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Abstract: Accurate prediction of station passenger flow is crucial for optimizing rail
transit efficiency, but peak passenger flow in urban rail transit (URT) is often disrupted
by random events, making predictions challenging. In this paper, in order to solve this
challenge, the Bi-graph Graph Convolutional Spatio-Temporal Feature Fusion Network
(BGCSTFFN)-based model is introduced to capture complex spatio-temporal correlations.
A combination of a graph convolutional neural network and a Transformer is used. The
model separately inputs land use (point of interest, POI) and station adjacency information
as features into the BGCSTFFN model, using the Pearson correlation coefficient matrix,
which is evaluated on real passenger flow dataset from 1 to 25 January 2019 in Hangzhou.
The results showed that the model consistently provided the best prediction results across
different datasets and prediction tasks compared to other baseline models. In addition, in
tasks involving predictions with different combinations of inputs and prediction steps, the
model showed superior performance at multiple prediction steps. Its practical application
is validated by comparing the results of passenger flow prediction for different types
of stations. In addition, the impact of these features on the prediction accuracy and the
generalization ability of the model were verified by designing ablation experiments and
testing on different datasets.

Keywords: urban rail transit; short-term passenger flow prediction; transformer; POI;
multi-step prediction

1. Introduction
With the rapid development of information technology, China’s urban rail transit

(URT) has achieved large-scale and networked operations. However, the passenger flow at
URT stations presents complex spatial and temporal characteristics, which pose a major
challenge to optimizing system operations and improving the passenger travel experience.
Therefore, it is of great significance to conduct a forecasting study of passenger flow at URT
stations from passenger flow data.

With the wide application of automatic fare collection (AFC) systems, one can easily
access and record a large amount of historical travel data. As a result, many scholars have
performed rail passenger flow forecasting based on URT passenger flow data collected by
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AFC systems using machine learning and deep learning models. Not only is it important to
consider the impact of feeding historical passenger flow data collected by the AFC system
into the prediction model so that it can learn from past events and become more adaptive,
but also the impact of a number of factors such as weather, weekdays, the topology of the
rail network, and the nature of the land use (e.g., POI). As a result, many studies have
shown significant inconsistencies between predicted and actual passenger flow, and the
errors in some of the predictions have been quite large. Only a few studies have considered
multiple influencing factors such as weather and land use data in URT passenger flow
prediction models.

Therefore, in order to solve the problem of the accuracy of URT passenger flow
prediction decreasing due to the influence of these external factors, this study explores the
spatial and temporal distribution of rail traffic and its influencing factors by using a variety
of data sources of rail traffic, and proposes a novel short-term passenger flow prediction
method for rail traffic, so that when predicting the short-term inbound passenger flow
of URT, we can comprehensively take into account the characteristics of the passenger
flow of URT and the external influencing factors, so as to accurately grasp the changes in
passenger flow.

Therefore, in order to solve the problem of the accuracy of URT passenger flow
prediction decreasing due to the influence of these external factors, this study explores the
spatial and temporal distribution of rail traffic and its influencing factors by using a variety
of data sources of rail traffic, and proposes a novel short-term passenger flow prediction
method for rail traffic, so that when predicting the short-term inbound passenger flow of
the URT, we can take into account comprehensively the characteristics of the passenger
flow of the rail traffic and the external influencing factors, so as to accurately grasp the
changes in passenger flow.

The main contributions of this paper are as follows:

1. In this study, an innovative approach, a Bi-graph Graph Convolutional Spatio-
Temporal Feature Fusion Network (BGCSTFFN) combining multi-graph convolu-
tional and Transformer models, is proposed, aiming to effectively model complex
spatio-temporal dependencies in sequence data. By introducing a Bi-Graph Convolu-
tional Network (BGCN), the method is able to deal with the similarity of the adjacency
and point of interest (POI) information of multiple stations in a rail transit system, and
capture the potential patterns of passenger flow changes in different time periods. In
terms of the fusion of multiple data features, the feature fusion module merges feature
sequences from different sources through dynamic weighted summation, and this
approach enhances the robustness and accuracy of the prediction model, providing
more accurate technical support for future passenger flow prediction in rail transit.

2. In order to investigate whether there is a higher degree of correlation in passenger
flows between stations characterized by POI information, this study introduces the
Pearson correlation coefficient to compute the similarity matrix of POI information
among different stations. Specifically, by utilizing Pearson’s correlation coefficient, we
are able to quantify the similarity of POI distributions across stations, thus providing
more accurate spatial correlation information for the model. This is because different
types of point of interest (POI) have different attraction characteristics. Even if two
stations are not directly adjacent, stations with similar surrounding POI may exhibit
similar traffic flow patterns. For example, stations located near commercial centers,
cultural attractions, or transportation hubs may have similar traffic flow characteristics,
even if they are geographically distant from each other. Therefore, by introducing such
POI similarity features in the model training process, the intrinsic connection between
POI features and passenger flow can be reflected more effectively, thus improving
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the ability to capture passenger flow patterns and improving the prediction accuracy.
Therefore, by introducing such POI similarity features in the model training process,
the intrinsic connection between POI features and passenger flow can be reflected
more effectively, thus enhancing the ability to capture passenger flow patterns and
enhancing the prediction accuracy.

3. This study validates the advantages of BGCSTFFN in short-term passenger flow
prediction at URT stations during peak hours based on a real dataset of URT passenger
flow in Hangzhou. The experimental results show that BGCSTFFN consistently
achieves outstanding and stable performance in the prediction tasks with different
combinations of input and output step sizes, demonstrating its strong robustness
and adaptability in multi-step prediction tasks. Feature ablation experiments are
conducted to verify the effects of different features on the prediction accuracy of
the model.

The subsequent parts of the paper are organized as follows: Section 2 provides an
overview of existing studies. Section 3 outlines the definition of short-term passenger flow
prediction in peak hour URT networks. Section 4 clarifies the structure and mathematical
formulation of BGCSTFFN. Section 5 examines the prediction performance of the model on
a real dataset in HCM City. Finally, Section 6 summarizes the work of this thesis. Metro
passenger flow prediction helps to optimize metro operations and ensure rational use of
stations and trains. Accurate forecasting can avoid congestion, improve transport efficiency,
reduce waiting times, and increase passenger satisfaction. This helps to reduce traffic
congestion and improve the overall efficiency of urban transport systems.

2. Literature Review
With the continuous development of rail transit systems and the maturity of new

technologies, research on short-duration passenger flow prediction for rail transit is also
increasing. The development of URT short-duration passenger flow prediction can be
roughly divided into three stages. The first stage is the traditional model based on mathe-
matical statistics, the second stage is the model based on machine learning, and the third
stage is the model based on deep learning.

The first stage in the development of short-term passenger flow forecasting is the
traditional mathematical statistics-based model, in which it can be divided into two main
categories, as follows: one of the most representative is the autoregressive differential
moving average (autoregressive integrated moving average model, ARIMA) time series
model, and the other is based on other mathematical and statistical methods. Researchers
including Chen [1], Cao [2], and Yan [3], have proposed a short-term passenger flow
prediction model based on an autoregressive moving average (ARMA), and Jiao [4] used
the Kalman filtering method to predict the passenger flow of URT. These statistical models
for short-term urban rail passenger flow prediction are based on historical time series data
to predict future passenger flow, which are relatively simple in model structure and have
a certain ability to learn and adapt to historical time series data, but with the increase
in passenger flow, the accuracy of their prediction is limited in improvement, and they
can no longer satisfy the surge in the accuracy of short-term passenger flow prediction
requirements. Therefore, most of the models developed at this stage are no longer used.

With the development of machine learning, Li [5], Wei [6], Sun [7], Tang [8], and
Roos [9] proposed a BP neural network, an SVM (Support Vector Machine) model, an SVR
(Support Vector Regression) model, and a Dynamic Bayesian network, respectively, for
short-term URT passenger flow prediction. The hybrid prediction model based on machine
learning can model more complex dependencies and have higher prediction accuracy than
the traditional prediction model based on mathematical statistics, but most of the models
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at this stage cannot take into account the more complex spatial and temporal correlations
between stations, and they can only make individual predictions for one or a few stations,
but the prediction accuracy is also affected by a certain degree of accuracy for the whole
rail transit network with hundreds of stations. However, most models at this stage cannot
take into account the more complex spatial and temporal correlations between stations and
can only predict one or a few stations individually.

Deep learning, an important branch of machine learning, has been developing rapidly
in recent years, and its excellent prediction performance has brought about a dramatic
change in short-term traffic flow prediction. Pratap et al. [10] constructed an artificial neural
network (ANN) model for predicting passenger flow in the North Central Railway (NCR)
region and obtained a good prediction accuracy. Nataša et al. [11] proposed a hybrid model
based on the integration of Genetic Algorithms (GA) and artificial neural networks (ANN)
for predicting the monthly passenger flow in Serbian Railways.

With the development of deep learning techniques, these models based on LSTM [12–15]
and Gated Recursive Units (GRU) [16], etc., are gradually becoming mainstream due to
their expertise in capturing dependencies in time series, e.g., Li et al. [17] selected the
number of relevant stops, number of outbound stops, holidays, peak times, and weather
as five features that affect passenger flow. Yang et al. [15] proposed an improved model
based on an Enhanced Long Short-Term Feature Memory (ELF-LSTM) neural network.
The proposed network enhanced the long-term time-dependent features embedded in the
passenger flow data and combined the short-term features to predict the origin destination
(OD) flow in the coming hour. Hao et al. [18] proposed an end-to-end framework for
large-scale urban URT passenger flow prediction using a sequence-to-sequence model
embedded with an attention mechanism. The model used a stacked bidirectional LSTM
encoder and a unidirectional LSTM decoder and was validated on the Singapore Metro
system dataset. Guo et al. [19] proposed a model based on the fusion of Support Vector
Regression (SVR) and Long Short-Term Memory (LSTM) neural networks for predicting
URT passenger flow. Du et al. [20] proposed a deep irregularity called a DST-ICRL convo-
lutional residual LSTM network model for URT passenger flow prediction. Wang et al. [21]
proposed a learning network based on the optimal passenger flow input information
algorithm (MTFLN) method. The experimental results demonstrated that the method
improved the training efficiency and prediction accuracy of traditional prediction models.
In addition, hybrid models are beginning to be applied to capture complex spatio-temporal
dependencies. Chen [22], Li [23], and Xion [13] proposed a parallel architectural predic-
tion model combining CNN and LSTM, which successfully explored the spatio-temporal
characteristics of the URT passenger flow and thus significantly improved the prediction
accuracy. Wang [24] proposed the SR-GA adaptive station arrangement method to rear-
range the line stations and combined it with GRU and Conv1d to construct a model of
RS-Conv1dGRU for the short-term inbound passenger flow prediction of URT. Convolu-
tional neural network (CNN) are widely used for the prediction and analysis of data in
tasks dealing with Euclidean data, such as images and regular grids. However, when it
comes to modeling graph-structured data or traffic network data, graph convolutional
network (GCN) exhibit superior capabilities. GCN is able to effectively capture complex
spatial dependencies based on graphs, and therefore, many researchers have introduced
graph convolutional neural network (GCN) in combination with models such as LSTM to
improve the capturing of spatio-temporal features in passenger flows. Ye et al. [25] used
three combined modules of graph convolutional network (GCN) and LSTM, respectively,
to capture spatio-temporal influences. Finally, the outputs of the two components were
fused with different weights to predict the URT passenger flow. Zhang et al. [26] proposed
a deep learning architecture combining residual network (ResNet), graph convolutional
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network (GCN), and long short-term memory (LSTM) (called “ResLSTM”) to predict the
short-term passenger flow of URT. Zhao et al. [27] developed a spatio-temporal neural
network called the time graph convolutional network (TGCN), which was a combination
of GCN and GRU, and predicted urban traffic flow. Meanwhile, the attention model can
capture global and dynamic spatio-temporal features, which helps to improve the accuracy
of traffic flow prediction. Therefore, Xia [28] and Zhang et al. [29] introduced the model
with an attention mechanism into the field of traffic flow prediction, thus improving the
performance of complex traffic flow prediction. Zhang et al. [30] developed an advanced
URT multi-step short-term passenger flow prediction model, which made full use of point
of interest (POI) information as the graphical data and extracted the POI features through
CNN. The model integrated an LSTM network based on the Transformer mechanism,
an attention mechanism module, and a CNN network, which significantly improved the
prediction accuracy and model performance. Liu et al. [31] addressed the challenge of
predicting station passenger flow during peak hours in urban rail transit. They introduced
the Multi-Sequence Spatio-Temporal Feature Fusion Network (MSSTFFN) model based
on trend decomposition to capture the complex spatio-temporal correlations and realize
accurate short-term passenger flow prediction.

A summary of the methods used in the deep learning modelling literature and their
limitations and advantages is shown in Table 1.

Table 1. Methods used in the deep learning modelling literature and their limitations and advantages.

Literature Number Method Advantage Limitation

[12,14,15,17,18,20,21] LSTM
Long-term dependency handling High computational cost

Trend capturing Low sensitivity to short-term fluctuations

[16] GRU
Efficient for sequential data Low sensitivity to long-term dependencies

Handles non-linear relationships well Sensitive to hyperparameters
Faster training compared to LSTM

[19] SVR-LSTM
Combines linear and non-linear strengths Complex model design

Captures both short-term and
long-term dependencies Complicated debugging

[24] CNN- GRU
Captures spatial and temporal patterns Complex architecture

Robust to noise High computational cost

[13,22,23,30] CNN- LSTM
Captures spatial and temporal features Requires large datasets and optimization

Handles long-term dependencies Complex model structure

[25,26] GCN-LSTM
Captures spatial and temporal dependencies Complex model design

Effective for graph-structured data Requires large datasets and optimization

[27] GCN-GRU
Captures spatial and temporal dependencies Complex architecture

Effective for graph-structured data Sensitive to hyperparameter optimization

[28,29] Attention mechanism
Focuses on important features High computational cost

Handles long-range dependencies Requires large datasets and optimization

[30,31] Transformer
Captures long-range dependencies High computational cost

Parallelizable and scalable Requires large datasets and optimization

Overall, the current research trend is to increasingly employ a combination of deep
learning methods. These methods are dedicated to improving the accuracy of short-term
URT passenger flow prediction by integrating the extraction of multiple features related
to passenger flow in URT stations. Although there have been studies that have made
significant progress in this area, there are still some obvious limitations:

1. There is still a relative lack of specialized forecasting studies of passenger flows at
URT stations during peak hours. While existing forecasting models and methods
perform well during regular hours, it is often difficult for existing models to accurately
capture these dynamics during peak hours due to the dramatic increase in passenger
flow, pressure on station capacity, and the complexity of passenger behavior. The
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specificity of peak periods requires more refined and targeted forecasting strategies to
effectively address the challenges posed by passenger flow fluctuations. However,
the current research on peak periods still appears to be insufficient, which limits the
accurate prediction and management of passenger flows during peak periods.

2. There is still little research on incorporating point of interest (POI) into forecasting
models for URT passenger flow forecasting. POI, such as commercial areas, residential
areas, or office buildings, can have an impact on the trends of passenger flow changes,
but many existing models tend to ignore these factors, and current research on the
integration of POI is not deep enough, which limits the comprehensive understanding
and effective prediction of URT passenger flows. Therefore, in order to investigate
whether the station passenger flow between stations characterized by POI information
has a higher degree of correlation, based on the distribution of POI information points
around each station, the Pearson correlation coefficient between the distribution data
is calculated to indicate the similarity of the surrounding POI information between
each station, and is inputted into the prediction model so that the prediction model
can more accurately capture the changes in passenger flow due to the geographic
location and the type of activity, thus improving the accuracy and practicality of
the prediction.

3. Problem Statement
3.1. Passenger Flow Sequence Features

The URT morning peak hour traffic sequence extracts inbound traffic from historical
AFC traffic data. The information fields of the AFC data include Passenger ID, Arrival
Time, Arrival Station, Departure Time, and Departure Station. URT traffic Yt

i represents
the number of passengers that entered the station i during the time period t. Yt ∈ RN×1

Indicates the volume of traffic at all URT stations during the time period t. N represents
the number of all stations on the URT lines. The passenger flow data are normalized before
inputting into the prediction model.

Data normalization is the process of eliminating the effect of differences in magnitude
by transforming the original data into the interval [0, 1] by applying a linear transformation.
Equation (1) is as follows:

y =
yraw − ymin

ymax − ymin
(1)

where yraw denotes the original data of the sample, ymin denotes the minimum value in the
sample, and ymax denotes the maximum value in the sample.

3.2. Station Adjacency Relationship Features

In the URT network, there is a relationship between the physical proximity of individ-
ual stations and their passenger flow patterns. Stations that are geographically adjacent
tend to exhibit similar patterns of passenger distribution, though this relationship may
not hold universally across all hours due to the variability in passenger demand and
other influencing factors. The adjacency relationships of some of the stations are shown in
Table 2, where 0 indicates non-adjacent and 1 indicates adjacent. Therefore, the adjacency
characteristics of URT stations are represented by a matrix Adj_A, where Aij denotes the
adjacency relationship between URT stations, and Aij = 0 denotes that the stations are not
adjacent, and Aij = 1 denotes that the stations are adjacent.

3.3. POI Similarity Features

Urban rail passenger traffic will be related to the surrounding area’s land use, road
traffic facilities, employment units, and other transport travel attraction point characteristics.
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POI data (point of interest), also known as point of interest data, are the abstraction of
geographically located physical objects as points.

Table 2. Station adjacency relationships.

Station 0 1 2 . . . 80

0 0 1 0 . . . 0
1 1 0 1 . . . 0
2 0 1 0 . . . 0
3

. . .
0

. . .
0

. . .
1

. . .
. . .
. . .

0
. . .

80 0 0 0 . . . 0

This study uses the POI classification code list provided by the Gaode Map platform to
classify the POI information points around the station. The specific classification attributes
are shown in Table 3. The raw data of the POI information around each URT station are
obtained by counting and organizing the number of POI information points within 800m
around each URT station, as shown in Table 4.

Table 3. POI information classification codes and attributes.

Codes 010000 020000 030000 040000 050000

Attributes Auto Service Auto Dealers Auto Repair Motorcycle Service Food and Beverages

Codes 060000 070000 080000 090000 100000

Attributes Shopping Daily Life Service Sports and Recreation Medical Service Accommodation Service

Codes 110000 120000 130000 140000 150000

Attributes Tourist Attraction Commercial House
Governmental

Organization and
Social Group

Science/Culture and
Education Service Transportation Service

Codes 160000 170000 180000 190000 200000

Attributes Finance and
Insurance Service Enterprises Road Furniture Place Name and Address Public Facility

Codes 220000 970000 990000

Attributes Incidents and Events Indoor Facilities Pass Facilities

Table 4. Raw data of POI category counts around some URT stations.

Station 010000 020000 030000 . . . 990000

0 18 0 2 . . . 0
1 26 10 8 . . . 0
2 61 34 24 . . . 0
3

. . .
35
. . .

14
. . .

8
. . .

. . .

. . .
0

. . .
80 33 1 2 . . . 0

In order to investigate whether the URT passenger flows between URT stations with
POI information characteristics have a higher degree of correlation, based on the distribu-
tion of POI information points around each URT station, the Pearson correlation coefficient
between the distribution data is calculated to represent the similarity coefficient of the POI
information around each station, and the calculation process is shown in Equations (2)
and (3):

Peason(X, Y) =
E(XY)− E(X)E(Y)√

E(X2)− E2(X)
√

E(Y2)− E2(Y)
(2)
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R_POI = Peason(STA_POIi, STA_POIj) (3)

where E() represents the mathematical expectation; R_POI represents the information
correlation degree of POI around different URT stations; and STA_POIi represents the POI
information sequence around the URT station.

3.4. Weather and Time Label Features

Weather can be categorized into six categories: sunny, cloudy, overcast, drizzle, show-
ers, and moderate rain. The categories are denoted by (0~5, respectively), while in terms
of whether it is a working day time label, a holiday is considered as a non-working day,
and 0–1 is used to denote whether it is a working day, where 0 denotes a non-working
day and 1 denotes a working day. The above time label features of weather and whether
it is a working day or not, respectively, are input into the prediction model by generating
one-hot codes.

3.5. Description of the Problem

The task of forecasting short-duration passenger flow at URT stations during peak
hours is to utilize historical passenger flow data collected by the AFC and certain exogenous
variables to forecast the inbound passenger flow at each station within the URT network
for future time intervals. The short-term passenger flow forecasting problem for peak hour
URT stations can be formulated as follows:

Ŷt+k = optimal
Yt+k

(
F
([

Yt−m, Yt−m+1, . . . , Yt
]
, Adj_A, R_POI, [TWt−m, TWt−m+1, . . . , TWt]

))
(4)

where Ŷt+k is the predicted URT short-term passenger flow at the time, and[
Yt−m, Yt−m+1, . . . , Yt] represents the historical URT passenger flow sequence for the m

time interval from the time t − m to the time t. TW denotes the weather and time labels
matrix. F(()) denotes the function of prediction, and optimal() denotes the prediction
function with optimal parameters.

4. Methodology
4.1. BGCSTFFN Model

The framework of the proposed spatio-temporal Transformer model based on bi-graph
convolutional fusion for the task of urban rail transit passenger flow prediction is shown in
Figure 1.

The model consists of a spatial feature extraction module, a feature fusion module, and
a Transformer module. Firstly, the URT passenger flow distribution sequences and spatial
features of different station connections are input into the spatial feature extraction module
to explore spatial features, which consists of two graph convolutional network (GCN)
layers with independent parameters. Secondly, the two URT passenger flow distribution
sequences with spatial features extracted by the GCN layer are inputted into the feature
fusion module, which will fuse multiple external spatial feature URT passenger flow
sequences weighted and summed into a single sequence containing the extracted multi-
feature URT passenger flow sequences, and then the sequence is inputted into the URT
passenger flow Transformer module, in which the input of the decoder layer not only
includes the output of the encoder layer, but also a time and weather labeling feature matrix
that has been processed by a convolutional layer and has the same size as the prediction
step. The entire Transformer module consists of six stacked encoder and decoder layers
and a feedforward neural network. The results are finally summed up and the predictions
are output through a linear layer.
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4.2. Graph Convolutional Network (GCN)

A graph convolutional neural network (GCN) is an extension of a convolutional
neural network to graph-structured data, which can aggregate the neighbor information of
each node by performing convolutional operations on the graph and can utilize them for
updating and learning node features. It also retains the importance of spatial relationships,
thus effectively capturing spatial relationships in graph-structured data.

The two GCN layers include three inputs, the feature matrix YT(YT ∈ RN×F0
), and

the adjacency matrix Adj_A(Adj_A ∈ RN×N), where N is the number of stations and F0 is
the number of station features.

The computation rule for the GCN layer is given in Equation (5):

Hl = f (D− 1
2 Ãdj_AD− 1

2 Hl−1W l−1) (5)

where l denotes the number of layers; Hl denotes he output of l layer; D denotes the
degree matrix of the nodes;Adj_A denotes the adjacency matrix of the topological graph;
W l−1 denotes the weight parameter of the first layer; and f () denotes the nonlinear
activation function.

4.3. Spatial Feature Module

Spatial correlation exists in two ways: (1) Adjacency relationships, where adjacent
stations tend to be similarly affected or show higher correlations. (2) Different stations with
high POI information similarity will have similar temporal patterns, and some physically
unconnected or neighboring stations will have similar trends in certain time periods, and
this correlation will change over time. In this section, we construct a Bi-Graph Convolu-
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tional (BGCN) layer to simultaneously extract adjacency correlations and the correlations
of different stations with the same POI information similarity. Therefore, the spatial feature
module includes three inputs, as follows: a sequence of passenger flows at N URT stations
YN = {Y1, Y2, . . . , Yi}, where each sequence of URT station flows includes a sequence of
passenger flows at T time steps YT =

{
Y1, Y2, Y3, . . . , Yt}; a matrix characterizing the

adjacency of different stations Adj_A, with dimension N × N; and a matrix representing
the similarity of the POI of different stations R_POI, where N is the number of stations.
After inputting the three features into the two GCN layers, respectively, the passenger flow
sequence with two spatial features and the station information is obtained. Finally, the
two features are fused by the weighted summation of random parameters. The calculation
process is shown in Equations (6)–(8), and the overall structure of the module is shown in
Figure 2.

dataadj = Hl(Adj_A, YN) (6)

datapoi = Hl(R_POI, YN) (7)

datahybrid = α ⊙ dataadj + (1 − α)datapoi (8)

wherein datahybrid represents a passenger flow sequence having both an adjacency correla-
tion and similarity information of the same POI information.
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4.4. Transformer Module

The Transformer framework is shown in Figure 3, where the model consists of several
encoding and decoding layers stacked on top of each other. Each encoding layer consists
of a multi-head attention layer and a feed-forward neural network layer. In order to
enhance the generalization ability of the model, additional residual connections and layer
normalizations are also added between the multi-head attention layer and the feed-forward
neural network layer. The decoding layer is structurally similar to the coding layer, and the
decoding layer consists of two multi-head attention layers and one feed-forward neural
network layer, with layer normalization added between the multi-head attention layer
and the feed-forward neural network layer. Unlike the encoding layer, the first multi-head
attention mechanism of the decoding layer employs a masking mechanism to prevent
future information in the sequence from being used for prediction.

1. Positional encoding

When performing the task of predicting sequence data, the sequence order usually
carries important information. When the input data is imported into the Transformer
module, the position of each batch is first encoded at the positional encoding layer to
provide positional information for each position of the input sequence, and the positional
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encoding is performed using a combination of sine and cosine functions. The calculation
formula is shown in Equations (9) and (10).

PE(POS,2i) = sin(pos/100002i/dmodel ) (9)

PE(POS,2i+1) = cos(pos/100002i/dmodel ) (10)
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2. Multi-attention mechanism

The multiple attention mechanism will transform the input sequence linearly to obtain
the representation of Query, Key, and Value; these linear transformations will be realized
by different weight matrices. After the transformation is performed, attention computation
is performed for each Key using each Query. After the computation is completed, the
Softmax function is used for normalization to obtain the attention weight matrix, and
finally the attention weight matrix and the value matrix are multiplied and summed to
obtain the output of the multi-head attention mechanism. The calculation process is as in
Equation (11):

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (11)

where Q, K, V denotes the vector matrix of queries, keys, and values; and dk is the feature
dimension used for normalization.

5. Case Study
5.1. Data Source and Processing

The URT network studied in this paper is a localized real subway network in
Hangzhou, which consists of three URT lines with a total of 81 stations, and the network
structure is shown in Figure 4.

In this paper, the AFC data from the morning peak hour (6:30–9:30) of each station in
the study area for 25 consecutive days in January 2019 are selected, and they are corrected
for missing values and outliers. The time series of the inbound passenger flow of each
station during the morning peak hour were collated by taking 5min and 15min as the
time granularity, respectively. The attributes of the two datasets are detailed in Table 5.
Therefore, 80% of them were randomly selected as the training set and the rest as the
test set.
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Table 5. Table of dataset attributes.

Dataset 5 min Dataset 15 min Dataset

Statistics interval 5 min 15 min
Dataset size 900 * 81 300 * 81

5.2. BGCSTFFN Model Evaluation Parameter Setting

The model input data include passenger flow sequence features, the URT station
adjacency matrix, POI similarity features, and the weather and time label features. The
input feature is the original passenger flow sequence of each station, and the data structure
is 900 * 81 or 300 * 81, where 900 and 300 denote the number of bars in the sample and 81 is
the number of stations. The input sequence size of the model passenger flow is B ∗ I ∗ N,
where B denotes the batch_size, I denotes the input step size, and N is the total number of
stations. The adjacency matrix is used to describe whether the stations are adjacent to each
other, which is a quantitative description of the network topology, and the data structure of
both the POI information similarity matrix and the station adjacency matrix is 81 * 81.

The proposed deep learning model is implemented with the Pytorch (v2.5.0) frame-
work in the python programming language. Three classical error assessment metrics are
chosen to evaluate the performance of the model experimental results:

Mean Absolute Error (MAE):

MAE =
1
N

N

∑
i=1

|yi − ŷi| (12)

Root Mean Square Error (RMSE):

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (13)

Goodness of Fit (R-squared, R2):

R2 = 1 − ∑N
i=1 (yi − ŷi)

2

∑N
i=1 (yi − y)2 (14)
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In which, yi, ŷi, and y are the actual values, predicted values, and mean values of
passenger flow for URT stations, and N is the total number of URT stations.

5.3. Multi-Step Prediction Results Analysis

Different input time steps and prediction steps were used by performing cross-over
experiments on the two datasets. The time interval for the first dataset was set to 5 min,
while the second dataset used a time interval of 15 min. The results of the experiments are
shown in Table 6.

Table 6. Results for different combinations of model inputs and prediction steps.

Prediction Step No. 1 Step No. 2 Step No. 3 Step No. 4 Step No. 5 Step No. 8 Step No. 12 Step

5 min dataset input step
4 steps 86.24% 86.28% 85.98% 86.11% 85.34% 84.79% 83.21%
6 steps 87.69% 85.57% 83.64% 84.01% 84.01% 84.07% 83.57%
8 steps 89.63% 88.87% 86.66% 85.24% 84.69% 85.78% 83.27%

12 steps 90.38% 89.35% 87.32% 85.66% 85.03% 84.21% 84.85%
24 steps 89.77% 89.21% 85.98% 85.04% 85.25% 84.21% 84.34%

15 min dataset input step
4 steps 92.02% 91.98% 91.35% 91.18% 90.85% 90.01% 89.44%
6 steps 92.43% 92.09% 91.85% 91.62% 91.31% 90.31% 90.33%
8 steps 93.17% 92.91% 92.61% 92.07% 91.15% 90.65% 90.55%

12 steps 94.10% 93.91% 93.14% 92.83% 92 24% 91.30% 90.76%
24 steps 93.79% 92.98% 92.98% 92.84% 92.22% 91.24% 90.76%

Note:
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Having been experimentally validated, this model demonstrates excellent prediction
ability, achieving more than 80% prediction accuracy in a given situation, despite an input
time step of only four or six steps. The predictive performance of the model shows a gradual
increase as the input step length grows. For training sequences of different lengths, there
are significant differences between the predicted and actual values. However, constrained
by the structure of the model, the prediction accuracy almost reaches its peak when the
input step length reaches 12 steps.

In addition, we find that regardless of the value of the input time step scenario, when
the prediction step is smaller, the prediction accuracy is higher. This is because the model
can capture the current trend more accurately, and also, smaller prediction intervals can
help us make more accurate predictions.

By testing the dataset at different time intervals, i.e., over different time periods, the
experimental results show that different time intervals of data will have a significant impact
on the performance of the model. On the 15 min dataset, the model showed a superior
prediction accuracy than on the 5 min dataset. This difference may be due to the fact that a
wider range of time periods is provided, and therefore, simpler temporal information can
be obtained. In addition, the model shows excellent prediction on both sets of samples.

To summarize the experimental results, we conclude that the model proposed in
this paper is an efficient spatio-temporal feature extraction model. It shows a good per-
formance and strong generalization ability in time series prediction tasks. In practical
applications, the combination of inputs and prediction steps can be reasonably selected
to significantly improve the prediction performance based on the task requirements and
data characteristics.

5.4. Comparison with Baseline Models

In order to verify the performance of the proposed model in short-term forecasting,
we compare the proposed model with the following baseline model.
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ARIMA: A representative traditional statistical model. It combines autoregressive
(AR), difference (I), and moving average (MA) components for modeling and forecasting of
time series data with certain trends and seasonality. It has only passenger flow sequences
as input features.

CNN: A deep learning model with two convolutional layers and two linear layers
is built. The first convolutional layer contains 32 convolutional kernels, and the second
convolutional layer has 64 kernels, each of which is 3 * 3 in size.

GRU [16]: Gated Recurrent Unit (GRU) is a neural network model for processing
sequential data and belongs to a variant of Recurrent Neural Networks (RNNs). A deep
learning model with two GRU layers and one linear layer is built. Each GRU layer consists
of 512 hidden neural units.

LSTM: A deep learning model for URT passenger flow prediction with two LSTM
layers and a linear layer is developed. Each LSTM layer consists of 512 hidden neural units.

GCN-GRU: A deep learning model for URT passenger flow prediction consisting of
one GCN layer and two GRU layers is constructed. Each GRU layer consists of 81 hidden
neural units.

GCN-LSTM [26]: A deep learning model for URT passenger flow prediction consisting
of one GCN layer and two LSTM layers is constructed. Each LSTM layer consists of 81
hidden neural units.

Transformer: A deep learning model with one Transformer layer and one linear layer
is constructed. The Transformer layer consists of sixteen attention headers, and there are
six layers for both the encoder and the decoder.

From the experimental results in Tables 7 and 8, we can draw the following conclusions.

Table 7. The 5 min dataset comparison of model results.

Model
One-Step Prediction Two-Step Prediction Three-Step Prediction

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

ARIMA 35.21 60.47 54.74% 35.21 60.47 54.74% 35.21 60.47 54.74%
CNN 34.23 58.66 63.40% 34.17 39.14 61.96% 25.66 42.01 60.32%
GRU 21.24 35.66 74.76% 22.47 36.76 71.47% 23.15 38.66 70.76%
LSTM 20.77 33.47 77.54% 21.11 37.75 75.55% 23.67 38.01 74.57%

GCN-GRU 19.64 32.97 80.40% 21.24 35.66 79.76% 21.24 35.66 78.34%
GCN-LSTM 18.54 27.45 82.26% 19.97 31.68 81.43% 21.12 35.79 80.45%
Transformer 13.68 21.63 86.16% 19.77 33.24 85.97% 21.14 35.94 84.74%
BGCSTFFN 10.99 21.74 90.38% 11.24 21.67 89.35% 13.38 23.14 87.32%

Table 8. The 15 min dataset comparison of model results.

Model
One-Step Prediction Two-Step Prediction Three-Step Prediction

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

ARIMA 40.21 72.98 56.45% 40.21 72.98 56.45% 40.21 72.98 56.45%
CNN 37.10 54.66 65.48% 37.25 55.34 64.96% 38.65 56.32 63.32%
GRU 35.10 50.66 75.40% 36.25 52.34 73.78% 37.39 52.32 73.31%
LSTM 32.77 46.67 80.55% 33.11 49.75 79.87% 34.67 50.01 78.01%

GCN-GRU 29.64 44.97 82.40% 30.24 45.66 81.76% 30.42 47.02 80.02%
GCN-LSTM 25.54 37.45 86.32% 26.18 39.02 85.89% 27.08 41.23. 85.56%
Transformer 23.76 35.66 92.93% 23.77 38.42 91.97% 24.46 39.94 90.74%
BGCSTFFN 21.56 33.46 94.10% 23.29 37.24 93.14 25.84 39.87 93.08%

The prediction performance of the traditional statistical time series model ARIMA is
consistent across tasks with different prediction steps. In contrast, deep learning and ma-
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chine learning models show greater adaptability across different prediction steps, allowing
them to better capture dynamic changes in the time series.

With the exception of traditional statistical models, the prediction error of all deep
learning models increases as the prediction step size increases. This trend occurs because
longer prediction steps introduce more uncertainties and disturbances that complicate the
model’s predictions. In addition, the prediction error of the combined model is smaller than
that of the individual models because the combined model better combines the strengths of
the individual models and thus improves the prediction performance. Overall, the deep
learning models perform well in terms of prediction accuracy. Among these models, the
GCN-LSTM and GCN-GRU models show a relatively superior prediction performance,
emphasizing the superior ability of the GCN layer to extract spatio-temporal features. In
contrast, the CNN models perform poorly, as they are unable to efficiently capture the
spatio-temporal features present in the URT passenger flow data through convolution.
Excellent prediction performance is shown in all tasks, especially in single-step prediction,
which is very similar to the prediction capability of the BGCSTFFN proposed in this
paper. However, the performance difference gradually expands as the prediction step
size increases, which highlights the importance of considering both temporal and spatial
correlations in challenging prediction tasks such as URT passenger flow prediction.

It is important to note that datasets with different time intervals have a significant
impact on the performance of the model. In the 15 min dataset, the model demonstrates
excellent predictive ability, consistently outperforming the 5 min dataset in terms of ac-
curacy. This is due to the high volatility of the data in the 5 min dataset, the significant
effect of noise, and the model’s difficulty in capturing stable long-term trends. The 15 min
dataset is smoother and more cyclical, allowing the model to better identify trends and
make stable predictions.

The BGCSTFFN model performs best in terms of prediction accuracy in all prediction
tasks. In addition, it has the least variation in performance at various prediction steps,
revealing its superior performance in extracting spatio-temporal features and its stability in
realizing multi-step prediction tasks.

5.5. Feature Ablation Experiment

The BGCSTFFN model performs best in terms of prediction accuracy in all prediction
tasks. In addition, it has the least variation in performance at various prediction steps,
revealing its superior performance in extracting spatio-temporal features and its stability in
realizing multi-step prediction tasks.

Experimental Group I: BGCSTFFN-No Adj_A: Remove the GCN layer that extracts the
adjacency feature matrix from the model while keeping all other configurations unchanged.

Experimental Group II: BGCSTFFN-No R_POI: Remove the GCN layer that ex-
tracts the POI information similarity matrix from the model while keeping all other
configurations intact.

Experimental Group III: BGCSTFFN-No Adj_A and R_POI: Remove from the model
the GCN layer that extracts the adjacency feature matrix and the POI information similarity
matrix, while keeping all other configurations unchanged.

Experimental Group IV: BGCSTFFN-No TW: Remove time label and weather data
from the model while keeping the other configurations unchanged.

Experimental Group V: BGCSTFFN-No Adj_A, R_POI and TW: Remove from the
model the time labeling with the weather data and the GCN layer responsible for extracting
the adjacency feature matrix and the POI information similarity matrix, while keeping all
other configurations unchanged. The results of the experiment are shown in Table 9.
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Table 9. Results of ablation experiments.

Group
5 min Dataset 15 min Dataset

MAE RMSE R2 MAE RMSE R2

Control Group 14.74 24.47 90.38% 24.14 54.27 94.10%
Experiment Group I 12.73 19.37 87.89% 24.22 39.04 93.96%
Experiment Group II 12.90 20.04 87.25% 25.63 40.98 93.59%
Experiment Group III 13.42 21.41 87.18% 24.07 36.80 93.33%
Experiment Group IV 12.67 19.38 88.06% 22.93 35.53 93.98%
Experiment Group V 13.68 21.63 86.16% 23.76 35.66 92.93%

The models in Experimental Groups I, II, and III exhibit a lower prediction perfor-
mance compared to the control group, indicating that features such as adjacency and POI
information similarity have varying degrees of impact on model predictions when removed
separately. When both feature types are removed at the same time, the model’s perfor-
mance is more severely affected. In Experimental Group IV, the predictive performance
of the model decreases significantly, emphasizing the major role of timestamped data and
weather data in the BGCSTFFN model. The model in Experimental Group V performs the
worst, highlighting the importance of inputting multiple data sources in the URT passenger
flow prediction task.

This comprehensive analysis shows that the key role of various input features in
the BGCSTFFN model has been successfully verified by ablation experiments. The ex-
perimental results show that the contribution of the features is ranked as follows: the
POI information similarity feature, the adjacency feature, and the time label and weather
features. This provides an important guideline for the BGCSTFFN model to maintain
the excellent predictive performance of URT station passenger flow prediction during
peak hours.

5.6. Predictive Performance Analysis for Different Types of Stations

In order to validate the prediction performance of the model at the individual sta-
tion level, we chose the optimal step combination task for the model, i.e., input step 12
for prediction step 1; selected station serial numbers 4, 15, 20, and 39, which were four
different types of stations; and compared and analyzed the prediction results under two
different datasets.

Station description: URT station number 4 is a non-interchange commuter station that
primarily serves an area located near a medium to large residential neighborhood with
relatively limited commercial and office amenities.

URT station number 15 is an important intercity and urban transportation hub where
rail, urban rail, and surface public transportation converge to form a key node of the
transportation network.

URT station number 20 is a comprehensive interchange station located between a
large commercial area and a densely populated residential area, characterized by a high
population density in the surrounding area.

URT station number 39 is a non-interchange, office-based subway station located in an
area dominated by commercial and office spaces, which also contains some educational
facilities and residential areas.

As can be seen from Figures 5–12, the prediction models proposed in this paper
perform more accurately in capturing the process of passenger flow changes and the overall
trend of different types of stations, and the overall prediction accuracy generally exceeds
85%. This result indicates that the model is able to better capture and predict the changes
in passenger flow at different types of stations over different time periods, especially in
most cases, and accurately reflects the fluctuations and trends in passenger flow. However,
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despite this, there are significant differences in the prediction effects of the same type of
stations on different datasets. Specifically, the prediction results obtained from the dataset
based on 5 min intervals performed relatively poorly compared to the dataset based on
15 min intervals.

Systems 2025, 13, x FOR PEER REVIEW 19 of 25 
 

 

 

Figure 5. Prediction result of the 5 min dataset for station 4. 

 

Figure 6. Prediction result of the 15 min dataset for station 4. 

 

Figure 7. Prediction result of the 5 min dataset for station 15. 

Figure 5. Prediction result of the 5 min dataset for station 4.

Systems 2025, 13, x FOR PEER REVIEW 19 of 25 
 

 

 

Figure 5. Prediction result of the 5 min dataset for station 4. 

 

Figure 6. Prediction result of the 15 min dataset for station 4. 

 

Figure 7. Prediction result of the 5 min dataset for station 15. 

Figure 6. Prediction result of the 15 min dataset for station 4.

Systems 2025, 13, x FOR PEER REVIEW 19 of 25 
 

 

 

Figure 5. Prediction result of the 5 min dataset for station 4. 

 

Figure 6. Prediction result of the 15 min dataset for station 4. 

 

Figure 7. Prediction result of the 5 min dataset for station 15. 
Figure 7. Prediction result of the 5 min dataset for station 15.



Systems 2025, 13, 96 18 of 22
Systems 2025, 13, x FOR PEER REVIEW 20 of 25 
 

 

 

Figure 8. Prediction result of the 15 min dataset for station 15. 

 

Figure 9. Prediction result of the 5 min dataset for station 20. 

 

Figure 10. Prediction result of the 15 min dataset for station 20. 

Figure 8. Prediction result of the 15 min dataset for station 15.

Systems 2025, 13, x FOR PEER REVIEW 20 of 25 
 

 

 

Figure 8. Prediction result of the 15 min dataset for station 15. 

 

Figure 9. Prediction result of the 5 min dataset for station 20. 

 

Figure 10. Prediction result of the 15 min dataset for station 20. 

Figure 9. Prediction result of the 5 min dataset for station 20.

Systems 2025, 13, x FOR PEER REVIEW 20 of 25 
 

 

 

Figure 8. Prediction result of the 15 min dataset for station 15. 

 

Figure 9. Prediction result of the 5 min dataset for station 20. 

 

Figure 10. Prediction result of the 15 min dataset for station 20. Figure 10. Prediction result of the 15 min dataset for station 20.

The reason for this phenomenon can be attributed to the effect of the time interval of
the dataset on the fluctuation of passenger flow. In the dataset with 5 min intervals, the fluc-
tuations in passenger flow changes are more frequent and drastic, especially during peak
hours. This frequent fluctuation makes the model face more uncertainties and challenges
in trend prediction. Since the data changes in each 5 min time interval are more subtle
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and unstable, the model needs to capture the details of these short-term fluctuations more
accurately, which is a difficult task for conventional prediction algorithms. As a result, the
prediction effect of the dataset for 5 min time intervals is more complex and the prediction
accuracy is somewhat compromised.
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In contrast, the dataset with 15 min time intervals is able to present the overall trend
of passenger flow more smoothly, reducing the impact of short-term fluctuations. This
allows the model to better capture long-term trends and patterns, while ignoring sharp
fluctuations over short periods of time, thus improving the accuracy of the predictions.
Under longer time intervals, the passenger flow data tend to stabilize, and the model can
more effectively identify the regular changes in it, and the prediction results are therefore
more accurate.

In addition, the forecast performance accuracy of some stations is more exceptional,
especially for Station 39. Due to the complexity and irregularity of passenger flow changes
at this station, its prediction accuracy is the lowest among all four categories of stations.
The passenger flow at station 39 is affected by a variety of factors, which may include
changes in the surrounding environment, temporary activities, etc., leading to fluctuations
in its passenger flow that are difficult to capture by conventional prediction models, which
in turn affects the accuracy of the prediction results.

Across all datasets, the model demonstrated high accuracy in predicting sudden peaks
in passenger flow. In most cases, the model was able to accurately predict the peaks of
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mutations and was able to capture significant fluctuations in passenger flow. However,
there are still a few peaks that were not predicted with sufficient accuracy, which may
be due to the high volatility of the data themselves or the model’s failure to adequately
adapt to these sudden changes in patterns in specific cases. Nonetheless, in terms of
overall performance, the model is quite satisfactory in dealing with sudden change peaks,
demonstrating a strong prediction ability. Especially when facing different datasets and
changing patterns, the model’s performance remains stable with strong generalization
ability, which can provide reliable prediction support for practical applications.

For the non-interchange commuter metro station with the URT station serial number
4, the frequency arrangement can be optimized to attract more commuter passengers by
strengthening the connection between the surrounding residential areas and commercial
facilities, as well as by gradually cultivating a stable passenger flow during morning and
evening peak hours in conjunction with the development of residential areas.

For the transportation hub station with the URT station serial number 15, the in-
terchange efficiency and connectivity of the hub station can be enhanced to strengthen
cross-modal transportation guidance and divert passenger flows in different directions, so
as to avoid the over-concentration of peak hour pressure. At the same time, increasing the
number of commercial and retail facilities in the vicinity could attract increased off-peak
hour passenger flow and promote all-weather passenger flow distribution.

For the comprehensive interchange station with the URT station serial number 20, it
can take advantage of its location between commercial and residential areas to strengthen
diversified commercial services and regional supporting facilities to attract the daily com-
muting high-density flow of people in the surrounding area, and at the same time control
the over-concentration of passenger flow by guiding the diversion of short-distance and
long-distance passenger flow.

For the office-type metro station with the URT station serial number 39, the frequency
of trains during peak hours should be appropriately adjusted according to the mobility
characteristics of weekday office crowds to avoid the over-concentration of passenger flows.
At the same time, stable passenger flow during off-peak hours can be gradually cultivated
with the help of the development of neighboring educational facilities and residential areas
to alleviate the pressure of commuting peaks.

Overall, the BGCSTFFN model proposed in this thesis consistently exhibits superior
prediction performance in various situations, emphasizing its practicality and value for
real-world applications. The BGCSTFF model exhibits excellent adaptability and reliability,
and successfully responds to the challenge of predicting short-term, multi-station passenger
flow during URT peak hours.

6. Conclusions
In this study, we propose a BGCSTFFN-based model that combines GCN and Trans-

former techniques to accurately predict short-term passenger flows during URT peak hours.
The model integrates inputs from passenger flow time series, POI information similarity
coefficients, station adjacency features, and weather and time labeling data, thus providing
insights into the complex interactions between temporal and spatial features. Real passen-
ger flow data from the URT in Hangzhou are used to evaluate the prediction performance
of the model. The effectiveness of the model in short-term passenger flow prediction at
URT stations during peak hours is experimentally verified.

The BGCSTFFN model consistently maintains superior and stable performance in
prediction tasks with different combinations of inputs and prediction steps, showing strong
robustness and demonstrating an excellent generalization ability. Both longer input steps
and shorter prediction steps will help to improve the prediction accuracy. In practical appli-
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cations, the appropriate combination of input and prediction steps should be selected based
on the task requirements and data characteristics to optimize the prediction performance.

The BGCSTFFN model can effectively reveal the complex coupling relationship be-
tween multiple data sources while extracting the spatio-temporal features of passenger
flow, and the effects of station adjacency features, POI information similarity features, and
time label and weather features on the prediction accuracy are also effectively captured.
In addition, the ablation experiments reveal the contribution of each feature to the model
prediction accuracy, in which the POI information similarity feature has the greatest impact,
followed by the adjacency feature and the time label and weather feature.

Although the current model has used spatial features based on inter-station adjacency
and POI similarity, this spatial feature has not yet covered all possible dimensions, and
subsequent studies can further introduce more spatial dimension features, such as inter-
station distance, etc. In addition, the collection of event data sources can be explored to
analyze the interference pattern of random events on URT station passenger flow in order
to enhance the accuracy of passenger flow prediction under special events, thereby further
improving the prediction performance of the model.
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