0.732 0.748 0.695 0.127 0.694
w/o interact 0.571 0.463 0.618 0.536 - - 0.611 0.564 0.572 0.471 - -

BERT-Refine[6] 0.735 0.656 0.725 0.707 0.171 0.804 0.753 0.769 0.762 0.750 0.183 0.742
w/o interact 0.436 0.378 0.461 0.533 - - 0.485 0.558 0.506 0.524 - -

SR-Combined [8] 0.719 0.655 0.738 0.680 0.153 0.810 0.745 0.732 0.772 0.764 0.153 0.706
w/o interact 0.738 0.844 0.639 0.513 - - 0.742 0.581 0.696 0.650 - -

Sentence-BERT 0.734 0.662 0.730 0.694 0.134 0.802 0.765 0.758 0.769 0.791 0.165 0.724
w/o interact 0.721 0.723 0.679 0.683 - - 0.699 0.651 0.870 0.784 - -

w/o semantic 0.711 0.617 0.703 0.657 0.182 0.663 0.752 0.733 0.752 0.827 0.123 0.676
w/o bag-of-words 0.679 0.625 0.669 0.641 0.126 0.775 0.676 0.711 0.934 0.787 0.141 0.768

4.5. Discussion on Reliability and Efficiency

To measure the inter-rater reliability, we report the Cohen’s kappa κ̄hh between raters,
and the variance v̄c of the ratings of all possible codes, as shown in Table 3. The reported
value is the average. If there are M raters, the κ̄hh is the average of all (M

2 ) =
M(M−1)

2 pairs.
If there are C codes, all scores of each code construct an array, and the v̄c is the average of
variances of all arrays. Then, all scores are normalized to 0 to 1 to achieve comparability
between reported metrics.

We find the following: (1) The average Cohen’s kappa between human raters is in the
range of 0.672 to 0.921, and the average variance of scores is in the range of 0.127 to 0.301;
(2) The higher Cohen’s kappa between human raters, the higher the average variance of
scores; (3) The inter-rater reliability of CHN dataset is generally higher than HIST dataset;
(4) The inter-rater reliability is positively correlated with the number of clusters and the
maximum score and negatively correlated with the average length of responses.

We report the clustering before and after expert correction, as shown in Table 5. The
#Clusters means the number of clusters, the #Resp. means the number of responses
in each cluster, and the Diff. means the edit distance of the cluster state before and
after correction, i.e., the minimum number of single-response edits. For example, before
correction, there are 3 clusters C1, C2, C3 and 5 responses R1, R2, R3, R4, R5, and the state
is C1 = {R1, R2}, C2 = {R3, R4}, C3 = {R5}. After correction, there are 2 clusters C1, C2,
and the state is C1 = {R1, R2, R3}, C2 = {R4, R5}. The minimal edit is moving the R3 from
C2 to C1 and moving the R5 from C3 to C2, therefore, the edit distance is 2. We find that as
the score increases, the number of clusters shows a decreasing trend for the same number
of samples, i.e., the mean number of responses decreases with the score increases. As the
possible score values increase, the difference between before and after correction increases.

Table 5. The details of interactive clustering.

Before Correction After Correction

Item Score #Cluster mean
(#Resp.)

max
(#Resp.) #Clusters mean

(#Resp.)
max

(#Resp.) Diff.

0 - - - 21 26.64 38 -
1 - - - 16 18.10 51 -

CHN1 2 - - - 17 29.76 59 -
3 - - - 9 69.88 106 -

All 61 32.52 114 63 31.49 106 67
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Table 5. Cont.

Before Correction After Correction

Item Score #Cluster mean
(#Resp.)

max
(#Resp.) #Clusters mean

(#Resp.)
max

(#Resp.) Diff.

0 - - - 19 9.96 14 -
CHN2 1 - - - 26 66.29 105 -

All 47 40.70 94 45 42.51 105 53

0 - - - 13 9.85 15 -
1 - - - 18 17.55 28 -
2 - - - 14 24.64 33 -

CHN3 3 - - - 23 21.01 30 -
4 - - - 9 24.09 47 -
5 - - - 10 57.41 98 -

All 87 23.71 103 87 23.71 98 185

0 - - - 15 10.61 27 -

HIST1 1 - - - 13 11.75 23 -
2 - - - 26 15.45 31 -

All 55 12.97 31 54 13.21 31 92

0 - - - 18 5.65 14 -

HIST2 1 - - - 22 16.34 29 -
2 - - - 13 18.42 27 -

All 54 12.98 30 53 13.22 29 64

0 - - - 17 8.46 17 -
1 - - - 25 7.40 18 -

HIST3 2 - - - 19 15.02 26 -
3 - - - 6 18.18 35 -

All 64 11.30 36 67 10.79 35 89

5. Conclusions

This research proposes a novel interactive response coding system called ASSIST to
address the challenge of scoring labor intensity in large-scale assessments. The proposed
system employs a two-stage process: response clustering and classifier training. First, raw
responses are clustered interactively to generate specific codes with the experts’ feedback
while ensuring that the clusters accurately reflect the diversity and complexity of student
responses. This interactive clustering process involves the creation of representative re-
sponses for each cluster, which are critical for human scoring. Then, a classifier is trained
based on the clustered data. The classifier not only learns to assign scores to new responses
but also extracts indicator words for each response class, thus aiding in the interpretability
and transparency of the scoring process. Experts use these indicator words and represen-
tative responses to score equivalent response classes, ensuring consistency and reliability
in the scoring process. Moreover, the ASSIST system incorporates out-of-distribution de-
tection to identify and handle responses that do not fit well into any of the pre-defined
clusters, further enhancing the robustness and adaptability of the system.

This system not only reduces the workforce required for scoring but also improves the
accuracy and consistency of the scores. We report the metrics on automatic scoring and
comparison with ablation methods without interactive clustering. The experimental results
of our dataset, concluding with six items from two disciplines and eight experts, demon-
strate significant improvements in clustering quality and scoring accuracy, with average
gains of 14.48% and 18.94%, respectively. Additionally, we report inter-rater reliability,
out-of-distribution rates, and cluster statistics before and after interaction, confirming the
effectiveness and reliability of the proposed ASSIST system.
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6. Limitations and Future Works

The system developed in this research is only evaluated in two disciplines, Chinese
and History, and all responses are texts without formulas or images. This limits our
approach to semantic understanding of short texts. We believe the method can be extended
to other language datasets with appropriate multilingual pre-trained language models.
However, understanding logical information such as formulas remains difficult. Related
work on the chain of thought [57] may be helpful. The chain of thought prompt enhances
the LLMs’ logical ability and is applied in automatic math problem-solving.

Moreover, due to human resource constraints, once the experts have scored it once,
they will have experience with the responses of items. This results in many variables, such
as the epochs of interactions, being difficult to control. It is also difficult to apply other
automatic coding methods to conduct an adequate performance comparison since this
requires repeated manual coding and scoring of the same responses. Additionally, our
students and coding experts come from the same school and have similar backgrounds,
which makes it challenging to conduct a complete analysis of endogenous variables.

In future research, we aim to refine and extend the developed system by exploring the
following directions. First, we intend to enhance the models employed in the classifier, such
as the Bayesian neural network, to improve further its capacity to handle diverse responses
in a more explainable way. Second, we aim to introduce adaptive clustering strategies
that can dynamically adjust to evolving patterns in student responses. Finally, designing
prompts for LLMs such as GPT-4 with experts’ feedback is also a potential direction.
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