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Abstract: Through advances in AI-based computer vision technology, the performance
of modern image classification models has surpassed human perception, making them
valuable in various fields. However, adversarial attacks, which involve small changes to
images that are hard for humans to perceive, can cause classification models to misclassify
images. Considering the availability of classification models that use neural networks,
it is crucial to prevent adversarial attacks. Recent detection methods are only effective
for specific attacks or cannot be applied to various models. Therefore, in this paper, we
proposed an attention mechanism-based method for detecting adversarial attacks. We
utilized a framework using an ensemble model, Grad-CAM and calculated the silhouette
coefficient for detection. We applied this method to Resnet18, Mobilenetv2, and VGG16
classification models that were fine-tuned on the CIFAR-10 dataset. The average perfor-
mance demonstrated that Mobilenetv2 achieved an F1-Score of 0.9022 and an accuracy of
0.9103, Resnet18 achieved an F1-Score of 0.9124 and an accuracy of 0.9302, and VGG16
achieved an F1-Score of 0.9185 and an accuracy of 0.9252. The results demonstrated that
our method not only detects but also prevents adversarial attacks by mitigating their effects
and effectively restoring labels.

Keywords: adversarial attack; AI security; computer vision; explainable AI

1. Introduction
With the rapid advancement and widespread adoption of artificial intelligence (AI) in

fields such as robotics, facial recognition, and autonomous driving, deep neural network
(DNN)-based models play a key role in vision-related applications. These applications
depend on accurate and reliable visual perception, making the robustness of the DNNs
highly significant. However, as DNNs become more widely used, their vulnerabilities
to adversarial attacks present serious challenges. These attacks mislead the classification
model’s prediction by subtly perturbing the input images [1–4]. Although these perturba-
tions are imperceptible to human observers, they can cause significant misclassification
issues, potentially leading to serious consequences in critical systems that require high
reliability.

Adversarial attacks typically manipulate input images using either black-box or white-
box techniques [5–10]. Black-box attacks only require limited access to the model, while
white-box attacks assume complete knowledge of the model’s architecture and parameters.
Various detection methods have been proposed to prevent these attacks, including filtering
techniques and adversarial training. However, these approaches have some limitations.
For instance, adversarial training is only effective against the specific types of attacks it has
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been trained on, being unable to generalize to unseen attacks. Similarly, filtering techniques,
which involve manipulating input images to mitigate adversarial attacks, are attack-specific
and may be ineffective against other adversarial methods [11–13].

To address these limitations, we proposed a method designed to effectively detect and
prevent various types of adversarial attacks. The proposed method utilizes an ensemble
model for label restoration and analyzes activation maps generated by Grad-CAM for
both the original label and the restored label. The activation maps highlight the regions
of the input image that are most influential in the model’s decision-making process. By
leveraging the silhouette coefficient, a metric used to evaluate clustering quality, the method
compares the positional differences of significant pixels between the activation maps. A
threshold-based binary classification scheme is then applied to classify input images as
either adversarial or normal. This approach demonstrates improved generalization and
robustness against a wide range of adversarial attacks.

This study makes the following key contributions:

• Unified Detection and Prevention Framework: The proposed method not only de-
tects adversarial attacks but also provides a mechanism to mitigate their effects. By
leveraging an ensemble model label restoration process and analyzing activation maps,
the approach helps realign the adversarial inputs more closely to their original labels,
effectively reducing the adversarial influence and enhancing model robustness.

• Explainable and Generalized Adversarial Detection: This study introduces a novel
combination of Grad-CAM and silhouette coefficients to identify adversarial attacks
with high precision. The method’s explainable nature enables the visualization of im-
portant regions that are affected by adversarial perturbations, providing interpretabil-
ity and adaptability across various attack types and neural network architectures.

• Scalable Defense Across Diverse Models: The framework demonstrates its scalabil-
ity and effectiveness across lightweight (Mobilenetv2) and heavyweight (Resnet18,
VGG16) architectures, making it suitable for deployment in resource-constrained envi-
ronments. Furthermore, the results suggest its potential to generalize across unseen
attack methods, strengthening both the detection and prevention capabilities of AI
systems in real-world scenarios.

This paper describes related work in Section 2 and presents the adversarial attacks and
detection method used in this paper in Section 3. Section 4 presents the evaluation metrics,
experimental setup, experimental results, comparison results, discussion, and ablation
study. Section 5 describes the conclusion.

2. Related Work
The white-box attacks used in this paper utilize information about the model. The

Fast Gradient Sign Method (FGSM), introduced by Goodfellow et al. [5], is a single-step
attack that leverages the gradient of the loss function with respect to the input image. It
perturbs the input in the direction that maximizes the loss using the sign of the gradient.

Projected Gradient Descent (PGD), proposed by Madry et al. [6], is an iterative ex-
tension of the FGSM. It performs multiple steps of gradient-based updates, projecting
the perturbation onto a constrained space after each step. This iterative approach allows
PGD to find more potent adversarial examples while maintaining a specified perturbation
budget.

Carlini–Wagner (C&W), developed by Carlini and Wagner [7], formulates the attack as
an optimization problem. It aims to find the smallest perturbation that causes misclassifica-
tion while balancing the perturbation size and the effectiveness of the attack. This method
is known for producing highly effective adversarial examples with minimal distortion.
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DeepFool, introduced by Moosavi-Dezfooli et al. [8], iteratively computes the minimal
perturbation required to cross the decision boundary of the classifier. It approximates the
classifier as a linear model in each iteration, making it efficient while still able to produce
powerful adversarial examples. DeepFool is particularly noted for its ability to find small
perturbations that lead to misclassification.

The Basic Iterative Method (BIM), proposed by Kurakin et al. [9], is an iterative version
of the FGSM. It applies the FGSM multiple times with a smaller step size, clipping the
values after each iteration to ensure they remain within a specified neighborhood of the
original image. Additionally, various other techniques exist and are summarized in a
survey paper [14].

There are detection methods that operate through modifying the input image. Xu et
al. [11] proposed a detection method that identifies adversarial examples through input
image manipulation prior to model inference, eliminating the need for the adversarial
training of the base model.

Zheng et al. [15] proposed a method that detects adversarial attacks by modeling
the intrinsic properties of DNNs. The core idea is to utilize the output distributions of
the hidden neurons in DNNs when presented with natural inputs to detect adversarial
examples.

Carrara et al. [16] proposed capturing the internal representation differences between
adversarial and normal inputs based on statistical features extracted from hidden layers
and using these features as the input to a classifier for detection.

A related method, similar to [11], combined image preprocessing techniques, such
as brightness adjustments and color inversion, with Grad-CAM analysis [12]. Using the
Grad-CAM visualization module, activation maps are extracted to highlight the areas
where the classification model focuses on the input image. These activation maps are then
analyzed to identify adversarial examples based on their unique characteristics.

Pellicier et al. [13] proposed a prototype-based method using the CIFAR-10 dataset.
This approach extracts features for each class, creates prototypes, and compares input
images to these prototypes to detect adversarial examples. They also defend against such
attacks using a Denoising Autoencoder trained on adversarial data.

Li et al. [17] proposed a system that estimates whether an input image is clean or
adversarial using a fuzzy system. To achieve this, a fuzzification network generates feature
maps, which are used to form fuzzy sets representing the degree of difference between the
original and adversarial images. Fuzzy rules define the detection boundaries, enhancing the
detection performance while being compatible with pre-trained neural network classifiers.
Table 1 summarizes detection methods.

Table 1. This table summarizes the characteristics, advantages, and disadvantages of each method.

Detection Method Characteristic Pros Cons

[11] Filtering
It requires no additional

training and can be applied
to various models.

It is effective against
specific types of attacks.

[15]

Using the Distribution
Differences of Hidden
Neurons (Attack and

Benign)

It can detect various types
of attacks and can be

applied to various models.

The model’s flexibility is
restricted due to its using
only the GMM (Gaussian

Mixture Model) for
modeling hidden state

distributions, and is
detection of white-box
attacks is insufficient.
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Table 1. Cont.

Detection Method Characteristic Pros Cons

[16]
Using Differences Between
Statistical features (Attack

and Benign)

It can detect adversarial
attacks without requiring
additional models or data.

It is effective against
certain types of attacks but

struggles to detect
adversarial examples

between visually similar
classes.

[12]
Using Differences Between

Activation Maps (Attack
and Benign)

It can be applied to various
models and attacks.

Performance is reduced
when using original data

and it is only effective
against specific types of

attacks.

[13] Prototype Comparison It can be applied to various
models and attacks.

Performance using the
original data is reduced

[17]
Fuzzy System (Differences

Between Attack and
Benign

It can be applied to various
types of attack and model.

There are limitations in
that fuzzy logic is not
implemented in the

encoder, and prototypes
are not sufficiently utilized.

Previous studies have limitations resulting from significant performance degradation
when using original images, were limited to specific types of attacks, or were model-
dependent. However, our proposed approach can be applied to various models, can detect
various types of attacks, and shows the potential to detect unseen attacks.

3. Adversarial Attack Detection
3.1. Adversarial Attack

Adversarial attacks involve making small changes to images that are hard for humans
to detect but can mislead a model into making incorrect predictions. This paper used five
different attack methods—the FGSM, DeepFool, C&W, PGD, and BIM—to experiment with
our method on Table 2.

Table 2. This table provides a summary of adversarial attacks, categorizing them based on attack
type, targeted/non-targeted attacks, and image-specific/universal perturbations.

Method Attack Type Targeted/Non-Targeted Image-Specific/Universal

L-BFGS [18] White-box Targeted Image-specific

FGSM [5] White-box Targeted Image-specific

BIM [9] White-box Non-targeted Image-specific

JSMA [19] White-box Targeted Image-specific

C&W [7] White-box Targeted Image-specific

DeepFool [8] White-box Non-targeted Image-specific

Universal perturbations [20] White box Non-targeted Universal

ATNs [21] White-box Targeted Image-specific

PGD [6] White-box Non-targeted Image-specific
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The FGSM is a foundational adversarial attack that uses the L∞ norm to generate
perturbations. The goal is to mislead a neural network with minimal changes to the input
image. The perturbation is computed as follows:

η = ϵ · sign(∇x J(θ, x, y)), (1)

where ∇x J is the gradient of the loss function J with respect to the input x, θ represents
the model parameters, and ϵ is the maximum allowable perturbation. The FGSM applies a
single perturbation step, creating adversarial examples with minimal computational effort.

Building upon the FGSM, the BIM uses an iterative approach to refine perturbations
for stronger adversarial attacks. Starting with the original image I0 = Ic, BIM iteratively
updates the perturbed image as follows:

Ii+1
ρ = Clipϵ{Ii

ρ + α · sign(∇x J(θ, Ii
ρ, y))}, (2)

where α is the step size, Clipϵ ensures the perturbations stay within the ϵ-ball, and Ii
ρ

represents the image after i iterations. The BIM allows for more precise attacks compared
to the FGSM.

PGD method extends the BIM by incorporating projection to constrain perturbations
within the allowed ϵ-ball. PGD iteratively updates the perturbed image as follows:

x′i+1 = Clip(x′i + α · sign(∇x J(θ, x′i , y)), x − ϵ, x + ϵ), (3)

where Clip ensures that the image remains within valid pixel ranges and the perturbation
constraint. PGD enhances the robustness of the defense mechanisms against attacks.

C&W attacks generate adversarial examples by solving an optimization problem that
balances the perturbation magnitude and attack success rate:

min ∥δ∥2 + c · f (x + δ), (4)

where δ is the adversarial perturbation, ∥δ∥2 represents its L2 norm, c is a hyperparameter
controlling the trade-off, and f (x + δ) is a function that ensures the attack leads to the
desired misclassification. C&W is known for producing imperceptible perturbations with
high effectiveness.

DeepFool adopts a geometric approach, iteratively projecting the input image onto
the decision boundary of the classifier. The method minimizes perturbation r such that

∆(x; k) := min
r

∥r∥2 subject to k(x + r) ̸= k(x), (5)

where ∥r∥2 is the L2 norm of the perturbation, k(x) represents the classifier’s output, and
the condition ensures that the perturbed image x + r is misclassified. DeepFool is efficient
in crafting minimal-norm perturbations.

Adversarial attacks were implemented using the library functions provided by tor-
chattacks. The parameters for each attack were set to their default values, as defined in
torchattacks.

3.2. Label Sanitization

This section described the ensemble model used for label restoration, which corre-
sponds to the Label Sanitization part in Figure 1. To perform Label Sanitization on the input
image, which can be either an original or an adversarial example, we used an ensemble
model consisting of an autoencoder and a classification model. The configuration settings,
attack parameters, and datasets used for training are described in Section 4.1.
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Figure 1. This Flowgraph represents our detection method.

An autoencoder is a generative model designed to compress an input image using
an encoder and then reconstruct it using a decoder, making the output as similar to the
input as possible. Using this feature, we utilized the Encoder–Decoder architecture of the
Vision Transformer, which allows for a patch-based analysis of both the local features and
the global context presented within the image. Figure 2 shows the procedure used to train
our ensemble model; the architecture of the autoencoder can also be observed.

Figure 2. This figure represents our ensemble model’s training procedure.
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For the classification model, we selected Mobilenetv2 as a lightweight model and
Resnet18 and VGG16 as heavyweight models.

The ensemble model is trained by combining the autoencoder and classification model.
The loss function minimizes two objectives: crossentropy for classification and mean
squared error (MSE) for reconstruction. As shown in Figure 2, the autoencoder calculates
the reconstruction loss, while the classification model computes the classification loss on
reconstructed adversarial examples. These loss values are combined, and the training is
carried out to minimize the total loss. The classification model was trained to correctly
classify the adversarial examples reconstructed by the autoencoder, while the autoencoder
was trained to generate images that the classification model can classify correctly.

In conclusion, in Figure 1, the input image is inferred by the classification model to
obtain Label A. The ensemble model’s autoencoder reconstructs the input image, and the
ensemble model’s classification model infers the reconstructed image to obtain Label B.

3.3. Attention Analysis for Identifying Significant Pixels

This section corresponds to the Attention Analysis for Identifying Significant Pixels
presented in Figure 1 and describes the method used to identify and analyze significant
pixels. Grad-CAM is used after Label Sanitization to identify significant pixels. This
attention-based Explainable AI (xAI) method provides a quick and intuitive way to measure
pixel importance during classification [22]. It is represented as follows:

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(6)

where yc is the score for class c given the input image I, and Ak represents the activation
map k in the last convolutional layer. ∂yc

∂Ak
ij

denotes the gradient of yc with respect to Ak.

The importance weights αc
k for each activation map k are obtained by averaging these

gradients. Z is the size (number of pixels) of Ak, and i and j represent the spatial locations
in the activation map. These weights are then used to compute a weighted combination of
activation maps:

Lc
Grad-CAM = ReLU

(
∑
k

αc
k Ak

)
(7)

ReLU is used to highlight features that have a positive influence on the class of interest.
In Figure 1, Label A, predicted by the classification model, and Label B, restored by

the ensemble model, are applied to the input image to extract the activation maps. The
activation maps are extracted using the Grad-CAM library. In the Grad-CAM tools, the
target_layers parameter is used to specify the layer that should be extracted from the
classification model, input_tensor represents the input image, and the targets correspond
to the label values of the image. In this process, the target_layers used are features[−1] for
Mobilenetv2 and VGG16, and layer4[−1] for Resnet18.

Figure 3 shows examples of the original example, the FGSM adversarial example, and
the reconstructed example, and the corresponding activation maps for each. (c-1) shows
the reconstructed image and activation map when the input image is adversarial, while
(c-2) shows the reconstructed image and activation map when the input image is benign. It
can be observed that the significant pixels in the activation map change when the input
image is adversarial, whereas the significant pixels remain unchanged when the input
image is benign. Specifically, if the Grad-CAM tool is used to extract the activation map
after reconstructing (a) example, it results in (c-1). Similarly, if the Grad-CAM tool is used
to extract the activation map after the reconstructed (b) example, it results in (c-2). In this
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process, the target_layers are set to features[−1], the input_tensor corresponds to each
example, and the targets are the respective Label A and Label B of each example.

Figure 3. This figure shows samples of the adversarial example, original example, and reconstructed
example on Resnet18. (a) indicate the adversarial example obtained using the FGSM and the activation
map. (b) is an original example, while (c-1) indicates an example reconstructed using the ensemble
model when the input image is adversarial. (c-2) indicates reconstructed examples using the ensemble
model when the input image is benign.

3.4. Suspicious Example Binary Classification

This section corresponds to the Suspicious Example Binary Classification shown in
Figure 1 and describes the method used for the binary classification of suspicious examples
using the extracted significant pixels.

After extracting the activation map, the silhouette coefficient was used to conduct a
precise and efficient analysis of whether the positions of significant pixels had changed.
For example, in the activation map shown in Figure 1, the light regions contained the most
significant pixels. The coordinates of these regions were extracted (N in total) and binary
classification was performed based on the silhouette coefficient values.

The silhouette coefficient is a metric used to evaluate the quality of the clusters by
comparing the distance between data points within the same cluster and between different
clusters. The formula and range for the silhouette coefficient are as follows:

s(i) =
b(i)− a(i)

max(a(i), b(i))
, (−1 ≤ s ≤ 1) (8)

where a(i) represents the average distance to all other data points in the same cluster,
and b(i) represents the average distance to all data points in the nearest different cluster.
The silhouette coefficient s(i) ranges from −1 to 1, with higher values indicating a better
clustering of data points. A negative s(i) indicates incorrect clustering, a value close to 0
indicates that the data point is on the boundary between clusters, and a value close to 1
indicates well-clustered data points.

Therefore, in this paper, a silhouette coefficient value close to 1 indicates that the
positions of significant pixels in the image have changed, suggesting that the image was
attacked. A value close to 0 indicates that the positions of significant pixels did not change
significantly, suggesting that the image was not attacked. A negative value indicates that
the coordinates were mixed, suggesting that the image was not attacked.

In conclusion, in Figure 1, significant pixels were extracted from activation maps A
and B, respectively. The key coordinates were selected as the top N locations with the
highest importance values in the activation map. By default, 10 coordinates were extracted
from each map, though this number can vary depending on the image size. The silhouette
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coefficient was then calculated for the 20 extracted coordinates, and the presence of an
attack was determined based on whether the value was closer to 0 or 1.

Figure 1 shows the flowgraph of the proposed method to prevent adversarial attacks.
The ensemble model restores the input image’s label. Using label A of the input image and
restored label B, activation maps were extracted through Grad-CAM. From each activation
map, the coordinates of the top N most significant pixels were selected, and silhouette
coefficients were calculated. If the coefficient was greater than 0, the image was classified
as abnormal; otherwise, it was classified as benign.

4. Experiments Results
4.1. Experimental Environment and Dataset

The experiments were conducted in a Desktop environment, utilizing an Intel Core i5
14500 CPU, Nvidia GeForce RTX 4070 Ti SUPER GPU, and 64GB of RAM.

The autoencoder was first trained using the CIFAR-10 dataset. The images were
resized to 224 × 224, with preprocessing steps including a RandomCrop operation set to
padding 4, RandomHorizontalFlip set to its default value, and Normalize using default
parameters. The training utilized the Adam optimizer with a learning rate of 0.0001, the
model was trained for 20 epochs, and the loss function used was Mean Squared Error
(MSE).

Following this, a classification model was fine-tuned on the CIFAR-10 dataset using a
pre-trained model from the torchvision.models library, trained on ImageNet. The dataset
pre-processing steps were the same as those used for the autoencoder. The classification
model was trained using the Adam optimizer, with a learning rate of 0.0001 and 20 epochs,
and the loss function employed was Crossentropy. Table 3 shows that Mobilenetv2 achieved
a classification performance of 93.76%, Resnet18 achieved 94.98%, and VGG16 achieved
92.85%.

Table 3. This table shows the performance of the fine-tuned classification models.

Model Performance

Mobilenetv2 [23] 93.76%
Resnet18 [24] 94.98%
VGG16 [25] 92.85%

Subsequently, the trained classification model and autoencoder were combined and
further trained as an ensemble model for Label Sanitization. This combined model was
trained without freezing the layers, and the dataset pre-processing steps remained con-
sistent with those of the earlier stages. The dataset used for training the ensemble model
consisted of both original examples and adversarial examples. Adversarial examples were
generated using two attack methods: the FGSM and PGD. The FGSM introduced less
sophisticated pixel perturbations, while PGD employed more sophisticated perturbations.

For the ensemble model used in the FGSM version, the training data included 50,000
original training samples and 50,000 FGSM-adversarial training samples. Similarly, for the
PGD version, the training data consisted of 50,000 original training samples and 50,000
PGD-adversarial training samples. The parameters for these attacks were configured
according to the settings specified in Table 4. Adversarial attacks were implemented using
the torchattacks library.

The loss function was calculated as the total Loss by combining the crossentropy, used
for training the classification model, and MSE, used for training the autoencoder. The
Adam optimizer, with a learning rate of 0.0001, was used to jointly train the autoencoder
and classification model. The optimizer was applied to the trainable parameters of both
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models, including the encoder of the autoencoder and the feature extractor and classifier
of the classification model. Only parameters with requires_grad=True were selected for
optimization to ensure efficient learning. The ensemble model was trained for 20 epochs,
and a StepLR scheduler was applied to the optimizer with a step size of 10 and a gamma
value of 0.1.

Table 4. This table shows the attack success rates for each model, along with the parameter settings
and distance measures for each attack. The attack functions provided by the torchattacks library were
used.

Model Attack Type Success Rate Parameter Distance Measure

Mobilenetv2

FGSM [5] 82.40% (7725/9376) eps = 8/255 L∞ norm

PGD [6] 100% (9374/9376)
eps = 8/255,

alpha = 2/255,
steps = 4

L∞ norm

C&W [7] 100% (9374/9376) c = 1, kappa = 0, steps =
50, overshoot = 0.02 L2 norm

DeepFool [8] 75.73% (7099/9376) steps = 50,
overshoot = 0.02 L2 norm

BIM [9] 100% (9374/9376)
eps = 8/255,

alpha = 2/255,
steps = 10

L∞ norm

Resnet18

FGSM [5] 84.01% (7980/9498) eps = 8/255 L∞ norm

PGD [6] 100% (9498/9498)
eps = 8/255,

alpha = 2/255,
steps = 4

L∞ norm

C&W [7] 100% (9498/9498) c = 1, kappa = 0, steps =
50, overshoot = 0.02 L2 norm

DeepFool [8] 65.15% (6188/9498) steps = 50,
overshoot = 0.02 L2 norm

BIM[9] 100% (9498/9498)
eps = 8/255,

alpha = 2/255,
steps = 10

L∞ norm

VGG16

FGSM [5] 78.73% (7311/9285) eps = 8/255 L∞ norm

PGD [6] 96.91% (8999/9285)
eps = 8/255,

alpha = 2/255,
steps = 4

L∞ norm

C&W [7] 100% (9285/9285) c = 1, kappa = 0, steps =
50, overshoot = 0.02 L2 norm

DeepFool [8] 84.62% (7857/9285) steps = 50,
overshoot = 0.02 L2 norm

BIM [9] 97.84% (9085/9285)
eps = 8/255,

alpha = 2/255,
steps = 10

L∞ norm

To determine the threshold, a default value was established through experiments. The
Resnet18 classification model and the Resnet18FGSM ensemble model were used, and the
silhouette coefficient distributions for five types of adversarial attacks were visualized. The
distribution of the silhouette coefficients can be observed in Figure 4. Most original images
had silhouette coefficients close to 0, while adversarial examples had coefficients close to 1.
Therefore, the default value of the threshold was set to 0.

The attack success rates and parameters of the adversarial attacks are summarized in
Table 4. The parameters of the adversarial attacks were set to the default values provided
by torchattacks. These are derived by calculating the attack success rate after adversarial
attacks were applied to the original examples that the classification models correctly
classified. The attack success rates of PGD, C&W, and BIM were high; these rates can
vary depending on the parameter settings.
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Figure 4. This figure shows the silhouette coefficient distribution of the dataset used for testing.
The classification model that was utilized is Resnet18, while the ensemble model that was used
is Resnet18FGSM. Blue represents original images, and red represents adversarial examples. The
x-axis represents the silhouette coefficient values, and the y-axis represents the number of extracted
silhouette coefficients.

4.2. Evaluation Metrics

The detection performance of the adversarial attack techniques was evaluated through
looking at their precision, recall, F1-score, and accuracy.

Precision is the ratio of true positive predictions to the total number of positive
predictions made by the model. It indicates how many of the predicted positive samples
were actually positive.

Precision =
True Positives

True Positives + False Positives
(9)

Recall is the ratio of true positive predictions to the total number of actual positive
samples. It indicates how many of the actual positive samples were correctly predicted by
the model.

Recall =
True Positives

True Positives + False Negatives
(10)

F1-Score is the harmonic mean of precision and recall. It provides a single metric that
balances both precision and recall, providing a better measure of the model’s performance,
especially when the class distribution is imbalanced.

F1-Score = 2 × Precision × Recall
Precision + Recall

(11)

Accuracy is the ratio of the number of correct predictions to the total number of
predictions. It indicates the overall correctness of the model’s predictions.

Accuracy =
True Positives + True Negatives

Total Predictions
(12)

4.3. Adversarial Attack Detection Performance

In this paper, we used FGSM, PGD, C&W, DeepFool, and BIM attacks. We applied
each attack to the 10,000 images in the CIFAR-10 test sets and aimed to simultaneously
detect both the successfully attacked images and the original test sets.

Table 5 summarizes the experimental results of the proposed method. When applying
the detection method to Resnet18, Mobilenetv2, and VGG16, the three models showed
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similar performance. For the FGSM, Mobilenetv2PGD showed the highest recall at 0.9339,
but, Resnet18FGSM demonstrated a better F1-score and accuracy, indicating a more balanced
detection capability. For the BIM and PGD attacks, which are similar to the FGSM, the
method proved effective, with an F1-score and accuracy above 0.9. The Resnet18FGSM

performed best, with an F1-score of 0.9451 and accuracy of 0.9457 for BIM, and an F1-
score of 0.9431 and accuracy of 0.9438 for PGD attacks. For C&W and DeepFool attacks,
which create perturbations that are difficult for humans to perceive, the heavyweight
model VGG16 proved more effective, unlike the results obtained for FGSM-type attacks.
VGG16FGSM achieved the best results, with an F1-score of 0.9291 and accuracy of 0.9367
for DeepFool, and an F1-score of 0.9324 and accuracy of 0.9345 for C&W attacks. These
experimental results demonstrate that lightweight models are more effective in detecting
FGSM-type attacks, while heavyweight models are more effective in detecting DeepFool
and C&W attacks. These results are expected to vary depending on the adversarial examples
used in training, and it is anticipated that creating an ensemble model using examples that
are applicable to various attacks would enable more effective detection.

Table 5. Detection performance metrics for ensemble models trained on adversarial examples using
different attack types. The bold text indicates the best performance for each evaluation metric.

Attack Type Ensemble Model Precision Recall F1-Score Accuracy

FGSM

Resnet18FGSM 0.9158 0.9192 0.9175 0.9266
Resnet18PGD 0.9256 0.8625 0.8929 0.9082

Mobilenetv2FGSM 0.8676 0.8957 0.8814 0.8950
Mobilenetv2PGD 0.8987 0.9339 0.9159 0.9253

VGG16FGSM 0.9072 0.9125 0.9098 0.9236
VGG16PGD 0.8916 0.8836 0.8876 0.9055

BIM

Resnet18FGSM 0.9311 0.9595 0.9451 0.9457
Resnet18PGD 0.9406 0.9210 0.9355 0.9332

Mobilenetv2FGSM 0.8914 0.9248 0.9078 0.9091
Mobilenetv2PGD 0.9169 0.9572 0.9366 0.9373

VGG16FGSM 0.9249 0.9243 0.9246 0.9282
VGG16PGD 0.9129 0.9052 0.9090 0.9138

PGD

Resnet18FGSM 0.9309 0.9557 0.9431 0.9438
Resnet18PGD 0.9416 0.9377 0.9396 0.9413

Mobilenetv2FGSM 0.8927 0.9374 0.9145 0.9152
Mobilenetv2PGD 0.9170 0.9584 0.9372 0.9379

VGG16FGSM 0.9250 0.9348 0.9299 0.9332
VGG16PGD 0.9135 0.9214 0.9174 0.9215

DeepFool

Resnet18FGSM 0.8918 0.8974 0.8946 0.9191
Resnet18PGD 0.9093 0.9024 0.9059 0.9286

Mobilenetv2FGSM 0.8505 0.8465 0.8485 0.8745
Mobilenetv2PGD 0.8826 0.8617 0.8720 0.8950

VGG16FGSM 0.9157 0.9429 0.9291 0.9367
VGG16PGD 0.9037 0.9360 0.9196 0.9279

C&W

Resnet18FGSM 0.9279 0.9129 0.9203 0.9230
Resnet18PGD 0.9404 0.9178 0.9289 0.9316

Mobilenetv2FGSM 0.8887 0.8996 0.8941 0.8969
Mobilenetv2PGD 0.9134 0.9147 0.9140 0.9167

VGG16FGSM 0.9273 0.9374 0.9324 0.9345
VGG16PGD 0.9169 0.9324 0.9245 0.9267

4.4. Comparative Experiment

The comparison experiments included the UNICAD, Feature Squeezing, and Zero-
Mean & RGB2BGR methods [11–13].
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The Feature Squeezing method detects adversarial examples by filtering images before
passing them to the classification model, without modifying the existing model. This
technique that detects attacks by comparing the model’s prediction results for the original
example with its prediction results for the filtered example. This method does not aim to
completely block adversarial attacks, but rather to make it more difficult for the attacker
to execute the attack. In other words, the attacker may attempt to apply stronger pertur-
bations to bypass the feature squeezing method, which could result in a degradation of
image quality, making the image unrecognizable or turning it into an image that appears
suspicious due to the attack. The filtering techniques that were used include bit depth
reduction, median filtering, and non-local means filtering. For the CIFAR-10 dataset, the
best performance was achieved using 5-bit depth reduction, a 2 × 2 median filter, and a
13-3-2 configuration for non-local means. The median filtering and non-local means were
carried out using the ndimage module and the OpenCV library, respectively.

The Zero-Mean method adjusts the brightness of the input image, extracts an activation
map using Grad-CAM, and overlays the activation map onto the input image with a
weighting factor θ of 0.1 to create an emphasized image. The classification model then
predicts both the input image and the emphasized image. If the predicted labels differ, the
input is identified as an adversarial example; if they match, it is classified as an original
example. The RGB2BGR method converts the RGB values of the input image to BGR
and proceeds with detection in the same way as the Zero-Mean approach. Both detection
methods have the limitation that they degrade the performance of the classification model
while modifying the image, and they fail to detect when the activation maps of the original
example and the adversarial example are very similar.

UNICAD uses the VGG16 model as a feature extractor and selects class-specific
prototypes from the CIFAR-10 dataset based on the extracted features. It extracts features
from the input images and compares them with the prototypes selected for each class to find
the most similar prototype. The method then classifies the images as attack images or clean
images according to the detection classification logic. This detection method determines
the presence of an attack through a comparison with pre-selected prototypes. However, it
relies on the use of a Denoising Autoencoder in the second restoration stage, which may
not allow for accurate detection. All suspicious examples from the first detection stage
are passed to the second restoration stage. The method used in the first detection stage is
applied for restoration using the Denoising Autoencoder. Therefore, if only the detection
aspect is measured, there is a possibility that the detection performance may be lower.
Although the comparative paper reduced the CIFAR-10 classes to 0–8 and set the 9th class
as an unseen class to classify the unseen classes, we set the classes to 0–9 for comparison in
this paper and conducted experiments only focusing on the detection aspect.

The evaluation and the dataset used for evaluation were kept the same in our experi-
mental environments. The comparative experiments evaluated the performance of each
model individually.

Table 6 presents a comparison of the performance of Mobilenetv2. The most effective
method for detecting all attacks was Mobilenetv2PGD.

The Feature Squeezing method demonstrated a strong performance in detecting BIM,
PGD, and DeepFool attacks, achieving recall rates of 0.9931, 0.8673, and 0.8532, respectively.
This indicates that filtering techniques effectively mitigate the perturbations caused by
these attacks. However, the method was less effective against FGSM and C&W attacks.
This is because the FGSM and C&W introduce more perturbations to the images, exposing
one limitation of Feature Squeezing: its performance degrades when faced with significant
perturbations.
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The Zero-Mean and RGB2BGR methods demonstrated a relatively good performance
in detecting DeepFool and C&W attacks. Compared to other attacks, DeepFool and C&W
involve less image perturbation, allowing for effective detection after preprocessing with
Zero-Mean and RGB2BGR and generating the emphasized image. However, attacks that
cause significant image perturbation, such as the FGSM, PGD, and BIM, were not mitigated
by the Zero-Mean or RGB2BGR preprocessing. Furthermore, the generated emphasizing
images were not effective in detecting these highly distorted attacks.

UNICAD was presumed to have failed to distinguish between original and adversarial
examples during the detection process due to its reliance on the Denoising Autoencoder in
the reconstruction stage, which was previously mentioned as a limitation. This dependency
likely led to its passing suspicious images without ensuring sufficient accuracy.

Table 6. Comparison of experimental results for Mobilenetv2. The bold text indicates the best
performance for each evaluation metric.

Attack Type Detection Method Precision Recall F1-Score Accuracy

FGSM

Feature
Squeezing [11] 0.6259 0.3431 0.4433 0.6236

UNICAD [13] 0.4132 0.1047 0.1671 0.5504
Zero-Mean [12] 0.5868 0.5876 0.5872 0.6716
RGB2BGR [12] 0.4663 0.3549 0.4031 0.5414

Mobilenetv2FGSM
(Ours) 0.8676 0.8957 0.8814 0.8950

Mobilenetv2PGD
(Ours) 0.8987 0.9339 0.9159 0.9253

BIM

Feature
Squeezing [11] 0.8542 0.9931 0.9185 0.9146

UNICAD [13] 0.5637 0.1605 0.2499 0.5420
Zero-Mean [12] 0.5265 0.3857 0.4453 0.5768
RGB2BGR [12] 0.0542 0.0206 0.0299 0.3752

Mobilenetv2FGSM
(Ours) 0.8914 0.9248 0.9078 0.9091

Mobilenetv2PGD
(Ours) 0.9169 0.9572 0.9366 0.9373

PGD

Feature
Squeezing [11] 0.8365 0.8673 0.8517 0.8537

UNICAD [13] 0.4940 0.1158 0.1877 0.5118
Zero-Mean [12] 0.2040 0.0889 0.1239 0.4461
RGB2BGR [12] 0.1423 0.0595 0.0840 0.3934

Mobilenetv2FGSM
(Ours) 0.8927 0.9374 0.9145 0.9152

Mobilenetv2PGD
(Ours) 0.9170 0.9584 0.9372 0.9379

DeepFool

Feature
Squeezing [11] 0.7757 0.8532 0.8127 0.8458

UNICAD [13] 0.4502 0.0970 0.1597 0.5025
Zero-Mean [12] 0.6107 0.7481 0.6725 0.7347
RGB2BGR [12] 0.6310 0.7835 0.6991 0.7255

Mobilenetv2FGSM
(Ours) 0.8505 0.8465 0.8485 0.8745

Mobilenetv2PGD
(Ours) 0.8826 0.8617 0.8720 0.8950

C&W

Feature
Squeezing [11] 0.7471 0.5010 0.5998 0.6765

UNICAD [13] 0.4625 0.1022 0.1674 0.5055
Zero-Mean [12] 0.6839 0.7504 0.7157 0.7373
RGB2BGR [12] 0.6432 0.6467 0.6450 0.6675

Mobilenetv2FGSM
(Ours) 0.8887 0.8996 0.8941 0.8969

Mobilenetv2PGD
(Ours) 0.9134 0.9147 0.9140 0.9167
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Table 7 presents a comparison of Resnet18’s performance. For FGSM-type attacks
(FGSM, PGD, and BIM), the Resnet18FGSM showed the most effective detection performance,
with an F1-score of 0.9175, 0.9431, and 0.9451, and accuracies of 0.9266, 0.9438, and 0.9457,
respectively. For DeepFool and C&W attacks, Resnet18PGD was also the most effective in
terms of detection.

Table 7. Comparison of the experimental results for Resnet18. The bold text indicates the best
performance for each evaluation metric.

Attack Type Detection Method Precision Recall F1-Score Accuracy

FGSM

Feature
Squeezing [11] 0.6184 0.2988 0.3902 0.6062

UNICAD [13] 0.4959 0.0984 0.1643 0.5792
Zero-Mean [12] 0.6600 0.5740 0.6140 0.7106
RGB2BGR [12] 0.5669 0.5703 0.5686 0.6081

Resnet18FGSM (Ours) 0.9158 0.9192 0.9175 0.9266
Resnet18PGD (Ours) 0.9256 0.8625 0.8929 0.9082

BIM

Feature
Squeezing [11] 0.8550 0.9168 0.8849 0.8837

UNICAD [13] 0.6440 0.1445 0.2361 0.5550
Zero-Mean [12] 0.5389 0.2918 0.3786 0.5765
RGB2BGR [12] 0.0597 0.0167 0.0261 0.4047

Resnet18FGSM (Ours) 0.9311 0.9595 0.9451 0.9457
Resnet18PGD (Ours) 0.9406 0.9210 0.9355 0.9332

PGD

Feature
Squeezing [11] 0.8117 0.6704 0.7344 0.7637

UNICAD [13] 0.6413 0.1384 0.2277 0.5458
Zero-Mean [12] 0.2711 0.0929 0.1384 0.4886
RGB2BGR [12] 0.4108 0.2719 0.3273 0.4270

Resnet18FGSM (Ours) 0.9309 0.9557 0.9431 0.9438
Resnet18PGD (Ours) 0.9416 0.9377 0.9396 0.9413

DeepFool

Feature
Squeezing [11] 0.7383 0.8532 0.7916 0.8359

UNICAD [13] 0.6481 0.1424 0.2335 0.5477
Zero-Mean [12] 0.6729 0.7492 0.7090 0.7835
RGB2BGR [12] 0.6776 0.8233 0.7434 0.7968

Resnet18FGSM (Ours) 0.8918 0.8974 0.8946 0.9191
Resnet18PGD (Ours) 0.9093 0.9024 0.9059 0.9286

C&W

Feature
Squeezing [11] 0.7371 0.4361 0.5480 0.6496

UNICAD [13] 0.6532 0.1458 0.2384 0.5495
Zero-Mean [12] 0.7482 0.7421 0.7452 0.7755
RGB2BGR [12] 0.7264 0.6992 0.7126 0.7548

Resnet18FGSM (Ours) 0.9279 0.9129 0.9203 0.9230
Resnet18PGD (Ours) 0.9404 0.9178 0.9289 0.9316

The Feature Squeezing method, as seen from the results obtained in the comparison
with Mobilenetv2, achieved a recall of 0.9168 and accuracy of 0.8837 for BIM, and a recall
of 0.8532 and accuracy of 0.8359 for DeepFool. PGD showed a recall of 0.6704 and accuracy
of 0.7637, demonstrating a decrease in performance, but still showing decent results.

The Zero-Mean and RGB2BGR methods were effective in detecting DeepFool and
C&W attacks. When compared to the results of the lightweight model Mobilenetv2, Zero-
Mean showed similar performance in detecting DeepFool and C&W. RGB2BGR, on the
other hand, showed an increase in recall of about 0.4 for DeepFool and about 0.5 for C&W.
This suggests that the performance of the Zero-Mean and RGB2BGR methods may improve
as the model becomes heavier.

The limitations noted for UNICAD were also observed in Resnet18.
Table 8 presents a comparison of the performance of VGG16. For FGSM-type attacks

(FGSM, PGD, and BIM), VGG16FGSM showed the most effective detection performance,
with F1-scores of 0.9098, 0.9299, and 0.9246 and accuracies of 0.9236, 0.9332, and 0.9282,
respectively. While Feature Squeezing was very effective in detecting BIM and PGD attacks,
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with recall values of 1.0 and 0.9913, VGG16FGSM demonstrated a more balanced detection,
with F1-scores of 0.9246 and 0.9299.

The Feature Squeezing method, as seen from the results obtained in the previous
comparison, achieved a recall of 1.0000 and accuracy of 0.8512 for BIM, and a recall of
0.9041 and accuracy of 0.7915 for DeepFool. PGD showed a recall of 0.9913 and accuracy of
0.8461, demonstrating an effective performance.

The Zero-Mean and RGB2BGR methods were effective in detecting DeepFool and
C&W attacks. When compared to Resnet18, both Zero-Mean and RGB2BGR methods
showed an increase of about 0.4 in recall for DeepFool attacks, and an increase about 0.7 in
recall for C&W attacks. This supports the earlier estimation that performance improves as
the model transitions from lightweight to heavyweight.

The limitations previously observed in UNICAD were also present in VGG16.
In conclusion, our method was proven to be effective in detecting various models

and attacks. The Feature Squeezing method was shown to be more effective when the
image distortion was lower. The Zero-Mean and RGB2BGR methods demonstrated an
increase in detection performance as the model transitioned from lightweight to heavy-
weight. Although UNICAD did not show a good detection performance, its core use as a
Denoising Autoencoder suggests that even if precise detection is not achieved, the recovery
performance improves through the use of the Denoising Autoencoder. These results may
vary depending on the attack parameters.

Table 8. Comparison of experimental results when using VGG16. The bold text indicates the best
performance for each evaluation metric.

Attack Type Detection Method Precision Recall F1-Score Accuracy

FGSM

Feature
Squeezing [11] 0.4999 0.3859 0.4356 0.5762

UNICAD [13] 0.7081 0.1152 0.1982 0.6384
Zero-Mean [12] 0.6108 0.5126 0.5574 0.6851
RGB2BGR [12] 0.5621 0.4250 0.4841 0.6081

VGG16FGSM (Ours) 0.9072 0.9125 0.9098 0.9236
VGG16PGD (Ours) 0.8916 0.8836 0.8876 0.9055

BIM

Feature
Squeezing [11] 0.7619 1.0000 0.8649 0.8512

UNICAD [13] 0.8016 0.1388 0.2367 0.5854
Zero-Mean [12] 0.5835 0.3758 0.4572 0.6123
RGB2BGR [12] 0.0060 0.0018 0.0028 0.4047

VGG16FGSM (Ours) 0.9249 0.9243 0.9246 0.9282
VGG16PGD (Ours) 0.9129 0.9052 0.9090 0.9138

PGD

Feature
Squeezing [11] 0.7578 0.9913 0.8590 0.8461

UNICAD [13] 0.7479 0.0951 0.1688 0.5502
Zero-Mean [12] 0.1829 0.0592 0.0895 0.4720
RGB2BGR [12] 0.1407 0.0487 0.0724 0.4270

VGG16FGSM (Ours) 0.9250 0.9348 0.9299 0.9332
VGG16PGD (Ours) 0.9135 0.9214 0.9174 0.9215

DeepFool

Feature
Squeezing [11] 0.6807 0.9041 0.7767 0.7915

UNICAD [13] 0.7668 0.1048 0.1844 0.5537
Zero-Mean [12] 0.6427 0.7809 0.7051 0.7898
RGB2BGR [12] 0.7168 0.8632 0.7833 0.7968

VGG16FGSM (Ours) 0.9157 0.9429 0.9291 0.9367
VGG16PGD (Ours) 0.9037 0.9360 0.9196 0.9279

C&W

Feature
Squeezing [11] 0.6239 0.5073 0.5596 0.6155

UNICAD [13] 0.7617 0.1021 0.1801 0.5526
Zero-Mean [12] 0.7548 0.8106 0.7737 0.8013
RGB2BGR [12] 0.7217 0.7631 0.7419 0.7548

VGG16FGSM (Ours) 0.9273 0.9374 0.9324 0.9345
VGG16PGD (Ours) 0.9169 0.9324 0.9245 0.9267
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4.5. Ablation Study
4.5.1. Analysis of Failure Cases Using the Proposed Method

We presented cases where the proposed method succeeds and we also analyzed the
cases of failure.

In Figure 5, a false positive case occurred when the original image was classified as
an attacked image. In the activation maps of false positive cases 1 and 2, we can observe
a difference between the activation map of the original image and the activation map
after Label Sanitization. In this case, false positive case 1 has a silhouette coefficient of
approximately 0.9, and false positive case 2 has a silhouette coefficient of 0.5; both of these
were detected as attacked images.

The false negative case occurred when an attacked image was classified as an original
image. In this case, the activation map of the attacked image and the activation map after
Label Sanitization appeared identical. This indicates that Label Sanitization did not work
as expected, leading to an attacked image being classified as an original image.

These results primarily occurred when the model identified images with similar
features. As seen in Figure 5, this included cases such as dogs and trucks. When the model
makes its prediction, images of cat and dog, or truck and automobile, share similar features,
which leads to activation map differences despite the application of Label Sanitization.

Figure 5. Examples of false positive and false negative cases: this figure shows (from left to right) the
original image, reconstructed original image (false positive), FGSM-attacked image, and reconstructed
attacked image (false negative).

4.5.2. Evaluation of Image Quality Post-Reconstruction

The ensemble model of the proposed method was designed with a focus on Label
Sanitization. As a result, a degradation in image quality was inevitable. To identify areas
for improvement, the extent of the image quality degradation was measured.

The metric used to evaluate image quality degradation was the SSIM (Structural
Similarity Index Measure). The average SSIM was calculated for the evaluation. The
evaluation dataset consisted of 10,000 original images, and adversarial examples were
selected based on successful attack cases, as shown in Table 4. For example, in the case of
the FGSM, the average SSIM was calculated based on 7725 adversarial examples.

The SSIM is a metric used to measure the structural similarity between two images [26].
It considers three main components—luminance (brightness), contrast, and structure—to
evaluate the similarities between two images in a way that aligns more closely with the
human visual system, rather than relying on pixel-wise differences. The SSIM between two
images x and y was calculated using the following formula:
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SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(13)

µx, µy are the mean luminance of images x and y. σx, σy are the contrast between
images x and y. σxy is the covariance between images x and y. C1, C2 are small constants to
avoid division by zero in the denominators.

The SSIM values range from 0 to 1, where a value closer to 1 indicates that the two
images are more similar. Specifically, SSIM values between 0 and 0.2 indicate severe quality
loss, with very little resemblance between images. Values from 0.2 to 0.4 show significant
degradation with low similarity. A range of 0.4 to 0.6 represents moderate similarity with
noticeable quality loss. Values from 0.6 to 0.8 suggest fairly high similarity with acceptable
levels of quality degradation. Finally, values between 0.8 and 1.0 indicate minimal or no
visible quality loss, as the images are highly similar.

In Table 9, all ensemble models showed similar SSIM values. For the original image,
the SSIM was approximately 0.53, while for the FGSM it was around 0.5, and for the BIM it
was approximately 0.51. The SSIM for PGD was around 0.51, for DeepFool it was about
0.53, and for C&W it was about 0.52. In other words, the SSIM values for all ensemble
models range from 0.5 to 0.52, indicating a decrease in image quality when the image is
reconstructed. The SSIM values ranged between 0.4 and 0.6, indicating noticeable image
quality degradation.

Table 9. This table measures the decrease in image quality when reconstructing original and adversar-
ial examples using an ensemble model. Non-attack refers to the original images without any applied
attacks.

Attack Type Ensemble Model SSIM

Non-Attack

Resnet18FGSM 0.5268
Resnet18PGD 0.5268

Mobilenetv2FGSM 0.5266
Mobilenetv2PGD 0.5266

VGG16FGSM 0.5267
VGG16PGD 0.5267

FGSM

Resnet18FGSM 0.5012
Resnet18PGD 0.5011

Mobilenetv2FGSM 0.5030
Mobilenetv2PGD 0.5030

VGG16FGSM 0.5023
VGG16PGD 0.5024

BIM

Resnet18FGSM 0.5125
Resnet18PGD 0.5124

Mobilenetv2FGSM 0.5110
Mobilenetv2PGD 0.5110

VGG16FGSM 0.5106
VGG16PGD 0.5106

PGD

Resnet18FGSM 0.5114
Resnet18PGD 0.5113

Mobilenetv2FGSM 0.5110
Mobilenetv2PGD 0.5110

VGG16FGSM 0.5115
VGG16PGD 0.5115

DeepFool

Resnet18FGSM 0.5353
Resnet18PGD 0.5347

Mobilenetv2FGSM 0.5303
Mobilenetv2PGD 0.5306

VGG16FGSM 0.5251
VGG16PGD 0.5240

C&W

Resnet18FGSM 0.5268
Resnet18PGD 0.5268

Mobilenetv2FGSM 0.5274
Mobilenetv2PGD 0.5274

VGG16FGSM 0.5265
VGG16PGD 0.5265
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These results appear to be a consequence of training the ensemble model with the
goal of label sanitization. In our future work, we aim to investigate a framework that can
successfully perform label sanitization without degrading the image quality.

4.5.3. Detection Performance Against White-Box Attacks in Real-World Scenarios

Our method was proven effective against white-box attacks through experiments. To
verify its effectiveness in real-world scenarios, we evaluated its detection performance
against AutoAttack [27]. AutoAttack is a powerful framework designed for assessing
adversarial robustness through a combination of four attack techniques. APGD-CE is
a gradient-based attack leveraging cross-entropy losses to identify basic vulnerabilities.
APGD-DLR employs the Difference of Logits Ratio (DLR) loss to more precisely target
weaknesses near decision boundaries. Fast Adaptive Boundary (FAB) performs optimized
attacks in the direction closest to the decision boundary, uncovering the most sensitive
regions of the model. Finally, Square Attack is a gradient-free attack that uses random search
to assess robustness even when gradient information is unavailable. Using AutoAttack,
we conducted experiments to determine whether our method is applicable in real-world
scenarios.

AutoAttack was implemented using the tool provided by torchattacks, and the pa-
rameters were set to their default values. Specifically, the parameters were configured as
follows: the norm was set to L∞, eps was 0.3, the version was standard, carrying out the
aforementioned four attacks, the number of classes was set to 10, corresponding to the
labels in the CIFAR-10 dataset, the seed was set to None, and Verbose was set to False.

Due to the limited computational resources, the evaluation dataset could not be tested
on the entire set of examples. Instead, the detection performance was measured using
2500 original examples and 2500 adversarial examples, with a 1:1 ratio. The used for this
evaluation dataset was randomly selected.

In Table 10, the proposed method achieved a recall of over 0.93, an F1-score of over
0.91, and an accuracy of over 0.91 across all ensemble models. These results demonstrate
that the proposed method can effectively detect adversarial attacks even in real-world
scenarios.

Table 10. This table measured the detection performance against AutoAttack.

Attack Type Ensemble Model Precision Recall F1-Score Accuracy

AutoAttack

Resnet18FGSM 0.9330 0.9650 0.9488 0.9493
Resnet18PGD 0.9387 0.9449 0.9418 0.9431

Mobilenetv2FGSM 0.8907 0.9387 0.9141 0.9147
Mobilenetv2PGD 0.9140 0.9665 0.9396 0.9400

VGG16FGSM 0.9290 0.9462 0.9376 0.9393
VGG16PGD 0.9157 0.9345 0.9250 0.9268

In conclusion, the proposed method is an effective detection approach that works well
on various adversarial attacks and models, which demonstrated the ability to effectively
detect attacks, even in real-world scenarios.

4.5.4. Execution Time Measurement of Detection Logic

In this section, we measured the execution time of the detection logic to verify its
effectiveness in real scenarios. The dataset used for the evaluation was the test dataset.
The execution time was measured by repeating the process 100 times with a batch size of
100, and the average time was calculated. In Table 11, the detection logic execution time
was measured by representing the average execution time with a ± range based on the
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standard deviation. This approach quantitatively evaluated the stability of the execution
time. These results are shown with error bars in Figure 6.

Table 11. This table shows the execution time of the proposed method.

Ensemble Model Execution Time

Resnet18FGSM 84.73 ± 8.81 ms
Resnet18PGD 85.38 ± 8.41 ms

Mobilenetv2FGSM 169.19 ± 20.72 ms
Mobilenetv2PGD 172.45 ± 21.61 ms

VGG16FGSM 102.79 ± 5.73 ms
VGG16PGD 103.19 ± 5.58 ms

Resnet18FGSM had an execution time of 84.73 ± 8.81 ms, while Resnet18PGD had an
execution time of 85.38 ± 8.41 ms, indicating that both models have a low execution time
and minimal variability. For Mobilenetv2FGSM, the execution time was 169.19 ± 20.72 ms,
and Mobilenetv2PGD had an execution time of 172.45 ± 21.61 ms, suggesting that these
models require longer execution times with moderate variability. VGG16FGSM model
achieved an execution time of 102.79 ± 5.73 ms, and VGG16PGD achieved an execution time
of 103.19 ± 5.58 ms, reflecting a balanced execution speed.

These results suggest that the Resnet18 ensemble model was the most efficient and
stable in terms of execution time across both detection logics. Mobilenetv2, while effective,
incurred the longest execution time, which may impact its real-world applications. VGG16
demonstrated a reasonable execution time, making it potentially suitable for real-world
scenarios requiring a balance between speed and stability.

Figure 6. Average execution times (ms) of ensemble models, with error bars showing standard
deviations.

4.6. Discussion

UNICAD exhibited significant differences in its detection performance between origi-
nal and adversarial samples. Specifically, for the original samples, the performance when
using Mobilenetv2 was 0.8875, that using Resnet18 was 0.9275, and that when using VGG16
was 0.9704. However, for adversarial samples, the performance dropped to below 0.2.
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Additionally, the original-to-adversarial sample ratio used in the tests was not explicitly
stated in the referenced paper. To address this, we evaluated the performance using the
dataset employed in our study. The results showed an average F1-score of approximately
0.2 and an accuracy of around 0.55.

Our method demonstrated a consistent performance across both lightweight and
heavyweight models, such as Resnet18, Mobilenetv2, and VGG16. This indicates that the
proposed detection method effectively captures the characteristic differences between origi-
nal and adversarial examples through clustering analysis using Grad-CAM and silhouette
coefficients. Additionally, through an ablation study, we demonstrated that our method
can effectively detect adversarial attacks in real-world scenarios.

The results of this study, combined with the explainability, derived based on Grad-
CAM, offer users an intuitive understanding of the impact of adversarial attacks during the
detection process. This demonstrates the potential to enhance both the transparency and
reliability of AI security systems. Furthermore, comparison with existing methods, such
as Feature Squeezing and Zero-Mean and RGB2BGR, shows that the proposed approach
offers higher versatility and reliability against certain types of attacks.

This contributes significantly to the current research, complementing traditional meth-
ods that rely on a single attack type and providing a solution that can be used in various
attack scenarios. The results confirm that the proposed method offers a robust solution for
adversarial attack detection while maintaining compatibility with the diverse deep learning
models.

These findings have significant implications for improving the security and reliability
of AI systems across a variety of applications, such as autonomous vehicles, IoT networks,
and critical infrastructure protection.

5. Conclusions
This study introduced a new adversarial attack detection and prevention framework,

leveraging Grad-CAM and silhouette coefficient-based clustering, and demonstrating its
effectiveness through various experiments. Through comprehensive experiments, we
verified that the proposed method achieved an F1-score of over 0.90 and high accuracy
when tested against various adversarial attacks (FGSM, PGD, BIM, DeepFool, and C&W)
on three distinct network architectures (Resnet18, Mobilenetv2, and VGG16). As shown in
Table 5, its performance consistently remained high (precision, recall, and accuracy almost
exceeded 90% in most scenarios), underscoring the robustness and practical viability of our
framework. From these results, the primary findings are summarized as follows:

1. The proposed method achieved a high detection performance across a range of deep
learning models, including Resnet18, Mobilenetv2, and VGG16, and effectively han-
dled prominent attack types, such as FGSM, PGD, BIM, DeepFool, and C&W.

2. Compared to existing approaches like Feature Squeezing and Zero-Mean and
RGB2BGR, the framework exhibited higher accuracy and an improved F1-score,
showcasing its robustness against diverse attack scenarios.

3. Through the ablation study, we showed that the proposed method is effective in
real-world scenarios.

4. The explainability provided by Grad-CAM enhances the user understanding of ad-
versarial attack effects, contributing to more transparent and reliable AI security
systems.

For instance, against PGD—a widely recognized white-box attack—our Resnet18FGSM

ensemble model recorded an F1-score above 0.94, indicating strong detection stability and
generalization under stringent attack conditions (see Table 5). Similarly, Mobilenetv2PGD
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consistently maintained an accuracy of above 0.92, reinforcing the framework’s adaptability
across lightweight and heavyweight architectures.

Despite its contributions, the study has certain limitations. Its computational com-
plexity primarily stems from the use of an ensemble model, which involves simultaneous
label restoration and reconstruction processes. This can hinder its real-time application
in resource-constrained environments. Furthermore, since our ensemble model focuses
on label restoration, the label restoration process may result in image quality degradation,
particularly when handling complex adversarial perturbations. This degradation may
affect downstream tasks that rely on high-fidelity image reconstruction. Therefore, in future
work, the following research directions are suggested:

• Optimization of Ensemble Model Complexity: Simplify the ensemble model archi-
tecture to reduce computational overhead while maintaining detection accuracy.

• Improvement in Image Quality: Develop advanced label restoration techniques that
preserve image fidelity, ensuring minimal impact on image-dependent downstream
tasks.

• Broader Validation: Extend the evaluation to include more datasets, an adaptive
threshold configuration, another xAI tool, neural network architectures, and adversar-
ial attack types.

• Integration with Other Defenses: Explore the combination of the proposed frame-
work with existing adversarial defenses to create a more comprehensive and scalable
solution.

Through addressing these challenges, the proposed framework has the potential
to significantly advance AI security, ensuring its reliability and robustness in real-world
environments. Notably, even under severe attack scenarios like BIM and PGD, the detection
accuracy remained above 0.93 (Table 5). These findings suggest that the proposed method
could offer reliable security safeguards for real-time, mission-critical applications—such
as autonomous driving, IoT environments, or critical infrastructure protection—where
adversarial robustness is paramount.
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