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Abstract

:

The Müller-Wichards model (MW) is an algebraic method that quantitatively estimates the performance of sequential and/or parallel computer applications. Because of category theory’s expressive power and mathematical precision, a category theoretic reformulation of MW, i.e., CMW, is presented in this paper. The CMW is effectively numerically equivalent to MW and can be used to estimate the performance of any system that can be represented as numerical sequences of arithmetic, data movement, and delay processes. The CMW fundamental symmetry group is introduced and CMW’s category theoretic formalism is used to facilitate the identification of associated model invariants. The formalism also yields a natural approach to dividing systems into subsystems in a manner that preserves performance. Closed form models are developed and studied statistically, and special case closed form models are used to abstractly quantify the effect of parallelization upon processing time vs. loading, as well as to establish a system performance stationary action principle.
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1. Introduction


In the late 1980s, D. Müller-Wichards proposed a concise novel approach for estimating the total performance of computer-based (but machine independent) applications by algebraically combining the known performance estimates of the individual arithmetic, data movement, and delay elements that comprise the applications in a manner that also accounts for various degrees of parallelism that can occur during processing [1]. The essence of the mathematical framework upon which the Müller-Wichards model (MW) is based is abstracted by the expression φ:H→P, where H is a monoid (i.e., a semigroup with identity) representation of the application, P is the Müller-Wichards performance algebra (also a monoid), and φ is a monoid homomorphism. The image φ(h) in P of a single application element h in H provides a numerical performance measure for h. The total numerical performance estimate for the application results naturally from the associative binary operations in H and P and the homomorphism property of φ, which algebraically combines the performance estimates for each application element in H.



Every area of mathematics (e.g., group theory, topology) is described by numerous definitions, theorems, and constructions. However, many common mathematical concepts occur naturally with only slight variation in the various areas of mathematics. Category theory is that branch of mathematics which identifies and studies these common concepts and provides formal mechanisms for mapping them from one area of mathematics to another. More specifically, a category (e.g., the category of sets) consists of a class of objects (e.g., sets), morphisms between objects (e.g., maps between sets), an identity morphism for each object (e.g., the set identity map), and a rule for associatively composing morphisms (e.g., composition of maps). Functors provide formal maps between categories (e.g., from the category of groups to the category of sets) by associating objects and morphisms in different categories subject to the constraints that morphism composition and object identities are preserved.



Because of its generality category, theory has found application in recent years in such diverse areas as physics (e.g., [2,3,4,5]), design specification (e.g., [6,7]), data fusion (e.g., [8]), computer science (e.g., [9]), computer security (e.g., [10,11]), systems engineering (e.g., [12]), manufacturing (e.g., [13]), theoretical biology (e.g., [14,15,16]), network theory (e.g., [17]), multi-agent systems models (e.g., [18]), concurrent system design verification (e.g., [19]), emergence (e.g., [20]), and artificial general intelligence (e.g., [21]). Motivated by category theory’s mathematical precision and expressive power, this paper introduces a new category theoretic application useful for numerical systems engineering modelling and analysis via a very simple straightforward categorification of MW for the case that the application monoid H is a free monoid generated by a finite set of basis processes, i.e., H is the set of all finite sequences of basis processes, including the empty sequence-where each sequence represents a system and each basis process corresponds to either an arithmetic process, a data movement process, or a delay process-and catenation of systems serves as the associative binary operation. The categorified MW-denoted by CMW-is comprised of three components: a single object category of systems that is specified by H and has elements of H as its set of morphisms; a single object performance category that is specified by P and has the elements of P as its set of morphisms; and a performance functor specified by φ with the category of systems as its domain and the performance category as its codomain.



CMW is effectively numerically equivalent to MW with the added benefit that the formalism introduced by categorification provides a precise vocabulary useful for identifying and discussing certain fundamental properties of both the model and the systems modelled by it. In particular, the CMW fundamental symmetry group is introduced and the category theoretic formalism is used to facilitate the identification of associated symmetry invariants found in the model. In addition, the formalism provides a natural approach to system factorization-i.e., dividing a system into subsystems in a manner that maintains its integrity-i.e., preserves the performance of the undivided system.



As indicated above, the objective of this paper is to provide a categorified version of the MW model and exploit the associated category theoretic vocabulary to provide additional insights into properties of the MW model, as well as the systems modelled by it. In order to make this paper reasonably self-contained, relevant definitions, terminology, and preliminary lemmas are summarized in the next section (for additional depth and clarification the reader is invited to consult such references as [22,23,24]). The remainder of this paper is organized as follows: The Müller-Wichards performance categories are defined, and their category theoretic properties discussed in Section 3. The category of systems and the Müller-Wichards performance functors are introduced in Section 4. The CMW fundamental symmetry group is defined and its associated model invariants are identified in Section 5. System factorization and a “product of categories” performance model are discussed in Section 6. Closed form models are developed in Section 7 and several aspects of closed form models are studied statistically in Section 8. Special case closed form models are developed in Section 9. These special case closed form models are applied in Section 10 to abstractly demonstrate the effect of parallelization on system processing time vs. loading and to obtain a stationary action principle for system performance. Concluding remarks comprise the final section of this paper. To avoid disrupting the flow of the text, proofs for all theorems (including those for the special case closed form models) are consigned to Appendix A.




2. Definitions, Terminology, and Preliminary Lemmas


2.1. Categories and Morphisms


A category C consists of a collection ObjC of objects such that ([22], p. 2)

	
For every pair of objects X,Y∈ObjC there is a (possibly empty) set MorC (X,Y) of morphisms from X to Y;



	
For any X,Y,Z∈ObjC there is a composition “∘” of morphisms


∘ : MorC(X,Y)×MorC(Y,Z)→MorC(X,Z)



(1)




given by (f,g)↦g∘f with the properties:



	
For every X∈ObjC there is an identity morphism 1X∈MorC(X,X) such that for f∈ MorC(X,Y) and g∈MorC(Y,X), f∘1X=f and 1X∘g=g;



	
When defined, composition of morphisms is associative, i.e., (f∘g)∘h=f∘(g∘h).








To illustrate this definition, consider the following canonical examples of categories:

	
The category Set where ObjSet is the collection of all sets, the morphisms are the ordinary mappings between sets, and ∘ is the usual composition of maps.



	
The category Grp where ObjGrp is the collection of all groups, the morphisms are the ordinary group homomorphisms, and ∘ is the usual composition of homomorphisms.








It is easily verified that Set and Grp satisfy items 3 and 4 above.



A category C is a subcategory of a category D if ([22], p. 7): every object of C is an object of D; for all objects X,Y of C, MorC(X,Y)⊆MorD(X,Y); the composition of two morphisms in C is the same as their composition in D; and for all objects X of C, 1X is the same in D as it is in C. If ObjC is a set, then C is a small category ([22], p. 6) and if MorC(X,Y)≠∅ for all X,Y∈ObjC, then C is a connected category ([22], p. 19).



Morphisms are classified in a variety of ways according to their composition properties. Of interest here are monic and epic morphisms. A morphism f is monic ([22], p. 11) if f∘g=f∘h implies g=h and it is epic ([22], p. 12) if g∘f=h∘f implies g=h. For example, in the category Set injective maps are monic morphisms and surjective maps are epic morphisms. A morphism that is both monic and epic is a bimorphism ([22], p. 15). A morphism h is factorizable ([22], p. 43) if h=f∘g, where f is monic and g is epic.



Another useful notion involving morphisms is the sieve ([25], p. 206) on an object. For some X∈ObjC consider the set of morphisms ΨX={f:f∈MorC(X,Y) for all Y∈ObjC} and observe that ΨX is closed under left composition, i.e., g∘f∈ΨX when f∈ΨX and g∈MorC(Y,Z) for any Z∈ObjC. An X−sieve is the subset Ψ⊆ΨX that is closed under left composition, i.e., g∘f∈Ψ when f∈Ψ. Note that there are at least two sieves for every X∈ObjC, namely ΨX and the empty sieve ∅.




2.2. Functors


Functors can be regarded as morphisms between categories and-in a sense-they provide a “picture” of what one category looks like in another. If F is a covariant functor-or simply a functor (contravariant functors are not used here) ([22], p. 73)-from category C to category D (denoted F:C→D), then it assigns to every X∈ObjC an FX∈ObjD and to every f∈MorC(X,Y) an Ff∈MorD(FX,FY) such that:

	
F1X=1FX for every X∈ObjC; and



	
When f∘g=h is defined in C, then Ff∘Fg=Fh is defined in D and Ff∘Fg=F(f∘g)= Fh.








F is full ([22], p. 97) if for all X,Y∈ObjC the mapping MorC(X,Y)→MorD(FX,FY) defined by f↦Ff is surjective, and is faithful ([22], p. 97) if this mapping is injective. Simple examples of functors include:

	
The identity functor 1C:C→C which makes the assignments 1CX=X for every X∈ObjC and 1Cf=f for every f∈MorC(X,Y).



	
The forgetful functor U :Grp→Set which assigns to every group G∈ObjGrp its underlying set UG∈ObjSet and to each homomorphism f∈MorGrp(G,H) the set map Uf∈ MorSet(UG,UH) (i.e., U forgets group structure going from Grp to Set).








It can be determined by inspection that these functors satisfy the required properties given above by items 1 and 2.



Preservation and reflection are two important features of functors. A functor F:C→Dpreserves a categorical property ([22], p. 97) π if-whenever an object, morphism, or diagram has property π in C, then the image under F of that object, morphism, or diagram has property π in D. Similarly, Freflects property ([22], p. 97) π if-whenever the image under F of an object, morphism, or diagram has property π in D, then that object, morphism, or diagram has property π in C.



It is readily deduced from item (2) that, in general, functors preserve commutative triangles of morphisms. For example, if Figure 1 is the commutative triangle for f∘g=h in C, then it must be



the case that the commutative triangle in Figure 2 is the preserved image of Figure 1 under the functor:



F in D. Note that Figure 1 is a factorization of h when f is monic and g is epic.




2.3. Preliminary Lemmas


The following lemmas are needed to prove and discuss the main results of this paper. They have been established elsewhere and are stated here without proof for the reader’s convenience.



Lemma 1 [9].

Any monoid Mspecifies a categoryMwith Mas its only object, the elements ofMas its only set of morphisms, and the binary operation on Mas its composition of morphisms.





Lemma 2 [9].

Each monoid homomorphism f:M→Nspecifies a functorF:M→NwithFM=Nand Fx∈MorN(N,N)=Nfor x ∈ MorM(M,M)=Msuch that Fx∘Fy=Fzin Nwhen x∘y=zin M.





Lemma 3 [24].

Let ℱXbe the free monoid on a setXand Sbe any monoid. If φ0is any mapping of Xinto S, then φ0can be extended in one and only one way to a homomorphism φof ℱXinto Sas φ(x1x2⋯xn)=φ0(x1)φ0(x2)⋯φ0(xn).





Lemma 4 [22].

Every faithful functor reflects monics, epics, and commutative triangles.





Lemma 5 [24].

A free monoidℱXis cancellative (i.e., uv=uwand vu=wuimplies  v=wfor u,v,w∈ℱX) and equidivisible (i.e., uv=wzimplies there exists an xsuch that either u=wxand z=xvor w=uxand v=xzfor u,v,w,x,z∈ℱX).





As an example of equidivisibility, suppose uv=wz is a commutative square in a free monoid with u=a1a2a3a4a5, v=a6a2a4a7, w=a1a2, and z=a3a4a5a6a2a4a7. Then there exists an x=a3a4a5 such that u=wx and z=xv.





3. The Müller-Wichards Performance Categories


As mentioned in the introduction, in 1988 Dieter Müller-Wichards posited a (computing) machine independent “performance algebra” designed to estimate the total performance of a specific implementation of an application on a machine using the (known) performance characteristics of its individual building blocks. This approach enabled trade-off studies and analyses of applications using its various decompositions and implementations [1]. As indicated above, similar studies and analyses can be performed using CMW to estimate the numerical performance of any system that can be represented as sequences of arithmetic, data movement, and delay processes.



The Müller-Wichards performance algebra consists of a set whose elements are ordered in triples along with an associative binary operation, which defines how the elements of the set are to be multiplied. These elements are partitioned into three distinct subsets depending upon whether they are arithmetic, data movement, or delay elements. The first and second entries in each triple correspond to a performance value (e.g., a processing or data movement rate) and a weight value (e.g., the number of operations to be performed or the amount of data to be moved), respectively (delay elements are a special case—see below). The third entry is either a 0-which defines the element as a data movement or delay element-or a  1-which defines the element as an arithmetic element. Multiplication of an arithmetic element by any element produces another arithmetic element, whereas the product of a data movement element with a data movement element or a delay element is a data movement element. The set of delay elements is closed under this multiplication.



Multiplication is defined in terms of a positive real valued parameter q, which provides a family of (“skewed” time) results that interpolate between completely sequential and completely parallel execution of the associated application. The value of this parameter can be selected to account for execution time “speedup” or for degrees of machine and application parallelism.



The sets that define the Müller-Wichards performance algebra are:


ℝ+≡the set of positive real numbers,



(2)






C≡ℝ+×ℝ+×{1}≡the set of arithmetic elements,



(3)






D≡ℝ+×ℝ+×{0}≡the set of data movement elements,



(4)






V≡(ℝ+∪{∞})×{i}×{0}≡the set of delay elements ,



(5)




where i=−1,


℘≡C∪D∪V,



(6)




and


℘′≡C∪D.



(7)







Each element in C,D, and V is a triple g=(r,w,u), where r is a performance value, w is a weight value, and u∈{0,1} determines the element type (i.e., C, D, or V).



Let 1≤q≤∞, and define the operation ⊗q as follows:

	
If g1=(r1,w1,u1)∈℘ and g2=(r2,w2,u2)∈℘′, then g1⊗qg2=(r,w,u), where


u=u1˅ u2,



(8)






w=Re[u1w1+u2w2+¬u(w1+w2)],



(9)




and


r={|w|[(|w1|r1)q+(|w2|r2)q]1q ,    q<∞|w|max[|w1|r1,|w2|r2] ,      q=∞



(10)







	
If g1,g2∈V, then g1⊗qg2=(r,i,u), where u and r are given by Equations (8) and (10), respectively.








The elements g1,g2 are comparable if g1,g2∈C or g1,g2∈D or g1,g2∈V. If g1,g2∈℘, then g1≤g2 when g1,g2 are comparable and either |w2|r2<|w1|r1 or |w2|r2=|w1|r1 and r2≥r1.



Theorem 1.

(℘,⊗q)is a commutative monoid Mqwith identitye=(∞,i,0).





Since (℘,⊗q) is the monoid Mq, then (℘,⊗q) specifies a category according to the prescription given by the next theorem.



Theorem 2.

(℘,⊗q)specifies the Müller-Wichards performance category ℘qwith Mqas its only object, Mor℘q(Mq,Mq)=℘as its only morphism set, and composition of morphisms defined by ⊗q.



In order to identify additional categorical properties derived from the algebraic structure of (℘,⊗q), let ℘C≡C∪{e}, ℘D=D∪{e},℘CD=℘′∪{e}, and ℘V=V.





Theorem 3.

(℘qX,⊗q), X∈{C,D,CD,V}, are submonoids of(℘,⊗q).





This leads to the following result:



Theorem 4.

If X∈{C,D,CD,V}, then (℘X,⊗q)specifies the Müller-Wichards performance category ℘qXwith MqXas its only object, Mor℘qX(MqX,MqX)=℘Xas its only morphism set, and composition of morphisms defined by ⊗q.





Note that although Mor℘qX(MqX,MqX)⊂Mor℘q(Mq,Mq), ℘qX is not a subcategory of ℘q because MqX≠Mq.



Theorem 5.

Each of the categories ℘qand ℘qX,  X∈{C,D,CD,V},are small and connected.





Theorem 6.

Every morphism in ℘qX, X∈{C,D,V},is a bimorphism.





The following result is included for completeness and is a category theoretic statement of the fact that multiplication in the performance algebra is biased towards arithmetic elements, i.e., the product of any element in set ℘≡C∪D∪V with an element in set C is an element in C.



Theorem 7.

The set Cis an Mq- sieve in category ℘q.






4. The Category of Systems and the Müller-Wichards Performance Functors


In this section, the category of systems is obtained from the free monoid ℐA generated by a finite set A of basis processes. Although this approach is similar to that employed in [1] to define H, for simplicity the catenation operation in ℐA is used here instead of the two operations ⊗ and ⊕ used in H to distinguish between portions of an application that have sequential and parallel implementations. A product of categories construction will be introduced for this purpose in Section 6.



Recall from Section 1 that ℐA consists of all finite sequences of basis processes of A called systems. The catenation of systems u,v∈ℐA is the system w=uv∈ℐA and u and v are subsystems of w. The empty system ε∈ℐA is the system with no basis processes and serves as the identity element for ℐA with εu=uε=u.



The category of systems ℑA associated with a basis process set A is obtained from ℐA, as prescribed in the following theorem.



Theorem 8.

ℐAspecifies the category of systems ℑAwith ℱAas its only object, MorℑA(ℱA,ℱA)=ℐAas its only morphism set, and composition of morphisms defined by catenation of systems.





Thus, a morphism in ℑA is a system and composition of morphisms in ℑA is catenation of systems.



Theorem 9.

ℑAis a small connected category.





Theorem 10.

Every morphism inℑAis a bimorphism.





Any functor from ℑA into ℘q or ℘qX, X∈{C,D,CD,V}, is referred to here as a Müller-Wichards performance functor for ℑA and the performance for any system in ℑA is its image under a Müller-Wichards performance functor in ℘q or ℘qX, X∈{C,D,CD,V}. These functors are defined by unique extensions of gauge maps from the set of basis processes into the associated Müller-Wichards performance monoids as described by the following theorem (here “gauge” emphasizes the fact that these maps set the performance gauge for each basis process).



Theorem 11.

For any gauge map φ0:A→(℘,⊗q) [φ0:A→(℘X,⊗q),X∈{C,D,CD,V}] there is a unique Müller-Wichards performance functor Fφ0:ℑA→℘q [Fφ0X:ℑA→℘qX] such that


Fφ0a1a2⋯an=φ0(a1)⊗qφ0(a2)⊗q⋯⊗qφ0(an)



(11)






[ Fφ0Xa1a2⋯an=φ0(a1)⊗qφ0(a2)⊗q⋯⊗qφ0(an) ]



(12)




where a1a2⋯an∈MorℑA(ℱA,ℱA).






5. The CMW Fundamental Symmetry Group and Associated Invariants


Based upon the discussion above, it is clear that CMW can be abstracted by the functor expressions Fφ0:ℑA→℘q and Fφ0X:ℑA→℘qX, X∈{C,D,CD,V}. In this section, the CMW fundamental symmetry group is introduced and associated model invariants (which at an abstract level can be viewed as invariants of the modelled system) are identified. Recall that, in general, a symmetry associated with a “situation” is related to an “immunity to change” for some aspect of the “situation”. In order for a “situation” to have a symmetry: (i) the aspect of the “situation” remains unchanged or invariant, when a change or symmetry transformation acts upon the “situation”; and (ii) it must be possible to perform the change, although the change does not actually have to be performed [26]. Here, symmetry and symmetry transformation are used interchangeably.



An automorphism of ℑA is a bijection α:MorℑA(ℱA,ℱA)→MorℑA(ℱA,ℱA), which preserves the catenation operation in ℐA. Since MorℑA(ℱA,ℱA) remains unchanged under α and it is possible-but not necessary-to apply α, then items (i) and (ii) above are satisfied and α is a ℑAsymmetry. The set of all such symmetries under the operation composition of bijections forms the automorphism group Aut(ℑA). This group is the CMW fundamental symmetry group.



Theorem 12.

The CMW fundamental symmetry group is isomorphic to the group of permutations of the setAof basis processes.





The following corollary is obvious and is stated without proof.



Corollary 1.

|Aut(ℑA)|=|A|!





A CMW invariant is a CMW property that remains unchanged after every symmetry in the CMW fundamental symmetry group has been applied to MorℑA(ℱA,ℱA).



Theorem 13.

The images of ℑAin ℘qand ℘qXunder the Müller-Wichards performance functors Fφ0and Fφ0 X, X∈{C,D,CD,V},respectively, are CMW invariants.





Theorem 14.

If Δis a commutative triangle inℑA, then Δand its image under Müller-Wichards performance functors are CMW invariants.






6. System Factorization and Product Performance Models


Recall from Section 2 that a morphism h is factorizable if h=f∘g, where f is a monic morphism and g is an epic morphism. In the category of systems, this means that when a system w is factorizable as w=uv, then w can be divided into the two subsystems u and v without affecting the order and content of the base processes in w. The integrity of a factorization is maintained if the performance of w is identical to that of uv.



Theorem 15.

Every commutative triangle inℑAcorresponds to a system factorization, which maintains its integrity.





A commutative square in ℑA corresponds to an equation uv=wz, where u,v,w,z∈MorℑA(ℱA,ℱA).



Theorem 16.

For every commutative square inℑAthere are two systems in the square, which have factorizations that maintain their integrity.





Corollary 2.

Wheneveruv=wzis a commutative square inℑA, then either Fφ0Xuand Fφ0Xzor Fφ0Xwand Fφ0Xvare factorizable in ℘qX,X∈{C,D,V}.





Corollary 3.

IfFφ0u=Fφ0v⊗qFφ0w, thenuis factorizable in ℑAand maintains its integrity whenFφ0is faithful.





Results similar to Corollary 3 also apply for Fφ0X,X∈{C,D,CD,V}.



Additional modelling flexibility can be obtained using products of categories when a system is comprised of subsystems that have different sequential and/or parallel characteristics. Here, two basis sets A and B of processes and two morphism compositions ⊗q and ⊗p form the product category of systems ℑAB=ℑA×ℑB and the associated Müller-Wichards product performance category ℘qp=℘q×℘p, respectively. For the product category ℑAB the single object is the pair ObjℑAB=ObjℑA×ObjℑB={(ℱA,ℱB)}≡{ℱAB}, the set of morphisms are ordered pairs MorℑAB(ℱAB,ℱAB)=MorℑA(ℱA,ℱA)×MorℑB(ℱB,ℱB) such that for (fA,fB)∈MorℑAB(ℱAB,ℱAB), fA:ℱA→ℱA and fB: ℱB→ℱB with composition performed component wise. Similarly, for the product category ℘qp the object is the pair Obj℘qp=Obj℘q×Obj℘p={(Mq,Mp)}≡{Mqp}, the set of morphisms are ordered pairs Mor℘qp(Mqp,Mqp)=Mor℘q(Mq,Mq)×Mor℘p(Mp,Mp) such that for gqp≡(gq,gp)∈Mor℘qp(Mqp,Mqp), and gp: Mp→Mp with composition performed component wise. It is easily verified that ℑAB and ℘qp are categories where 1ℱAB=(ε,ε) and 1Mqp=((∞,i,0),(∞,i,0)) are the object identities.



Now use the gauge maps φ0:A→(℘,⊗q) and θ0:B→(℘,⊗p) to define Fφ0,θ0:ℑAB→℘qp as Fφ0,θ0≡Fφ0×Fθ0=(Fφ0,Fθ0) such that Fφ0,θ0ℱAB=(Fφ0ℱA,Fθ0ℱB)=(Mq,Mp)=Mqp and for f≡(fA,fB)∈MorℑAB(ℱAB,ℱAB), Fφ0,θ0f=(Fφ0fA,Fθ0fB)=(gq,gp)=gqp. It is readily seen that Fφ0,θ0 is a functor because Fφ0,θ01ℱAB=(Fφ0ε,Fθ0ε)=((∞,i,0),(∞,i,0))=1Mqp and for h,k≡(hA,hB),(kA,kB)∈MorℑAB(ℱAB,ℱAB), if, then Fφ0,θ0f∘h=Fφ0,θ0(fA∘hA,fB∘hB)=(Fφ0fA∘hA,Fθ0fB∘hB)=(Fφ0kA,Fθ0kB)=Fφ0,θ0k.



Thus:


Fφ0,θ0a1a2⋯am,b1b2⋯bn=(Fφ0a1a2⋯am,Fθ0b1b2⋯bn)=(φ0(a1)⊗qφ0(a2)⊗q⋯⊗qφ0(am),θ0(b1)⊗pθ0(b2)⊗p⋯⊗pθ0(bn))=(gq,gp)



(13)







Of course, a similar construction can be made using products of a finite number of categories of systems and Müller-Wichards performance categories.



Thus, generally distinct performance triples gq≡(rq,wq,uq) and gp≡(rp,wp,up) are obtained, which yield separate performance estimates for systems comprised of A basis processes and for systems comprised of B basis processes, respectively. Obviously, unless q=p, gq and gp cannot be properly combined algebraically to obtain a single performance estimate for a process comprised of both A and B basis processes. However, an inequality can be established by letting g1=gq, g2=(∞,i,0)=g3, and g4=gp in Lemma 2.6 in [1]. These yields gq⊗pgp≥gq⊗qgp when 1≤q≤p≤∞. An alternative approach is to estimate the combined processing time for systems composed of A processes and for systems composed of B processes from gq and gp using tAB=tA+tB, where tA=|wq|rq and tB=|wp|rp.




7. Closed Form Models


In this section, the above theory is used to develop general closed form system performance estimation models where a system’s performance r and weight w are explicit functions of the performances and weights of the processes that comprise the system. The next theorem provides models for systems comprised entirely of a finite number of arithmetic processes or data movement processes. In what follows, let N={1,2,⋯,n}.



Theorem 17.

Leta1a2⋯an∈MorℑA(ℱA,ℱA).Ifφ0(ai)∈C, i∈N,orφ0(ai)∈D, i∈N,then


Fφ0Xa1a2⋯an=(r1,w1,x)⊗q(r2,w2,x)⊗q⋯⊗q(rn,wn,x)=(r,w,x),



(14)




wherex=1or0whenX=CorD, respectively,w=∑i=1nwi, and


r=w[∑i=1n(wiri)q]1q



(15)









Now consider systems comprised entirely of a finite number of delay processes.



Theorem 18.

Leta1a2⋯an∈MorℑA(ℱA,ℱA).Ifφ0(ai)∈V, i∈N, then


Fφ0Va1a2⋯an=(r1,i,0)⊗q(r2,i,0)⊗q⋯⊗q(rn,i,0)=(r,i,0),



(16)




where


r=1[∑i=1n(1ri)q]1q.



(17)









The last two theorems can be used to construct closed form models for systems comprised of finite numbers of arithmetic, data movement, and delay processes.



Theorem 19.

Suppose the systema1a2⋯an∈MorℑA(ℱA,ℱA)is comprised ofnCarithmetic processes,nDdata movement processes, andnVdelay processes such thatnC+nD+nV=n. Then


Fφ0a1a2⋯an=(rC,wC,1)⊗q(rD,wD,0)⊗q(rV,i,0)=(r,wC,1),



(18)




where


r=wC[(wCrC)q+(wDrD)q+(1rV)q]1q ,



(19)




withrCandwCgiven by Theorem 17 whenX=Candn=nC;rDandwDgiven by Theorem 17 whenX=Dandn=nD;andrVgiven by Theorem 18 whenn=nV.






8. Statistical Properties of r for Closed Form Models


Since system performance studies are often stochastic in nature, it is instructive to examine the statistical characteristics of the system performance variable r for several cases using the closed form models of Theorem 17 for arithmetic and data movement elements.



8.1. Fixed Rates and Independent Random Weights


Assume that for both element types each rate ri=rI, i∈N, where rI is a fixed value, and each weight wi, i∈N, is an independent random variable described by the same Poisson distribution with mean λ. In this case-for a fixed q, n, and λ-Equation (15) can be written as:


r=rI∑i=1nwi(∑i=1nwiq)1q



(20)







Note that it necessarily follows that ∑i=1nwi is also Poisson distributed with mean nλ.



Using these assumptions, 104 trials were generated for each λ and q combination, where λ∈{10,20,40} and q∈{1.5, 2, 2.5, 3, 4, ∞}, when n=10 and rI=1. A kernel estimator of the probability density function (pdf) for the overall system rate r associated with each combination is shown in Figure 3. Observe from Equation (20) that since this figure is generated using rI=1, the horizontal axes of this figure can be interpreted as the ratio r/rI. Thus, multiplying each pdf by 0<rI≠1 yields the pdf for the associated rI.



Inspection of Figure 3 quantifies-for a system comprised of a fixed number of basis processes and a fixed processing rate-the intuitively pleasing facts that: (i) for a fixed q value, the peak value of the pdf increases, the r value of the peak of the pdf effectively remains fixed, and the width of the pdf narrows as the mean process weight λ increases (i.e., the probability that the value of the overall system rate r will be within a small fixed interval about the peak r value increases with increasing mean process weight); and (ii) for a fixed mean process weight, the peak value of the pdf for r increases and the width of the pdf broadens as q increases in value (i.e., the overall peak system rate r increases and the probability that r will be within a small interval about the peak rate decreases with increasing system “speedup” or parallelism).



Kernel estimator pdfs were also obtained for r using 104 trials and Equation (20) with rI=1 for n∈{2,4,8,10,16} and q∈{1.5,2,2.5,3,4,∞}. The weights for each trial were determined from a Poisson distribution with λ=10. These results are presented in Figure 4 where-as expected from the Figure 3 results-it is seen for each n that the peak r value increases, the distribution broadens, and the value of the pdf peak decreases with increasing q. Also expected is the fact that-although the pdf peak values and distribution width effectively remain the same-the distributions shift to larger r values with increasing q as n increases.




8.2. Random Rates and Random Weights


Now consider trials where for each trial—in addition to having Poisson distributed random weights as just described—the rates ri in Equation (15) are also randomly assigned using the exponential distribution:


f(x,γ)={γe−γx, x≥00, otherwise.



(21)







Using this methodology, kernel estimator pdfs for r were obtained using 104 trials per combination for a range of γ values and each q∈{1.5,2,2.5,3,4,∞} when λ=10 and n=10. These results are presented in Figure 5 for γ∈{2,10} and in Figure 6 when q is also unity and γ∈{1,2,3}. Each of the pdfs in the two lower Figures in Figure 6 are scaled by their γ values, i.e., all of the resulting r values are divided by their respective γ values, so that the pdfs for all γ values fit on the same horizontal axis value range.



Observe from these figures that—when compared with the previous results for fixed rI—the inclusion of random rates causes the q parameterized pdfs to be closer together and overlap. The presence of randomness increases the variance associated with each r pdf and, interestingly, tends to significantly decrease the sensitivity of the pdfs to the value of q. This comparison is made more clear in Figure 7 where the graphs of the pdfs for n=10, λ=10, and q∈{1.5,2,2.5,3,4} are placed one above the other for the case where both the rates and weights are randomly selected as above when γ=10 (upper Figure) and the case where the rates all have unit value and only the weights are Poisson distributed (lower Figure). Each of the pdfs in the upper Figure are scaled by the associated γ=10 value.





9. Special Case Closed Form Models


Here, Theorems 17–19 are used to produce several closed form models when the performance values and the weight values are assumed to be equal for all processes in a system. Such processes are equal processes and the associated system models are special case closed form models (SCCFMs).



SCCFM 1.

If a1a2⋯an∈MorℑA(ℱA,ℱA) is a system such that φ0(ai)=(ρ,λ,1)∈C, i∈N, then Fφ0Ca1a2⋯an=(r,w,1), where w=nλ and r=n1−1q ρ. The time required for the system to complete its arithmetic operations is tqC=n1q(λρ).





Since the next model is also a direct consequence of Theorem 17 and its proof follows that of the previous model, it is stated without proof.



SCCFM 2.

If a1a2⋯an∈MorℑA(ℱA,ℱA) is a system such that φ0(ai)=(σ,ω,0)∈D, i∈N, then Fφ0Da1a2⋯an=(r,w,0), where w=nω and r=n1−1q σ. The time required for the system to complete moving all of its data is tqD=n1q(ωσ).





SCCFM 3.

If a1a2⋯an∈MorℑA(ℱA,ℱA) is a system such that φ0(aj)=(δ,i,0)∈V, j∈N, then Fφ0Va1a2⋯an=(r,i,0), where r=n−1q δ. The time delay for this system is tqV=n1q(1δ).





Note that: (i) when q=1, the processing is sequential and as required, the time t1X, X∈{C,D,V}, for the systems to complete their processing is the sum of the n individual times required to complete each process in the system; (ii) when 1<q<∞, the processing time is “skewed” or “compressed” and tqX<t1X.



SCCFM 4.

Suppose the system a1a2⋯an∈MorℑA(ℱA,ℱA) is comprised of nC equal arithmetic processes, nD equal data movement processes, and nV equal delay processes such that nC+nD+nV=n. Then:


Fφ0a1a2⋯an=(rC,wC,1)⊗q(rD,wD,0)⊗q(rV,i,0)=(rCDV,nCλ,1),



(22)




where rC and wC are given by SCCFM 1 when n=nC;rD and wD are given by SCCFM 2 when n=nD;rV given by SCCFM 3 when n=nV; and:


rCDV=nCλ[nC(λρ)q+nD(ωσ)q+nV(1δ)q]1q .



(23)









The time required for this system to complete its processing is:


tqCDV=[(tqC)q+(tqD)q+(tqV)q]1q .



(24)







Again, note that when q=1, t1CDV is the sum of the system delays, the time required for the system to complete processing its arithmetic operations, and the time required for the system to complete its data movement operations.




10. Applications of Special Case Closed Form Models


Special case closed form models are useful for understanding and describing fundamental properties and dynamics of CMW system performance models. The following subsections provide several examples of this.



10.1. The Effect of q Upon the tqX−nX Dependence, X∈{C,D,V}


It is easily seen from SCCFM1-SCCFM3 that the differential of tqX (with respect to nX) can be written as:


dtqX=1qtqXdnXnX, X∈{C,D,V}.



(25)







Dividing both sides of this equation by tqX yields:


dtqXtqX=1qdnXnX



(26)




which can be written as


dlntqX=1qdlnnX



(27)




or as


dlntqXdlnnX=1q.



(28)







It follows from this that for these SCCFMs, lntqX varies linearly with lnnX with an associated slope of q−1. This implies the intuitively pleasing result that for SCCFM1-SCCFM3, increasing the system’s parallelization (i.e., increasing the q value) decreases the processing time tqX-regardless of the number nX of basis processes that must be processed.




10.2. A Stationary Action Principle for SCCFM4 System Performance


Consider SCCFM4, assume for fixed q that [(tqC)q+(tqD)q+(tqV)q]=χ(t)≡χ is time dependent, and let the function:


ℒq≡ℒq(χ,χ˙)=1qχ1−qqχ˙,



(29)




where χ˙≡dχdt, describe the system’s performance with time. Using Equation (29), it is found that:


ddt(∂ℒq∂χ˙)=∂ℒq∂χ,



(30)




i.e., ℒq satisfies the Euler-Lagrange equation. Consequently, ℒq is the performance Lagrangian for the system, Equation (30) is the associated equation of motion for the system’s performance, and the integral


∫0τℒqdt



(31)




is stationary so that its first variation δ vanishes (e.g., [27]). This has the following interpretation: If ∑ is the configuration space χ×t⊂ℝ+×ℝ+ and processing begins at t=0 and is completed at t=τ, then the actual processing path followed by [(tqC)q+(tqD)q+(tqV)q] in ∑ during the fixed processing interval [0,τ] is such that:


δ∫0τℒqdt=0



(32)




with respect to all path variations in ∑, which vanish at the end-points of the interval.




10.3. Invariance of the Equation of Motion


Note that for any arbitrary (twice differentiable) function ϕ(χ), the transformed performance Lagrangian


ℒq#≡ℒq+ϕ˙



(33)




also describes the processing path followed by [(tqC)q+(tqD)q+(tqV)q] in ∑ during the fixed processing interval [0,τ] since:


δ∫0τℒq#dt=δ∫0τℒqdt+δ[ϕ]0τ=δ∫0τℒqdt=0.



(34)







Thus, although the performance Lagrangian is not unique, by extension, it can be concluded that the equation of motion for the system’s performance is invariant under all transformations of the performance Lagrangian of the form given by Equation (33).





11. Concluding Remarks


This paper has presented a category theoretic reformulation of the Müller-Wichards system performance model. The use of category theoretic terminology provides a precise and efficient mathematical vocabulary for defining categories of systems, system performance, and system performance functors. These functors were shown to be useful for discussing factorizing systems without changing their performance and identifying model symmetries and invariants. Such formal mathematical properties of models tend to characterize aspects of the real systems that the models represent.



A practical feature of the model is that it can be implemented in a relatively straightforward manner as a software package. A user can assign to each basis process—via a gauge map—its numerical triple in the performance category. This defines for each basis process its type (arithmetic, data movement, or delay element), rate, and weight. The associated performance functor then uses these assignments to automatically generate a final performance triple for any system (string of basis processes) in the category of systems defined by the process basis set. Several other useful features of the model include using closed form performance models to provide “quick” performance estimates, as well as to provide “sanity checks” for results obtained from software implementations of the model; generating stochastic-based performance studies by treating rates and weights as random variables (as illustrated in Section 8); and applying closed form models to abstractly characterize aspects of system performance (as illustrated in Section 10).



Future research involves defining an appropriate metric d on MorℑA(ℱA,ℱA) that measures the similarity between systems; and finding an approach for classifying subsets of interest in the associated metric space (MorℑA(ℱA,ℱA),d) such that the systems within such a class are very similar [28]. An implementation of this classification scheme in a software package, which also uses Fφ0 to automatically evaluate in ℘q the performance of the systems in such a class can be useful for scheduling analysis, as well as for making informed high level system engineering design trade-offs.
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Appendix A


Proof of Theorem 1.

This result was proven in [1]. □





Proof of Theorem 2.

This follows directly from Lemma 1. □





Proof of Theorem 3.

Let g1,g2∈℘X. Case i. If X=C, then u1=1=u2. Since u=u1˅ u2=1, then g1⊗qg2=(r,w,1)∈℘C. Case ii. If X=D, then u1=0=u2 and u=u1˅ u2=0. Thus, g1⊗qg2=(r,w,0)∈℘V. Case iii. Cases i–ii apply when g1 and g2 are both in C or in D. Now let g1∈C and g2∈D. Then u1˅ u2=1 so that g1⊗qg2=(r,w,1)∈C⊂℘CD. Case iv. If X=V, then u1=0=u2, w1=i=w2. Since u=u1˅ u2=0 and w=i, then g1⊗qg2=(r,i,0)∈℘V. Clearly, if either or both of g1 or g2 are the identity element e for each of these cases, then g1⊗qg2∈℘X, X∈{C,D,CD,V}. Consequently, each (℘X,⊗q), X∈{C,D,CD,V} is a submonoid of (℘,⊗q). □





Proof of Theorem 4.

Each of these monoids determines an associated category in the manner prescribed by Lemma 1. □





Proof of Theorem 5.

Each category is small because Obj℘q and Obj℘qX, X∈{C,D,CD,V},  are singleton sets. They are connected because ℘q and ℘qX, X∈{C,D,CD,V}, have only one object and Mor℘q(Mq,Mq)=℘≠∅≠℘X=Mor℘qX(MqX,MqX). □





Proof of Theorem 6.

It must be shown that any morphism g1∈Mor℘qX(MqX,MqX) is both monic and epic. First show that g1 is monic, i.e., g1⊗qg2=g1⊗qg3g2=g3. Observe that g1=e is monic and assume that g1⊗qg2=g1⊗qg3 with g1≠e≠g2.



Case i. If X=C and 1≤q<∞, then u1=u2=u3=1⇒u1˅u2=u1˅u3=1⇒Re[w1+w2]=Re[w1+w3]⇒w2=w3⇒


w1+w2((w1r1)q+(w2r2)q)1q=w1+w3((w1r1)q+(w3r3)q)1q=w1+w2((w1r1)q+(w2r3)q)1q



(A1)




⇒r2=r3⇒g2=g3⇒g1 is monic. Similarly for q=∞.



Case ii. If X=D and 1≤q<∞, then u1=u2=u3=0⇒u1˅u2=u1˅u3=0⇒Re[w1+w2]=Re[w1+w3]w2=w3⇒


w1+w2((w1r1)q+(w2r2)q)1q=w1+w3((w1r1)q+(w3r3)q)1q=w1+w2((w1r1)q+(w2r3)q)1q



(A2)




⇒r2=r3⇒g2=g3⇒g1 is monic. Similarly for q=∞.



Case iii. If X=V and 1≤q<∞, then u1=u2=u3=0 and w1=w2=w3=i⇒


1((1r1)q+(1r2)q)1q=1((1r1)q+(1r3)q)1q



(A3)




⇒r2=r3⇒g2=g3⇒g1 is monic. Similarly, for q=∞.



To show that morphism g1 is epic it must be demonstrated that g2⊗qg1=g3⊗qg1⇒g2=g3. Note that g1=e is epic and observe that since ⊗q is commutative, then the Case i–iii arguments above still apply so that g2⊗qg1=g3⊗qg1⇒g2=g3⇒g1 is epic. □





Proof of Theorem 7.

Consider ℘⊗qC. Let g1=(r1,w1,1)∈C⊂℘ and g2=(r2,w2,1)∈C. Then g1⊗qg2∈C because u1˅ u2=1 and w1 and w2 are real valued. If g1=(r1,w1,0)∈D⊂℘, then it is also the case that g1⊗qg2∈C because u1˅ u2=1 and w1 and w2 are real valued. If g1=(r1,i,0)∈V⊂℘, then u1˅ u2=1, the resulting weight w is real valued, and the resulting rate r is real valued so that g1⊗qg2∈C. □





Proof of Theorem 8.

This follows directly from Lemma 1. □





Proof of Theorem 9.

ℑA is a small category because ObjℑA is the singleton set {ℱA}. ℑA is a connected category because it has only one object and MorℑA(ℱA,ℱA)≠∅. □





Proof of Theorem 10.

This is a direct consequence of the fact that ℐA is cancellative (Lemma 5). In particular, uv=uw⇒v=w⇒u is monic and vu=wu⇒v=w⇒u is epic. □





Proof of Theorem 11.

From Lemma 3 a homomorphism φ:ℐA→(℘,⊗q) is established by extending any gauge map φ0:A→(℘,⊗q) to a unique monoid homomorphism φ:ℐA→(℘,⊗q) according to:


φ(a1a2⋯an)=φ0(a1)⊗qφ0(a2)⊗q⋯⊗q(an) .



(A4)







From Lemma 2, this homomorphism corresponds to the performance functor Fφ0:ℑA→℘q such that Fφ0ℱA=M and:


Fφ0a1a2⋯an=φ0(a1)⊗qφ0(a2)⊗q⋯⊗qφ0(an)



(A5)







Similarly, for the functors Fφ0X:ℑA→℘qX, X∈{C,D,CD,V}. □





Proof of Theorem 12.

Since MorℑA(ℱA,ℱA)=ℐA, it is clear that α:ℐA→ℐA is also an automorphism of ℐA in which case Aut(ℑA)=Aut(ℐA). The theorem follows from the well-known fact that Aut(ℐA) is isomorphic to the group of permutations of the elements of set A [24]. □





Proof of Theorem 13.

For every α∈Aut(ℑA), α(MorℑA(ℱA,ℱA))=MorℑA(ℱA,ℱA). Thus, if w∈MorℑA(ℱA,ℱA), then w∈α(MorℑA(ℱA,ℱA)). Because φ0 is fixed, Fφ0w and Fφ0 Xw, X∈{C,D,CD,V}, have the same images in ℘q and ℘qX, respectively, after the application of every α as they did before their application. □





Proof of Theorem 14.

The existence of a commutative triangle Δ in ℑA means that Δ exists in MorℑA(ℱA,ℱA). Since α(MorℑA(ℱA,ℱA))=MorℑA(ℱA,ℱA) for every α∈Aut(ℑA), then Δ also exists in α(MorℑA(ℱA,ℱA)) for every α∈Aut(ℑA) and is a CMW invariant. That the Müller-Wichards performance functor images of Δ are also CMW invariants follows from the facts that (i) the images of these functors are CMW invariants (Theorem 13) and (ii) all functors preserve commutative triangles. □





Proof of Theorem 15.

Let w=uv be a commutative triangle in ℑA. It follows from Theorem 10 that u and v are bimorphisms in which case u is monic and v is epic and w=uv is a factorization of w. Since functors preserve commutative triangles, then Fφ0w=Fφ0u⊗qFφ0v is the associated commutative triangle in ℘q. It is clear that the integrity of the factorization of w is maintained because Fφ0w=Fφ0uv=Fφ0u⊗qFφ0v. Similarly for the functors Fφ0X, X∈{C,D,CD,V}. □





Proof of Theorem 16.

If uv=wz is a commutative square in ℑA, then, because ℐA is equidivisible (Lemma 5), there exists an x∈MorℑA(ℱA,ℱA)=ℐA such that (i) u=wx and z=xv, or (ii) w=ux and v=xz. These are factorizations because every morphism in ℑA is a bimorphism (Theorem 10) so that in (i) w and x are monic and x and v are epic, or in (ii) u and x are monic and x and z are epic. Because each of these factorizations corresponds to a commutative triangle in ℑA, it follows from Theorem 15 that they maintain their integrity. □





Proof of Corollary 2.

If uv=wz in MorℑA(ℱA,ℱA), then it must be the case that there is an x∈MorℑA(ℱA,ℱA)=ℐA such that u=wx and z=xv or w=ux and v=xz (Lemma 5). Since u=wx, z=xv, w=ux, and v=xz are commutative triangles in ℑA, they are preserved by Fφ0X in ℘qX, X∈{C,D,V}, so that Fφ0Xu=Fφ0Xw⊗qFφ0Xx and Fφ0Xz=Fφ0Xx⊗qFφ0Xv or Fφ0Xw=Fφ0Xu⊗qFφ0Xx and Fφ0Xv=Fφ0Xx⊗qFφ0Xz. The result follows from the fact that every morphism in the image of Fφ0X in ℘qX, X∈{C,D,V}, is a bimorphism so that Fφ0Xw and Fφ0Xx are monic and Fφ0Xx and Fφ0Xv are epic, or Fφ0Xu and Fφ0Xx are monic and Fφ0Xx and Fφ0Xz are epic. □





Proof of Corollary 3.

If Fφ0 is faithful, then the commutative triangle Fφ0u=Fφ0v⊗qFφ0w in ℘q reflects to the commutative triangle u=vw in ℑA (Lemma 4). Since every morphism in ℑA is a bimorphism (Theorem 10), then u is factorizable because v is monic and w is epic. Since Fφ0u=Fφ0v⊗qFφ0w, the factorization of u maintains its integrity. □





Proof of Theorem 17.

That the action of the functor on a1a2⋯an is as stated in the consequence of the theorem follows from Theorem 11 and the fact that φ0(ai)=(ri,wi,x),  i∈N, where x=1 or 0 when X=C or D, respectively. The remainder of the proof is by induction. (i) For =0,1,w=w12=Re[xw1+xw2+¬(x˅x)(w1+w2)]=xw1+xw2+¬x(w1+w2)=w1+w2; w=w123=Re[xw12+xw3+x(w12+w3)]=w12+w3=w1+w2+w3. Now assume that w=w12⋯n=w1+w2+⋯+wn. Since w=w12⋯(n+1)=Re[xw12⋯n+xwn+1+¬(w12⋯n+wn+1)]=w12⋯n+wn+1=w1+w2+⋯+wn+1, it follows that w=w1+w2+⋯+wn. (ii) Since each weight is real valued,


r=r12=w1+w2[(w1r1)q+(w2r2)q]1q



(A6)




and increasing by one yields:


r=r123=w12+w3[(w12r12)q+(w3r3)q]1q=w1+w2+w3[(w1+w2w1+w2[(w1r1)q+(w2r2)q]1q)q+(w3r3)q]1q=w1+w2+w3[(w1r1)q+(w2r2)q+(w3r3)q]1q.



(A7)







Now assume r=r12⋯n=w1+w2+⋯+wn[(w1r1)q+(w2r2)q+⋯+(wnrn)q]1q.



Since


r=r12⋯(n+1)=w12⋯n+wn+1[(w12⋯nr12⋯n)q+(wn+1rn+1)q]1q=w1+w2+⋯+wn+1[(w1+w2+⋯+wnw1+w2+⋯+wn[(w1r1)q+(w2r2)q+⋯+(wnrn)q]1q)q+(wn+1rn+1)q]1q



(A8)




Then


r=w1+w2+⋯+wn+1[(w1r1)q+(w2r2)q+⋯+(wn+1rn+1)q]1q



(A9)




and the theorem is proved. □





Proof of Theorem 18.

The action of the functor on a1a2⋯an as stated in the consequence of the theorem follows from Theorem 11 and the fact that φ0(ai)=(ri,i,0),  i∈N. It is also clear from item 2 in Section 4 that regardless of how many triples in set V are combined under ⊗q, the weight of the resultant triple is i. The remainder of the proof is by induction. Since |i|=1,


r=r12=1[(1r1)q+(1r2)q]1q



(A10)




and


r=r123=1[(1r12)q+(1r3)q]1q=1[(11[(1r1)q+(1r2)q]1q)q+(1r3)q]1q=1[(1r1)q+(1r2)q+(1r3)q]1q.



(A11)







Now assume that:


r=r12⋯n=1[(1r1)q+(1r2)q+⋯+(1rn)q]1q .



(A12)







Then


r=r12⋯(n+1)=1[(1r12⋯n)q+(1rn+1)q]1q=1[(11[(1r1)q+(1r2)q+⋯+(1rn)q]1q)q+(1rn+1)q]1q=1[(1r1)q+(1r2)q+⋯+(1rn+1)q]1q



(A13)




and the theorem is proved. □





Proof of Theorem 19.

Since ⊗q is commutative, Fφ0a1a2⋯an can be rearranged and written as Fφ0a1a2⋯an=(rC,wC,1)⊗q(rD,wD,0)⊗q(rV,i,0), where rC and wC are given by Theorem 17 when X=C and n=nC;rD and wD are given by Theorem 17 when X=D and n=nD; and rV is given by Theorem 18 when n=nV. Because ⊗q is associative, this product can be evaluated in any order. Consider first the product (rC,wC,1)⊗q(rD,wD,0). The weight wCD resulting from this product is wCD= 1·wC+0·wD+¬(1˅0)(wC+wD)=wC so that:


rCD=wC[(wCrC)q+(wDrD)q]1q .



(A14)







For the product (rC,wC,1)⊗q(rD,wD,0)⊗q(rV,i,0), combining wCD=wC with the weight of the third triple gives a final combined weight of wCDV=Re[1·wCD+0·i+¬(1˅0)(wCD+i)]=wCD=wC so that:


r=rCDV=wC[(wCDrCD)q+(1rV)q]1q=wC[(wCwC[(wCrC)q+(wDrD)q]1q)q+(1rV)q]1q=wC[(wCrC)q+(wDrD)q+(1rV)q]1q



(A15)




 □





Proof of SCCFM1.

The results for w and r follow from Theorem 17 since w=∑i=1nλ=nλ and r=nλ[∑i=1n(λρ)q]1q=nλ[n(λρ)q]1q=n1−1q ρ. The processing time follows from the ratio tqC=wr=nλn1−1qρ=n1q(λρ). □





Proof of SCCFM3.

The results for the weight and r follows from Theorem 18. In particular, the weight is i because Fφ0Va1a2⋯an is a delay process and r=1[∑i=1n(1δ)q]1q=1[n(1δ)q]1q=n−1q δ. The delay time follows from the ratio tqV=|i|r=1n−1qδ=n1q(1δ). □





Proof of SCCFM4.

Substituting the results from SCCFM 1—SCCFM 3 into the r of Theorem 19 gives the desired result for rCDV. The time to complete processing is obtained by substituting this rCDV into the ratio tqCDV=nCλrCDV, simplifying the resulting expression, and identifying the terms in the sum with processing times for SCCFM 1–SCCFM 3. □
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Figure 1. The commutative triangle for f∘g=h in C. 
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Figure 2. The preserved image of Figure 1 under F in D. 
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Figure 3. Probability density functions for r for various q values when rI=1, n=10, and λ=10,20,40 (top to bottom). 
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Figure 4. Probability density functions for r when rI=1, q∈{1.5,2,2.5,3,4,∞}, and n∈{2,4,8,10,16}.
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Figure 5. Probability density functions for r when n=10, λ=10, γ=2 (top),γ=10 (bottom) and q∈{1.5,2,2.5,3,4,∞} (left to right). 
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Figure 6. Probability density functions for r when n=10, λ=10, γ∈{1,2,3}, and q∈{1,1.5,2,2.5,3,4,∞}. Each r value for γ∈{2,3} has been divided by the associated value of γ. 
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Figure 7. Probability density functions for r when n=10, λ=10 and q∈{1.5,2,2.5,3,4}. 
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