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Abstract: The uncertainty, or entropy, of an atom of an ideal gas being in a certain energy state
mirrors the way people perceive uncertainty in the making of decisions, uncertainty that is related
to unmeasurable subjective probability. It is well established that subjects evaluate risk decisions
involving uncertain choices using subjective probability rather than objective, which is usually
calculated using empirically derived decision weights, such as those described in Prospect Theory;
however, an exact objective–subjective probability relationship can be derived from statistical
mechanics and information theory using Kullback–Leibler entropy divergence. The resulting Entropy
Decision Risk Model (EDRM) is based upon proximity or nearness to a state and is predictive rather
than descriptive. A priori EDRM, without factors or corrections, accurately aligns with the results of
prior decision making under uncertainty (DMUU) studies, including Prospect Theory and others.
This research is a first step towards the broader effort of quantifying financial, programmatic, and
safety risk decisions in fungible terms, which applies proximity (i.e., subjective probability) with
power utility to evaluate choice preference of gains, losses, and mixtures of the two in terms of a new
parameter referred to as Prospect. To facilitate evaluation of the EDRM against prior studies reported
in terms of the percentage of subjects selecting a choice, the Percentage Evaluation Model (PEM)
is introduced to convert choice value results into subject response percentages, thereby permitting
direct comparison of a utility model for the first time.

Keywords: entropy; prospect theory; information theory; uncertainty; risk; subjective probability

1. Introduction

An executive is presented with an engineering risk analysis for a critical decision that involves a
potential for loss of life for a failure mode that is highly unlikely and has no history of prior failure,
a high-consequence, low-probability event that would take years and tens of millions of dollars to
mitigate; however, the system under consideration itself is a safety system that provides mitigation for
other Black Swan events, so its unavailability adds to risk in other interconnected areas. The executive
chooses to accept the risk in spite of the grave prediction by the system’s engineers. In another example,
an individual chooses to buy insurance for their property, but at the same time buys lottery tickets
despite the overwhelming odds against success—seemingly a contraction. In yet another case, a
financial manager is presented with the results of a value at risk analysis from the company’s risk
management team for a transaction and chooses to go against their recommendation and make the
trade based upon instinct. Such situations easily lead one to conclude that subjects appear irrational
when it comes to making probabilistic choices; however, there is a clear pattern to these decisions.
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These scenarios illustrate that people make decisions contrary to normative risk theories that
quantify risk purely in economic or monetary terms, such as expected utility and the expected value
rule, making quantization of risk in terms consistent with actual decision making elusive. At the choice
level, this has been well studied as positive decision theory (i.e., Prospect Theory) and is replete with
descriptive, but not predictive, models based upon various studies, most of which involve measurable
objective probabilities and nominal, narrow ranges of values. This proven difference between how
subjects should and do make decisions must be reconciled before risk can be universally quantified
into monetary terms, as the risk value is based upon the perception of a decision maker.

1.1. A New Approach

The uncertainty, or entropy, of a single atom of an ideal gas being in a certain energy state
mirrors the way people perceive uncertainty in the making of decisions, uncertainty that is related to
unmeasurable subjective probability. The sense that the workings of the physical world are replicated
in the making of choices has been, and continues to be, investigated by many great minds. One such
luminary is John von Neumann, who formalized quantum mechanics and game theory as he sought
resolution of the contradiction between the perceived macroscopic world and unmeasurable parameters
in microscopic quantum mechanics [1]. It is this premise that provides the starting point for the
present research, for the difference between the macro and microscopic views provides the relationship
of objective and subjective probabilities that helps resolve the conflict between how decisions are
supposed to be made and how people actually make them. The results of this new approach are
profound. Without factors or corrections, the proposed model nearly perfectly predicts the results
of Tversky and Kahneman’s Cumulative Prospect Theory results. This approach also addresses a
nagging question of the true nature of the decision weighting factor, which has been stated to not be a
probability. This research shows that the decision weighting factor is subjective probability and it does
not necessarily need to sum to 1 for a system, as is the case for objective probabilities.

A second outcome of this new approach, which supports validation of the first, is a method to
directly compare the model results for choices and the subject percent responses for the first time.
All of the research reviewed to date merely evaluates if the predicted choices match the actual, but
is unable to evaluate the degree to which the model matches the data beyond binary comparison.
The new percentage evaluation model also provides a measure of the relative difficulty of a decision
between two or more choices.

1.2. Objectives

This paper takes the first step towards expressing the prospect of choices in terms consistent with
positive decision theories, rather than with the standard expected value definition of risk [2–4]. As a
result of articulating choices in terms of prospect of an outcome, rather than probability of success or
failure, the Entropy Decision Risk Model (EDRM) is essentially a translation of probabilities between
the positive and normative domains, as shown in Figure 1. This ability to translate between domains
permits the expression of risk consistent with decision making and allows for risk estimates to be
translated back into probabilities and values from prospects. It has been asserted that subjects without
training do not intuitively understand probabilities [5–7], but the value of expected utility theory is well
established as the foundation of economic and risk analysis, so reconciliation is required. Other related
research has shown that these two systems (normative and positive) are explained by dual process
theory’s system 1 (intuitive thinking) and system 2 (deliberate thinking) [5,7]. This research suggests
that the more complex the choice (e.g., multi-state and mixed gains/losses versus single-state gains), the
better the agreement with a priori EDRM’s uncorrected models, ostensibly owing to intuitive system 1
processes. This concept of aligning positive decision theories to system 1 and normative utility theories
to system 2 appears consistent with recent work in the field [8]. The results of this research show that
EDRM effectively translates between the two domains and consistently predicts subject results in terms
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of state subjective probabilities when provided objective probabilities, which sets aside the long-held
contention that people do not understand probability.
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Figure 1. There are two groups of decision theories: positive and normative. Normative theories
are those applied in standard economic decisions and are tied with deliberate choices (i.e., system
2). In contrast, positive theories counter the normative to address how subjects make choices, often
involving intuition (system 1). In other words, normative theories are viewed as how people should
make decisions, whereas positive theories address how people actually make decisions. The Entropy
Decision Risk Model (EDRM) provides a translation between the two domains. Subsequent research
will report on the use of EDRM to apply Expected Utility Theory in the positive domain.

1.3. Definitions

It is necessary to state new working definitions for terms used within the model consistent with
their origin and application.

Relative Certainty (p): Equivalent to redundancy (information theory), given as one minus the
relative entropy as a function of the state probability, denoted by the lower-case p consistent with the
classical definition of objective probability (See Section 4.3 and Appendix A). The term relative certainty
is more descriptive of the use herein than is redundancy, and is lexically consistent with its derivation
from relative entropy.

Proximity (τ): Subjective probability representing the nearness to a state and a function of the
relative certainty, denoted by the Greek letter τ. Proximity increases from 0 to 1 monotonically with
relative certainty as nearness to a given state, with 0 implying no relation to the state and 1 that of
achieving the state. Proximity and relative certainty are related as follows (See Appendix A):

p(τ) = τ2
− τ2 ln τ2 .

Prospect (T): Product of magnitude and proximity as a function of relative certainty and is an
extensive property. Prospect can also be seen as a weighted uncertainty of an outcome (See Section 4.6.4).

Risk: As stated in ISO 31000, “the effect of uncertainty on objectives,” [9]. In the context of this
definition, prospect is a relative measure of risk; the greater the prospect of a choice, the lower the risk
of achieving the desired objective, whether it is avoiding loss or achieving a gain. The ISO definition of
risk is not widely applied, as most risk analyses are performed using expected values in a probabilistic
risk assessment [10].

Reasonable Decision: Selection of a choice which increases the prospect of attaining an objective
or end state; selection of the choice with the greatest prospect. To clarify terminologies, this paper will
make use of the term reasonable, versus rational, to draw distinction from normative decision theories,
like VNM utility. Highlighting this distinction, Charles Tapiero suggests an alternative rationality, and
Dan Ariely similarly offers the concept of predictable irrationality, for choices by otherwise rational
individuals that follow clear patterns which do not align with results as predicted by homo economicus
(i.e., utility theory) [11–13]. It is interesting that all the literature reviewed appears consistent on this
point and is careful not to redefine rationality in positivist terms; therefore, this research will treat the
concept similarly.
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2. Literature Review

Prospect Theory and Cumulative Prospect Theory provide the basic behavior theory evaluated for
comparison in this research. In Prospect Theory: An Analysis of Decision Under Risk, Daniel Kahneman
and Amos Tversky built upon the work of Markowitz and Allais to firmly establish a theory that
addresses weaknesses in the venerable expected utility theory; their hypothetical decision weight
curve is shown in Figure 2. Prospect Theory (PT) is based upon a critique of Daniel Bernoulli’s
1738 wealth-based utility theory by highlighting its contradictions and weaknesses in explaining
discrete choices under risk which are based upon changes in wealth, rather than final wealth [14].
Markowitz recognizes that subjects do not necessarily perceive gains and losses referenced to initial
wealth and, in his landmark paper The Utility of Wealth, he refers to a neutral reference point, the
point of inflection, as the “customary wealth” [15]. Lacking a reference point, Kahneman considers
Bernoulli’s model overly simple [5,16]. Prospect Theory’s most important finding is that people are
risk averse in the presence of gains and risk seeking in the presence of loss. Kahneman and Tversky
approached PT in two domains: positive and negative; seemingly, a model which naturally accounts
for both domains would surely be preferable.
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Thirteen years after Prospect Theory, Cumulative Prospect Theory (CPT) was introduced as
“a new version of prospect theory that incorporates the cumulative function and extends the theory to
uncertain as well as risky prospects with any number of outcomes” [17]. The updated model holds
for a number of phenomena that violate expected utility and traditional von Neumann-Morgenstern
(VNM) rationality, including framing effects, nonlinear preferences, source dependence, risk seeking,
and loss aversion. The CPT decision weighting factor shown in Figure 3 varies between 0 and 1 but the
authors state that it is not a probability; however, this research will demonstrate that it is a probability,
specifically the probability of being in a specific state. CPT is initially modeled as positive (gain)
and negative (loss) cumulative weighting functions that are empirically developed and then fit using
regression to yield the following relationships [17], Equation (6)):

w+(p) =
pγ(

pγ + (1− p)γ
)1/γ

, (1)
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w−(p) =
pδ(

pδ + (1− p)δ
)1/δ

. (2)
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Tversky and Kahneman are careful to critique the limitations and concerns within their model.
They acknowledge that it provides greater generality than Prospect Theory, but they also express
reservation over the accuracy and sensitivity of the decision weights based upon the data. They also
recognize the challenges of maintaining simplicity in an empirically derived model while striving for
better fit [17]. Therefore, it is clear that other mathematical models which fit the data and are within
the constraints of CPT would be considered valid.

In PT and CPT, Kahneman and Tversky assume an exponential value function (power utility),

v(x) =
{

xα i f x ≥ 0
−λ(−x)α i f x < 0

, (3)

where α is positive and less than or equal to 1, and λ is positive and greater than or equal to 1 to
account for loss aversion, where losses loom greater than gains; however, this research assumes that
loss aversion, while present, is a secondary effect and will set λ = 1 for all analyses (the validity of this
assumption is proven in Section 6). This initial assumption is important in establishing the idea that
gains and losses are contiguous on the same scale, rather than treated separately as they are under
PT. In its original form, this relationship allows for different power utility exponents for positive and
negative values; however, because CPT and several subsequent studies assign the same value to the
gain and loss exponent, we will do so here [17].

Much of the literature reviewed discusses positive decision theory in terms of rank order utility and
first and second order stochastic dominance; however, because this research approaches the modeling
of decisions from another perspective, consistency with prior research results will be considered
sufficient for generally aligning with these principles. Future research to axiomatically analyze the
model is intended.
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Similar to that proposed by Uday Karmarkar [18], Richard Gonzalez and George Wu provided
a descriptive model based upon that suggested by Tversky and Kahneman in Equations (1) and (2)
that and is based upon the logit, or logarithm of the odds (log-odds), which is actually the negative
derivative of two-state information theory entropy. This relation to entropy is not discussed in their
paper, but conceptually makes the convergence of the models all the more supportive of the underlying
approach taken in developing EDRM:

log
p

1− p
= −

d
dp

[−p log p− (1− p) log(1− p)] = −
d
dp

H(p, 1− p) . (4)

The steps are shown below [18,19] 1:

log
w(p)

1−w(p)
= γ log

p
1− p

+ τ .

Solving for w(p), they obtain

w(p) =
δpγ

δpγ + (1− p)γ
, (5)

where δ = eτ. This model of w(p) differs slightly from Tversky and Kahneman but achieves similar
results [19]. Also noteworthy is that this equation is nearly identical to that used earlier for the
weighting function by John Quiggin in his paper, A theory of anticipated utility ([20], Equation (1)).

Additionally, for comparison, R. Duncan Luce et al. in Utility of Gambling II, presented the
entropy-modified expected utility model as shown with their Equations (7) and (8) combined. A is
defined as a constant [21].

U
(
g[n]

)
=

n∑
i=1

U(xi)pi −A
n∑

i=1

pi log2 pi . (6)

If A were equal to U(xi)pi, then this relationship would be in the same form as Equation (A5),
which approximates EDRM, lending additional credence to that taken by the present research.

3. Method

As an answer to the questions of predictive versus descriptive behavioral models and subject
understanding of probabilities, two hypotheses are evaluated:

Hypothesis 1. An entropy-derived decision model can be developed a priori to predict results of Prospect Theory
and other positive behaviors theory studies;

Hypothesis 2. Contrary to long-held assumptions based upon objective probabilities, subjects do understand
and make decisions based upon corresponding subjective probabilities.

Starting with an assumption that subjects understand choice in terms of subjective, rather than
objective probabilities (Hypothesis 2), a qualitative research methodology is used to synthesize
philosophical and foundational works in the fields of risk, entropy, and DMUU to develop the
predictive EDRM. Performance of the EDRM against numerous prior studies will be used as model
validation. Specifically, the EDRM will be evaluated against results reported in six studies by Allais,
Kahneman and Tversky, and Wu and Markle. None of the studies involved actual financial loss/reward

1 The factors used in equations by Gonzalez and Wu ((γ, δ & τ)) are not those used in EDRM but are quoted in their original
form for accuracy. Additionally, this relationship is nearly identical to that stated by Karmarkar.
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to subjects, except a small subset of one study, making it consistent with the risk decisions made in
bureaucratic organizations where personal consequence is limited [22]. In addition to comparing the
binary choice results (matching: yes or no), where appropriate, calculated prospect values are translated
into percentages representing the fraction of subjects selecting a choice using the Percentage Evaluation
Model (PEM) for direct comparison with prior research results. When applicable, statistical analysis
will be performed by evaluating the coefficient of determination (R2) or Spearman’s rank correlation
coefficient (Rho) and through a design of experiments methodology using ANOVA at a standard 5%
significance level as algorithms in R without transformations. Assumptions of independence and
constant variance can be presumed unless stated otherwise; normality will be confirmed by use of the
Shapiro–Wilk test using a 5% significance. In a departure from most prior studies in this field, and as
supported by Wakker and Zank [23], it is initially assumed that there is no difference between gains
and losses other than the sign of the magnitude; any differences are considered as higher-order effects.
A flowchart illustrating the present research is provided in Figure 4.

Systems 2020, 8, x 7 of 34 

 

assumed that there is no difference between gains and losses other than the sign of the magnitude; 
any differences are considered as higher-order effects. A flowchart illustrating the present research 
is provided in Figure 4. 

 
Figure 4. Flowchart for the present EDRM research showing established theories comprising the 
EDRM framework, model development, and validation. Section numbers are noted in parentheses. 

4. Derivation of EDRM: Theoretical Framework 

The derivation of EDRM consists of two major sections: philosophical and mathematical. 
Because EDRM is derived from basic theory to predict results of subject choice behavior rather than 
presenting a descriptive a posteriori model that best fits the data, a firm philosophical foundation is 
required to establish EDRM using behavior theory, statistical mechanics/information theory, and 
probability theory. 

4.1. Foundation of Utility Theory 

Jeremy Bentham (1748–1832) introduced the notion of utility, describing it as follows: “By utility, 
is meant that property of any object to produce benefit, advantage, pleasure, good, or happiness, (all 
this in the present case comes the same thing) or (what comes again to the same thing) to prevent the 
happening of mischief, pain, evil, or unhappiness to the party whose interest is concerned” [24]. The 
goal of the principle of utility is that people seek to maximize happiness (pleasure) and minimize 
unhappiness (pain) [25]. As pleasure and pain are scaled together, so too can gain and loss be 
considered as regions of the same measure. Stated slightly differently, Aristotle uses the phrase 
“pleasure or not without pleasure,” which is understood to be a framework wherein the greater value 
goes to the certainty of gains (pleasure) or the uncertainty of loss (not without pleasure) ([26], 
1098b23), which is also consistent with the certainty effect from Prospect Theory [14]. It follows that 
a reasonable decision is one in which the prospect of happiness or pleasure is greatest. 

In chapter 4 of An Introduction to the Principles of Morals and Legislation, Bentham identifies four 
primary factors, or circumstances, which define the value of utility, or Greatest Happiness Principle: 
intensity or magnitude, duration, certainty or uncertainty, proximity or remoteness [24]. In the 
context of this research, the first, third, and fourth factors are of greatest interest; time as a factor will 
be considered later. This research defines proximity as the nearness to a given state within a choice, 
which is also subjective probability. Daniel Ellsberg recognized the same three factors in the 
evaluation of a choice: the payoff, the relative likelihood, and the third, “the nature of one’s 
information concerning the relative likelihood of events,” which is understood here as knowledge of 
the proximity or nearness to a state [27]. A basic economic prospect model can be inferred as 
magnitude times proximity as a function of certainty, an idea further supported by Peter Wakker’s 

Figure 4. Flowchart for the present EDRM research showing established theories comprising the EDRM
framework, model development, and validation. Section numbers are noted in parentheses.

4. Derivation of EDRM: Theoretical Framework

The derivation of EDRM consists of two major sections: philosophical and mathematical. Because
EDRM is derived from basic theory to predict results of subject choice behavior rather than presenting
a descriptive a posteriori model that best fits the data, a firm philosophical foundation is required to
establish EDRM using behavior theory, statistical mechanics/information theory, and probability theory.

4.1. Foundation of Utility Theory

Jeremy Bentham (1748–1832) introduced the notion of utility, describing it as follows: “By utility,
is meant that property of any object to produce benefit, advantage, pleasure, good, or happiness,
(all this in the present case comes the same thing) or (what comes again to the same thing) to prevent
the happening of mischief, pain, evil, or unhappiness to the party whose interest is concerned” [24].
The goal of the principle of utility is that people seek to maximize happiness (pleasure) and minimize
unhappiness (pain) [25]. As pleasure and pain are scaled together, so too can gain and loss be considered
as regions of the same measure. Stated slightly differently, Aristotle uses the phrase “pleasure or
not without pleasure,” which is understood to be a framework wherein the greater value goes to the
certainty of gains (pleasure) or the uncertainty of loss (not without pleasure) ([26], 1098b23), which is
also consistent with the certainty effect from Prospect Theory [14]. It follows that a reasonable decision
is one in which the prospect of happiness or pleasure is greatest.
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In chapter 4 of An Introduction to the Principles of Morals and Legislation, Bentham identifies four
primary factors, or circumstances, which define the value of utility, or Greatest Happiness Principle:
intensity or magnitude, duration, certainty or uncertainty, proximity or remoteness [24]. In the context
of this research, the first, third, and fourth factors are of greatest interest; time as a factor will be
considered later. This research defines proximity as the nearness to a given state within a choice, which
is also subjective probability. Daniel Ellsberg recognized the same three factors in the evaluation of a
choice: the payoff, the relative likelihood, and the third, “the nature of one’s information concerning
the relative likelihood of events,” which is understood here as knowledge of the proximity or nearness
to a state [27]. A basic economic prospect model can be inferred as magnitude times proximity as a
function of certainty, an idea further supported by Peter Wakker’s separation of risk aversion into
factors of magnitude (marginal utility represented by power utility or expected utility) and proximity
(cumulative probability transformation) [28].

Over the past 150 years, utility theory has been increasingly reduced to the seeking of monetary
gain or economic satisfaction (ophelimity) which forms the fundamental disjointedness between how
people should objectively make decisions and how they subjectively select among various choices.
In their paper, Back to Bentham? Explorations in Expected Utility, Kahneman et al. draw the distinction
between these two notions of utility as experienced utility, which aligns with Bentham and Mill, and
decision utility or expected utility [29]. Kahneman’s conclusion is especially important in justifying this
present research because it leaves room for cautiously reintroducing classical experienced utility into
the field of economic decision utility, specifically in consumer rationality [29]. Kahneman and Thaler
further explore the difference between decision utility and hedonistic experienced utility in their paper,
Anomalies: Utility Maximization and Experienced Utility [30].

4.2. Entropy

Arieh Ben-Naim describes three definitions of entropy with different origins that all provide
agreeable results: Clausius’ macro state definition (thermodynamic), Boltzmann’s micro state definition
(statistical mechanics), and Shannon’s measure of information (SMI or information theory) [31]. Within
this research, Boltzmann’s statistical mechanics entropy for the case of a non-equilibrium ideal gas
and Shannon’s entropy will be used interchangeably in the context of choices, an action supported
by Ben-Naim’s derivation of their equivalence and writings of the physicist Edwin Jaynes [31,32].
The remaining entropy definition, thermodynamic, will be introduced to draw out the relationship
between subjective probabilities associated with Boltzmann/SMI and objective probabilities associated
with the thermodynamic view where all states are equiprobable in thermal equilibrium, as shown in
Boltzmann’s derivation [33].

The concept that entropy and uncertainty are synonymous, as concluded by Jaynes and Ben-Naim,
is crucial to this research because human decision making is so strongly influenced by the presence of
certainty and decisions lead to actions that locally create order out of disorder (e.g., build a house or
write a book) [4,14,32]. Therefore, for the purposes of this research, the idea that people have the ability
to conceive ideas and then decide to put them into action in the information or physical realms is
reflected in the fact that, in general, people choose certainty over uncertainty for gains and the opposite
for losses.

Information theory (SMI) and statistical mechanics hold the answer to quantifying decision
uncertainty and has roots in Maxwell Boltzmann’s foundational paper on statistical mechanics [33].
John von Neumann, who also established Game Theory with Oscar Morgenstern, further tied together
Boltzmann’s work and the work of other physicists, such as J. Willard Gibbs, into the Mathematical
Foundations of Quantum Mechanics. von Neumann identified that there exists a “thermodynamic value
of knowledge which consists of an alternative of two cases”: k ln 2, the maximum entropy of a binary
choice [1,34]. Claude Shannon, who reportedly consulted von Neumann while at Princeton, established
information theory based upon this concept of entropy [35]. Shannon also defines two terms important
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for this research: relative entropy (entropy divided by the maximum entropy) and redundancy, which
is one minus relative entropy.

Shannon considers information theory in terms of states and choices, forming a natural application
to decision theory; however, only several of the numerous papers reviewed in the course of this
research attempted to apply information theory to risk decisions. Nawrocki and Harding in their
paper, State-value weighted entropy as a measure of investment risk, make use of entropy’s extrinsic
properties to weight the uncertainty of choices by their economic value or utility [36]. Yang and Qui
in Normalized Expected Utility-Entropy Measure of Risk, apply an additive entropy term in an attempt
to model Prospect Theory and introduce the concept of redundancy, but do not subsequently make
application [37]. Roman Belavkin, in Asymmetry of Risk and Value of Information, discusses many topics
and even suggests application of entropy to Prospect Theory [38] and, in an earlier work, The Use
of Entropy for Analysis and Control of Cognitive Models, Belavkin suggests the use of redundancy in
estimating system accumulated information [39]. Even Tversky discussed information theory entropy
as a measure of decision uncertainty in his paper, On the Optimal Number of Alternatives at a Choice Point,
but this was not explored further [40]. Of all the relevant literature reviewed, none go so far as to
directly apply redundancy as a measure of certainty to a decision model.

More recently, several papers work to apply various forms of entropy to decision making by
individuals and organizations [41,42], but one is particularly interesting to the present research. In A
Unified Theory of Human Judgement and Decision-Making under Uncertainty, Raffaele Pisano and Sandro
Sozzo draw the conclusion that quantum theory (i.e., statistical mechanics) is representative of human
cognition and that quantum state probability is subjective, which supports this research approach [43].
However, the Authors avoid directly applying entropy and make the assumption that the Born rule
(or law) of quantum mechanics defines the relationship between subjective probability as the square root
of the objective probability. This research shows that the square root relationship between probabilities
is a special case assuming very small state probabilities (see Section 4.6.2 and Appendix B).

4.3. Two Types of Probabilities

Throughout the literature, there appear two general categories of probabilities [44–49]: those which
are objective and physically measurable and those which are subjective and not directly measurable
and are often correlated to various degrees of psychologistics, to include beliefs, states of mind, logical
proximity (from logical positivism), or judged probabilities [50]. In 1763, Rev Thomas Bayes’ method
of translating between probabilities of measurable events and their unmeasurable conditions was
published posthumously and has since spawned an entire field of study [51]. Similarly, the goal of this
research is to translate between what is directly measurable and what is not in the arena of behavior
theory and risk, since the probabilities of risk events are usually posed in measurable objective terms,
but positive behavior theory shows that subjects make risk choices differently. In all of the prior
research reviewed, it was observed that probabilities provided to subjects were objective.

Building upon the prior discussion on entropy, there are two different, but related, types of
probabilities contrasted by Roman Frigg based upon whether the problem is considered from a macro
(temperature, pressure, volume) or micro state (energy state of a single atom): macro probabilities and
micro probabilities [52]. In Probability Theory, Jaynes makes the clear delineation between subjective and
objective probabilities. While probabilities that are subjective are merely descriptive of the knowledge
of a specific state and are not physically measurable, objective probabilities can be physically measured
and consider all states (ignoring none) and assumes an equivalent knowledge to each (i.e., equal
probability to every possible state combination) [46]; for example, the probability of rolling any specific
value on a fair six-sided die is objectively 1/6. This distinction precisely fits those of micro and
macro probabilities of statistical mechanics and thermodynamics, respectively. When considered
from a macroscopic or thermodynamic perspective, equilibrium entropy is based merely upon all
possible combinations of all states and uses the classical definition of objective probability where the
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individual micro-state probabilities are not known and assume an equal probability, as calculated by
the Boltzmann principle 2.

Micro states are subsets of the macro-region where a change in entropy is calculated for each
state based upon knowledge of the micro-probability of being in that state and is not directly related
to the state of other atoms or the measurable effects on the system; a neutral reference point, if you
will, since it is only based upon knowledge of that state and not the system as a whole. Following an
exhaustive comparison of these two types of probabilities, Frigg philosophically concludes, “There is
no causal connection between knowledge and happenings in the world” [52]; an elegant contrast of
micro (subjective) and macro (objective) probabilities. However, while not causal, Frigg proposes there
exists a direct relationship where the macro state is a function of the system’s micro state at a given
time. Similarly, EDRM functionally relates subjective and objective probabilities. Now, the final step in
aligning definitions is to match proximity with subjective knowledge and micro-probability and relative
certainty with objective or macro-probability, since the foundation of the EDRM derivation hinges upon
the definitional connection between these terms, as shown in two generalized categories in Figure 5.
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Likewise, logical positivism holds that there are two different types of probabilities: Frequency
and logical proximity. Frequency is definitionally objective probability, so it stands that logical
proximity is synonymous with subjective probability. Frederick Weismann, who worked closely
with Ludwig Wittgenstein, introduced the term as “the logical proximity or deductive connection
between propositions” [translated] [47,53]. Waismann’s terminology is especially helpful for this
discussion because it is both a type of subjective probability and reinforces the use of the term proximity
in this context. This assertion is further supported by Karl Popper, who ties logical proximity to
psychologistic theory through Keynes’ degrees of rational belief and appears synonymous with his logic
of knowledge terminology, logical relation [44,54]. Popper continues regarding subjective probability,
“It treats the degree of probability as a measure of the feeling of certainty or uncertainty, or belief or
doubt, which may be aroused is us be certain assertation of conjectures” [54]. Interestingly, George
Shackle’s surprise-belief curves are largely founded upon Keynes’ degrees of rational belief, for which
he deduced a relationship between potential surprise and belief which closely approximates CPT, with
belief then being the subjective probability and surprise being the objective [55].

Therefore, micro probabilities are definitionally subjective probabilities, with psychologistical
connections to knowledge and beliefs, and macro probabilities are equivalent to objective probabilities.
Ideally, a relationship that defines the difference between macro and micro probabilities would be
effective in translating between these two contexts and would provide an isomorphic framework for
contrasting between normative and positive behavior theory. EDRM’s relationship between proximity

2 As this paper is focused upon the application of an entropy model for positive decision theories, the apparent
isomorphology between Boltzmann’s Principle and Daniel Bernoulli’s expected utility theory will be more deeply addressed
in subsequent research.
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and relative certainty provides such a solution and offers an explanation of the differences between
the neutral reference points observed in positive behavior theories, such as PT and CPT, and the
wealth-based utilities found in normative theories. Similar to the development of entropy over the
past 300 years through differing perspectives of thermodynamics and statistical mechanics, which
were brought together by Boltzmann’s H-theorem, behavioral economics has long considered the same
problem of decision making from two differing perspectives.

To finalize the philosophical foundation for derivation of EDRM as a translation between subjective
and objective probabilities, it must be shown that relative certainty (i.e., redundancy, which is one minus
relative entropy) is an objective probability. Shannon defines relative entropy as the ratio of the entropy
of a source, based upon knowledge of the probability of each state (subjective probabilities), divided
by the maximum entropy, which assumes an equal probability for each state with no knowledge of a
specific state (objective probability). Entropy itself contains no knowledge of a state and is ambiguous
about probability, as illustrated by the state entropy plot in Figure A1, which shows two values of state
probability for any value of state entropy, except at its maximum. Because entropy does not contain
state knowledge and there are only two types of probabilities, relative certainty cannot be subjective
and therefore is an objective probability.

Referring back to Bentham’s identification of certainty and proximity as distinct factors in the
definition of utility, this research therefore understands that his statement is a clear acknowledgement
that both objective and subjective probabilities must be evaluated. EDRM accounts for these factors
and provides translation between them.

4.4. Entropy Decision Risk Model (EDRM) Framework

The EDRM is developed from the following observations derived from the prior philosophical
discussion:

1. Certainty of gains and the uncertainty of losses are more highly valued;
2. Gains and losses are considered contiguously as two regions of the same scale;
3. Relative certainty, or redundancy, is one minus the relative entropy;
4. Proximity is represented by the subjective probability of reaching a state;
5. Prospect can be stated as magnitude times proximity as a function of relative certainty;
6. The choice with the greatest prospect, positive or negative, is preferred.

4.5. Choices and States

Shannon says that choices are made up of individual states [35]. Employing Problem 1 of Prospect
Theory as a classical example, Choice A (2500, 0.33; 2400, 0.66) has three states: 2500, 2400, and
zero, although the zero state is implied by the remaining probability (0.01) and is usually omitted
in the notation. Choice B (2400, 1.0) has two states, 2400 and zero, although both of these states are
certain. However, there is a problem. All these probabilities are objective rather than subjective (micro)
probabilities, which reveals the fundamental weakness of the current risk management paradigm; this
can be easily seen in the first example problem from PT [14]:

Choose between
A: 2500 with probability 0.33

2400 with probability 0.66;
B: 2400 with certainty

0 with probability 0.01.
Based upon expected value, probability times consequence, Choice A (2409) should be preferred

over Choice B (2400); however, an overwhelming 82 percent of subjects selected Choice B, all because
the wrong probability is used. This single example demonstrates the misalignment between risk
modeling and human decision making, a discord that has ostensibly been generally accepted by the
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risk community to maintain simplicity of calculating risk by laypersons. Therefore, state probabilities
must be subjective, with choices shown in Figure 6.
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Figure 6. This figure illustrates basic two- and three-state choices, where xi is the magnitude of a state.
Consistent with the application of statistical mechanics, as discussed, proximity (τ) is used rather than
objective probability (p) because this is a depiction of a set of choice states. Although only two and
three-state choices are shown, a choice can be made up of any number of states.

According to information theory, SMI for state i within choice j is [35]

H j = −τi j log2 τi j . (7)

The maximum possible entropy for any given choice occurs when τi j = 1/m for all i, which results
in the well-known basic equation of maximum entropy 3, H j max = log2 m.

Although there is a recognition that uncertainty’s effect (i.e., entropy) on outcomes may be used
in a definition of risk, as stated in ISO 31000, there is no discussion of how to apply the uncertainty of
approaching one of two states (failure or no failure) to a risk model [9,56]. To resolve the expected
value inconsistency shown above in PT problem 1 and to incorporate the concept of uncertainty, the
EDRM is proposed.

4.6. Prospect

The derivation of prospect requires application of statistical mechanics and information theory
placed in the context of DMUU. To provide distinction between the two types of probabilities, τ and p
are used for proximity (subjective probability) and relative certainty (objective probability), respectively.
Prospect is identified with the Greek letter T (tau) 4. Proximity τ(p) and the CPT weighting factor w(p)
are generally synonymous, except that Tversky and Kahneman explicitly state that the CPT weighting
factor and PT decision weight π(p) are not probabilities, ostensibly because individually they do not
necessarily sum to 1 within a choice as only objective probabilities are assumed; which is, however,
indicative of additive subjective probabilities. Prospect for a given state is equivalent to its certainty
equivalent (CE), which is the 100 percent probability (certainty) of the non-zero state. For example,
under EDRM the CE for (USD 1000, 0.5) is (USD 432), which will be shown to be consistent with the
results of CPT.

4.6.1. Derivation of Proximity from Information Theory Entropy (SMI) and Statistical Mechanics

The basic relationship between proximity (τ) and relative certainty (p) is the foundation of
EDRM and is derived by taking the entropy divergence of a single state, which is fully presented in
Appendix A:

p(τ) = τ2
− τ2 ln τ2 = τ2 ln

( e
τ2

)
. (8)

3 This case is identical to that of the classical or frequency definition of probability, where each state is assumed to have to
same probability due to a lack of knowledge about the states.

4 The Authors have chosen to use T out of respect for Amos Tversky who passed before being awarded the Nobel Prize
alongside Daniel Kahneman.
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The inverse of this equality, τ(p), is much more useful; however, Equation (8) is not invertible, so
numerical methods in R and Excel are used to apply the model.

When plotted, Equation (8) yields the sigmoid curve shown in Figure 7.
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Figure 7. Uncorrected EDRM plot of proximity (τ) versus relative certainty (p) provides a monotonic
relationship between subjective and objective probabilities, in general. Of particular importance for
comparison with prior research are the preference reversal point and the inflection point, which closely
match previous empirical results.

4.6.2. Very Small Probabilities

Although extremely small probabilities (. 1× 10−6) are not part of most behavioral economics
studies, because EDRM is derived from basic theory it should generally be extensible to these cases.
For very small values of relative certainty and proximity, the relationship between the two converges
to an exponential factor. For a priori EDRM, a simple relationship between objective and subjective
probabilities results for very small probabilities, which is consistent with Born rule of quantum
mechanics (See full derivation in Appendix B):

τ =
√

p . (9)

To illustrate, given an objective probability of 3.3× 10−9, as could be found in the Powerball lottery
grand prize, the proximity is the square root, 5.8× 10−5, an increase of greater than 10,000 times that is
perhaps consistent with the popularity of lotteries despite the poor odds of winning.

4.6.3. Inflection and Preference Reversal Points

Many studies compare the alignment of descriptive models to CPT based upon the point of
inflection, where the shape shifts from concave to convex, and the crossover point or preference reversal
point. Drazen Prelec, in The Probability Weighting Function, developed a similar relationship that forms
a curve like EDRM and has a combined inflection and crossover point, w(p) = p, at p = 1/e [57] 5:

w(p) = e−(ln
1
p )
α

. (10)

5 Prelec’s relationship is provided as written; however, the constant α is not the same as that used for power utility.
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This is of particular interest because the basic entropy equation, −τi log2 τi, has its maximum of
1/e ln 2 at τ = 1/e, which aligns with an inflection point at p = 3/e2 = 0.4060 and is highly consistent
with the conclusions of Wu and Gonzalez who validated prior studies to confirm that the inflection
point of the weighting function is at about 0.40 [58].

The EDRM preference reversal point naturally occurs at τ(p) = p = 0.2847, as shown in Figure 7,
which appears to more closely correspond to Tversky and Kahneman’s reported data than their
proposed descriptive model and other follow-on studies; it is shown superimposed upon their actual
plot (Figure 3) in Figure 8 [17,19]. To aid in visual assessment, including the preference reversal point,
a 5th order polynomial trendline (orange dashed line) is shown nearly overlapping the predicted results
(black line). Statistical analysis of the uncorrected model performance is provided in Appendix C.3.
Lichtenstein, and Slovic reported reversal in three experiments with the following results: 0.295, 0.315,
and 0.270, which averages to 0.293 [59]. In another preference reversal study by Tversky, Sattath, and
Slovic, they reported a similar value for preference reversal of 0.28 [60]. These results are all consistent
with the predicted EDRM preference reversal point.
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Figure 8. Overlay of four plots to show alignment of EDRM with Cumulative Prospect Theory (CPT).
The base layer showing the CPT weighting factor curves, which includes the axes, is taken directly from
the original CPT paper [17]. The second layer of blue dots represent the actual positive and negative
data points from the original report 6. The next (orange) layer is a 5th order linear regression trendline
calculated from the original results. The final layer shows the uncorrected EDRM, which more closely
trends with the original data than the reported weighting factor curves.

4.6.4. Calculating Prospect of a Choice

As defined, prospect is the magnitude times proximity as a function of relative certainty for state i
within choice j is calculated from Equations (3) and (A4), expressed as

Ti j = vi jτi j . (11)

6 To separate decision weights in the two-value CPT actual data, the following was assumed: w(p)
w(1−p) ∝

τ(p)
τ(1−p) .
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The prospect of a choice of m states is given by,

T j =
m∑

i=1

vi jτi j . (12)

The preferred choice is that with the greatest (most positive or least negative) value of T j, whether
the various values vi j are all positive (gains), all negative (losses), or a mixture of the two. The default
value function will use a standard exponential value of α = 0.88 for the power utility.

Indifference plots graphically represent all possible combinations of a three-state choice
(x, p1; x2, p2; x3, p3) for a given decision curve. By convention, the objective probabilities p1 and
p3 are on the axes; p2 is inferred as 1 − p1 − p3 and lies along the diagonal from the origin.
Using Tversky and Kahneman’s example, the corners represent the three outcomes (states):
x1 = 0, x2 = 100, and x3 = 200 [17]. Other values can be used, including negative and mixes
of positive and negative. The contour lines depict equal prospects. Some authors portray indifference
plots in equilateral triangles but to remain consistent, this research will use that reported in CPT.
The uncorrected EDRM indifference plot is shown in Figure 9 in comparison with those originally
reported by Tversky and Kahneman, indicating close alignment between EDRM and original CPT.
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Figure 9. Indifference plots of cumulative prospect theory (a,b) and EDRM (c,d) for nonnegative
prospects (x1 = 0, x2 = 100, x3 = 200) and nonpositive prospects (x1 = −200, x2 = −100, x3 = 0).
Figures (a,b) are taken directly from the original text [17]. Figures (c,d) are calculated using EDRM484
dashed lines represent probability p2. It is noteworthy that EDRM generally matches the original CPT
indifference plots, except along the edges. This may be explained by the fact that proximities calculated
from relative certainties (p) are not required to sum to 1 (Section 4.6)
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4.6.5. Applying a Proximity Exponent (β) to the Prospect of a Choice

Although the focus of this paper is on validating a priori EDRM without factors or corrections,
it is appropriate to note how a factor would be applied and what effect it would have on the results.
Equation (11) can be modified, as discussed in Appendix B, by expanding the application of β to
proximity in general for all values, not just the very small,

Ti j = vi jτ
β
i j , (13)

and merged with power utility in Equation (3) yields,

Ti j =

 xαi j τ
β
i j i f x ≥ 0

−λ
(
−xi j

)α
τ
β
i j i f x < 0

. (14)

To illustrate the ability to model a wide range of prospect curves, proximity for various values
of β is shown in Figure 10. For values of β < 2 the preference reversal point shifts along identity;
reversal is at 0.5 when β = 0.8560. For β ≥ 2, proximity is always less than relative certainty so there is
no preference reversal. At the extremes, proximity is 1 for β = 0 and tends to 0 as β→∞ . The loss
aversion factor, λ, is assumed to 1 throughout this research, which is validated in analysis presented in
Section 6.
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Figure 10. To illustrate the effect of β on proximity, this plot graphically shows the shape of the
proximity curve for various values to show change in preference reversal, as annotated. For β ≥ 2, there
is no preference reversal. While this paper will only apply β = 1 for comparison to prior studies to
validate the a priori model, in Section 6 the proximity exponent is varied along with the value exponent
to further validate the use of α = 0.88 and β = 1 across all prior studies as a system.

The studies used for comparison will assume a natural value of β = 1 to validate the a priori
relationship; comparison of other studies with varying values ofβwill be considered in subsequent research.

5. EDRM Validation (Without Application of Any Factors or Corrections, β = 5 )

Validation of the various versions of EDRM is done using data reported in prior studies and
assumes that all reported choice decisions are reasonable decisions, as previously defined. The consistency
of the data varies based upon the specific study and the number of subjects, which fluctuates between
ten and several hundred. As this research will not replicate prior studies, the specifics of how choices
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were presented to subjects will not be discussed unless necessary to explain results, such as in the
CPT analysis which reports certainty equivalent values derived from subject responses rather than the
responses themselves. None of the studies involve actual financial loss or reward to the subjects, except
a subset of one study (Wu and Markle), making them generally consistent with the bureaucratic risk
decision systems under consideration, although subjects were sometimes compensated for participating
in the study.

5.1. The Percentage Evaluation Model (PEM)

Most studies reviewed report results in terms of the fraction of subjects selecting between
alternatives, so results must be converted to enable direct performance comparison with prior works,
beyond that of merely evaluating the binary results (i.e., do they match?); however, literature reviews
did not identify any such method for directly comparing value results with frequency of subjects
selecting an alternative. The PEM is presented as a tool for conducting this evaluation and may be
useful for comparing values with subject percentages in other research. Additionally, the difference
in percentages reported by PEM can be evaluated as the choice difficulty, where a small difference
represents a difficult choice.

While a straightforward ratio of prospect values might appear to work for pairs of gains or losses,
it does not suffice for mixed gambles nor does it capture subject perception. This research proposes use
of the natural shape of inverse hyperbolic sine over the range of possible positive and negative values
to compute a relative percentage that is consistent with subject responses based upon the calculated
values of prospect.

The challenge is to develop a scale that is both respective of the difference between the prospects
and is referenced to the absolute values of the minimum and maximum possible values from the two
choices. The solution is to use the inverse hyperbolic sine of the difference in the numerator and the
difference of the asinh of the maximum and minimum values in the denominator. The maximum and
minimum functions are both referenced to zero, such that the minimum value is never greater than
zero and the maximum is never less than zero. Since the inverse hyperbolic sine is logarithmic, this
approach is compatible with the Weber-Fechner law for human perception (psychophysics). To further
support this approach, it is already well established that economic decision theory is closely related to
the field of psychophysics, of which Daniel Bernoulli is considered the inventor [5,61]. This relationship
is given by,

Choice A% = 50% + 50%
asinh

(XA−XB
2

)
asinh (Max Value, 0) − asinh(Min Value, 0)

. (15)

Figure 11 graphically represents the development of Equation (15). To enable comparison of
prospects to maximums and minimums in cases where power utility was applied to the state prospects,
the inverse of the function (e.g., T1/0.88

A ) must be applied to calculate the corrected choice prospect (XA)
to undo this effect, similar to that performed by Bernoulli is his discussion of expected utility. As PEM
is calculated only from the prospects, it is independent of the binary matching results.

One interesting special case must be considered in the evaluation model, that of dominance [62].
When comparing two choices of an equal number of states, each with an identical probability set,
dominance exists when the value of every state of one choice is equal to or greater that of the pairwise
values of the second choice, with at least one of those values larger than its mate. Problem 4 from
Framing of Decisions and the Psychology of Choice is provided as an example: Choice A (240, 0.25; −760,
0.75), Choice B (250, 0.25; −750, 0.75). Since the probability sets are equal, and because 250 > 240
and −750 > −760, Choice B is necessarily preferred to Choice A and the outcome is insensitive to
changes in α or β. In the references reviewed, Tversky and Kahneman report subject preferences for
dominance problems as 100% for the greater choice, indicating that subjects are adept at detecting
dominance [62,63]. While the EDRM prospects will predict the correct binary result in this case,
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Equation (15) may not accurately predict percentages because the prospects are often nearly equal;
however, if there is even a small difference in probabilities, then this effect is not present and the
evaluation model proves quite accurate, as demonstrated in Section 5.6. Therefore, when dominance is
present, the percentage of the choice with the greater prospect will be 100%; the lesser will be 0%.
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Figure 11. This illustration shows a new model for converting the prospect (T) of two choices into the
relative percentages of subject responses for direct comparison with prior studies, which universally
report these percentages. No prior works reviewed attempt to compare results in this manner, making
this the first to do so, to the authors’ knowledge. This model is based upon the Weber-Fechner law of
human perception, which is logarithmic, and scaled by the minimum and maximum values. Asinh was
chosen because it is likewise logarithmic and permits comparison of positive and negative prospects
contiguously along a single scale.

The proposed evaluation model used for validating EDRM itself requires assurance that it
consistently and accurately translates between prospects and percentages. Since the evaluation model
draws its validity from the very data it is used to evaluate, the following set of credible and objective
criteria are established as a standard:

1. Varies monotonically with the difference in prospect between choices;
2. Scaled by the range, positive and negative, of values being evaluated in a given choice;
3. Accounts for non-linearities of human perception;
4. Equitably reports subject percentages for choices involving gains, losses, or mixtures of the two;
5. Performs consistently across a range of studies (not tuned to a specific set of research).

Criteria 1 through 3 are met by definition, and as previously discussed. Criteria 4 and 5 are met
through analysis of eight related studies conducted by different researchers, all of which have been
analyzed using matching binary results and are optimized values for the exponential parameters α and
β [14,58,62–67]. Table A1 in Appendix C.1 summarizes this analysis and affirms consistency of PEM
performance throughout this research with an R2 of 0.80. Specifically, despite the presence of gain, loss,
and mixed choices (criteria 4) and the myriad sources of the surveys (criteria 5), there is no statistical
significance independently or in their interactions. Therefore, it is reasonable to conclude that this
evaluation model is adequate for translating between prospects and subject response percentages.

5.2. Allais Paradox

As a foundation of DMUU, agreement with the Allais Paradox is an imperative for validation
of EDRM, as shown in Table 1. EDRM correctly predicts results for the paradox, as posed by Allais,
as well as other variants embedded within subsequent research. No actual results showing subject
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preference percentages were shown in his paper; however, the calculated percentages predict nearly all
would agree with the choices.

Table 1. Allais Paradox performance using EDRM. T j is the prospect of the choice α = 0.88 is the
standard power utility used by Kahneman and Tversky and others. Calc % provides percentage
comparison from the PEM. Underlines indicate the greater values.

α=0.88

Problem (Value, Probability) EDRM Calc % Match

Choice A (1 and 3) Choice B (2 and 4) TA TB A B Y/N

1 and 2 (1M) (5M, 0.10; 1M, 0.89) 190,456 131,265 90 10 Yes
3 and 4 (5M,.10) (1M,.11) 112,312 28,925 90 10 Yes

Maurice Allais, in his 1988 Nobel Lecture, referred to the VNM utility as the “neo-Bernoullian
utility index” and critically refuted it as “unacceptable because it amounts to neglecting the probability
distribution of psychological values around their mean” [68], which was consistent with research
by Harry Markowitz and points to use of subjective probabilities. To demonstrate the fundamental
weakness of utility theory in predicting subject choice, Allais offered the Allais Paradox in his paper,
Le Comportement de l’Homme Rationnel devant le Risque: Critique des Postulats et Axiomes de l’Ecole
Americaine [69]. The paradox, cited below from Mark Machina and differing slightly from Allais’
original in currency and magnitude (1 USD = 100 Franc) for ease of transcription, consists of two pairs
of gambles, a1, a2, and a3, a4. Subjects usually select a1 and a3, contrary to results predicted by utility
theory, which requires that subjects select choice a4 after selecting a1 [70]:

a1 :

 1.00 chance o f USD 1, 000, 000 versus a2 :


.10 chance o f USD 5, 000, 000
.89 chance o f USD 1, 000, 000
.01 chance o f USD 0

and

a3 :
{

.10 chance o f USD 5, 000, 000
.90 chance o f USD 0

versus a4 :
{

.11 chance o f USD 1, 000, 000
.89 chance o f USD 0

.

5.3. Prospect Theory (Kahneman and Tversky)

As with the Allais Paradox, no positive decision model could make any claim to universality
without predicating all results of Kahneman and Tversky’s hallmark work, Prospect Theory.
EDRM accurately predicts all PT results, including lotteries and insurance problems (14 and 14′) which
are usually characterized as large gambles where people tend to evaluate choices based upon the value
of potential winnings alone without considering the probability, as is normal for small gambles [71].

The correlation between actual versus predicted results are shown in Figure 12. The detailed
results comparing performance of EDRM against reported PT results is shown in Table 2.

The close alignment between EDRM and PT (R2 = 0.86) with 100% matching (See Appendix C.2),
as seen in Figure 12, and the results reported by Kahneman and Tversky as shown in Table 2 is striking,
especially considering that no factors were applied to modify to shape of the proximity curve to match
their results. The gamble type, whether gain or loss, has no statistical effect, which supports the
assumption that there is no difference between the two and affirms Hypothesis 1.
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Figure 12. Comparison of the results of PT versus uncorrected EDRM are shown above for all problems
provided in the original PT paper. EDRM predictions match all results reported by Kahneman
and Tversky.

Table 2. EDRM performance with Prospect Theory. T j is the prospect of the choice. Calc % and Actual
% provide comparison of model results to those reported by Kahneman and Tversky. Underlines
indicate the greater values.

Problem EDRM Calc % Actual % Diff

Choice A Choice B TA TB A B A B ∆%

1 (2500, 0.33; 2400, 0.66) (2400) 824.66 943.16 16 84 18 82 2
2 (2500, 0.33) (2400, 0.34) 308.94 304.55 64 36 83 17 19
3 (4000, 0.8) (3000) 978.90 1147.80 15 85 20 80 5
4 (4000, 0.2) (3000, 0.25) 330.73 298.54 74 26 65 35 −9
5 (10000, 0.5) (4320)1 1 1430.49 1582.07 19 81 22 78 3
6 (10000, 0.05) (4320, 0.1) 1 308.95 226.24 77 23 67 33 −10
7 (6000, 0.45) (3000, 0.9) 840.31 879.79 25 75 14 86 −11
8 (6000, 0.001) (3000, 0.002) 20.70 16.64 60 40 73 27 13
3′ (−4000, 0.8) (−3000) −978.90 −1147.80 85 15 92 8 7
4′ (−4000, 0.2) (−3000, 0.25) −330.73 −298.54 26 74 42 58 16
7′ (−3000, 0.9) (−6000, 0.45) −879.79 −840.31 25 75 8 92 −17
8′ (−3000, 0.002) (−6000, 0.001) −16.64 −20.70 60 40 70 30 10

10 2 (4000, 0.8) (3000) 978.90 1147.80 15 85 22 78 7
11 (1000, 0.5) (500) 188.57 237.19 19 81 16 84 −3
12 (−1000, 0.5) (−500) −188.57 −237.19 81 19 69 31 −12

13 (6000, 0.25) (4000, 0.25;
2000, 0.25) 549.43 593.50 25 75 18 82 −7

13′ (−6000, 0.25)
(−4000,

0.25;−2000,
0.25)

−549.43 −593.50 75 25 70 30 −5

14 (5000, 0.001) (5) 17.63 4.12 67 33 72 28 5
14′ (−5000, 0.001) (−5) −17.63 −4.12 33 67 17 83 2

Notes: 1. Estimated trip values using certainty equivalent from CPT: CE(10000, 0.5) = 4320; 2. Problem 10 is the
second stage of a two-stage problem where there is only a 25% chance of proceeding past the first stage; however,
as stated by Kahneman and Tversky in problem 10 of Prospect Theory, people tend to disregard the first stage [14].
Therefore, the first stage is not applied in this model.

5.4. Cumulative Prospect Theory

The weighting factor curve developed by Tversky and Kahneman serves as the foundation for
many subsequent works seeking to apply it or to provide further validation. Therefore, for EDRM to
be of value, it must accurately predict CPT results, beyond the general agreement between EDRM
and CPT for shape and critical point agreement (inflection and preference reversal) demonstrated in
Section 4.6.3.
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By nature of the method employed by Tversky and Kahneman to derive the median certainty
equivalent (CE) data from observed choices rather than portraying raw subject preference data, the use
of a unity power utility factor (α = 1) is warranted, i.e., the inverse power utility correction has already
been applied. Figure 13 displays the difference between the actual CEs and the calculated prospect as
reported in Table 3. The consistency of the CE difference is tighter for losses than for gains, which
can be seen in the increased dispersion of two-state gains. Consistent with the w+ and w− curves of
Figure 3, the linear trendline indicates that calculated CE is slightly less than actual for gains, and
slightly greater for losses.
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Figure 13. This plot shows a high degree of alignment of EDRM compared with actual CPT data for
one and two-state choices. The plot scales are different on the horizontal and vertical axes to amplify
the results. The dashed line represents a linear trendline using all the data, which shows excellent
alignment with the positive and negative extremes. There is a slightly tighter correlation of the model
for negative values. The negative slope of the trendline shows there is a very small difference between
gains and losses (loss aversion), but is considered a minor effect in this research.

Table 3. EDRM Performance with Cumulative Prospect Theory through comparison of calculated and
actual certainty equivalents (CE), which is equivalent to prospect, T. Proximities (τi) calculated for each
state are also shown. Data are as reported by Tversky and Kahneman.

α=1, β=1

Problem EDRM Results

Outcomes Gamble τ1 τ2 Calc CE T Actual CE Diff ∆ CE

(0, 50) (50, 0.1) 0.1430 7.15 9 1.85
(50, 0.5) 0.4320 21.60 21 0.6
(50, 0.9) 0.7665 38.32 37 1.325

(0, −50) (−50, 0.1) 0.1430 −7.15 −8 0.85
(−50, 0.5) 0.4320 −21.60 −21 −0.6
(−50, 0.9) 0.7665 −38.32 −39 0.675

(0, 100) (100, 0.005) 0.0933 9.33 14 −4.67
(100, 0.25) 0.2601 26.01 25 1.01
(100, 0.5) 0.4320 43.20 36 7.2
(100, 0.75) 0.6183 61.83 52 9.83
(100, 0.95) 0.8372 83.72 78 5.72

(0, −100) (−100, 0.005) 0.0933 −9.33 −8 −1.33
(−100, 0.25) 0.2601 −26.01 −23.5 −2.51
(−100, 0.5) 0.4320 −43.20 −42 −1.2
(−100, 0.75) 0.6183 −61.83 −63 1.17
(−100, 0.95) 0.8372 −83.72 −84 0.28

(0, 200) (200, 0.01) 0.0361 7.22 10 −2.78
(200, 0.1) 0.1430 28.60 20 8.6
(200, 0.5) 0.4320 86.40 76 10.4
(200, 0.9) 0.7665 153.30 131 22.3

(200, 0.99) 0.9284 185.68 188 −2.32
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Table 3. Cont.

α=1, β=1

Problem EDRM Results

Outcomes Gamble τ1 τ2 Calc CE T Actual CE Diff ∆ CE

(0, −200) (−200, 0.01) 0.0361 −7.22 −3 −4.22
(−200, 0.1) 0.1430 −28.60 −23 −5.6
(−200, 0.5) 0.4320 −86.40 −89 2.6
(−200, 0.9) 0.7665 −153.30 −155 1.7
(−200, 0.99) 0.9284 −185.68 −190 4.32

(0, 400) (400, 0.01) 0.0361 14.44 12 2.44
(400, 0.99) 0.9284 371.36 377 −5.64

(0, −400) (−400, 0.01) 0.0361 −14.44 −14 −0.44
(−400, 0.99) 0.9284 −371.36 −380 8.64

(50, 100) (50, 0.9; 100, 0.1) 0.1430 0.7665 52.62 59 −6.375
(50, 0.5; 100, 0.5) 0.4320 0.4320 64.80 71 −6.2
(50, 0.1; 100, 0.9) 0.7665 0.1430 83.80 83 0.8

(−50, −100) (−50, 0.9; −100, 0.1) 0.1430 0.7665 −52.62 −59 6.375
(−50, 0.5; −100, 0.5) 0.4320 0.4320 −64.80 −71 6.2
(−50, 0.1; −100, 0.9) 0.7665 0.1430 −83.80 −85 1.2

(50, 150) (50, 0.95; 150, 0.05) 0.0933 0.8372 55.85 64 −8.145
(50, 0.75; 150, 0.25) 0.2601 0.6183 69.93 72.5 −2.57
(50, 0.5; 150, 0.5) 0.4320 0.4320 86.40 86 0.4

(50, 0.25; 150, 0.75) 0.6183 0.2601 105.75 102 3.75
(50, 0.05;150, 0.95) 0.8372 0.0933 130.24 128 2.245

(−50, −150) (−50, 0.95; −150, 0.05) 0.0933 0.8372 −55.85 −60 4.145
(−50, 0.75; −150, 0.25) 0.2601 0.6183 −69.93 −71 1.07
(−50, 0.5; −150, 0.5) 0.4320 0.4320 −86.40 −92 5.6

(−50, 0.25; −150, 0.75) 0.6183 0.2601 −105.75 −113 7.25
(−50, 0.05; −150, 0.95) 0.8372 0.0933 −130.24 −132 1.755

(100, 200) (100, 0.95; 200, 0.05) 0.0933 0.8372 102.38 118 −15.62
(100, 0.75; 200, 0.25) 0.2601 0.6183 113.85 130 −16.15
(100, 0.5; 200, 0.5) 0.4320 0.4320 129.60 141 −11.4

(100, 0.25; 200, 0.75) 0.6183 0.2601 149.67 162 −12.33
(100, 0.05; 200, 0.95) 0.8372 0.0933 176.77 178 −1.23

(−100, −200) (−100, 0.95; −200, 0.05) 0.0933 0.8372 −102.38 −112 9.62
(−100, 0.75; −200, 0.25) 0.2601 0.6183 −113.85 −121 7.15

(−100, 0.5; −200, 0.5) 0.4320 0.4320 −129.60 −142 12.4
(−100, 0.25; −200, 0.75) 0.6183 0.2601 −149.67 −158 8.33
(−100, 0.05; −200, 0.95) 0.8372 0.0933 −176.77 −179 2.23

Exhibiting excellent alignment between EDRM and CPT with a near-perfect R2 result of 0.9971
(See Appendix C.3), not to mention the tight agreement between its predicted preference reversal and
inflection points as shown from prior research, EDRM applied to CPT soundly affirms Hypothesis 1,
along with Kahneman and Tversky’s groundbreaking work. EDRM serves as the baseline relationship
between objective probability and one’s perception of the likelihood of an outcome (subjective
probability). The results shown in Table A3 indicate that the type of gamble (gain or loss) only has a
secondary effect, affirming the assumption that gains and losses can be considered together within
this research.

5.5. The Framing of Decisions and the Psychology of Choice (Tversky and Kahneman)

Beyond their works of PT and CPT, Tversky and Kahneman produced a volume of research
on related topics that provide additional sources for EDRM validation. In their paper, The Framing
of Decisions and the Psychology of Choice, they explored a wide range of problem types that involved
gains, losses, and the mixture of the two [62]. Three of the problems posed (8, 9, and 10) are without
probabilities presented and are akin to those offered by Richard Thaler in Mental Accounting and
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Consumer Choice. They will not be included here but will be considered in future studies applying
EDRM to Thaler’s works [72].

Due to the paucity of problems in this group and the 100% matching, statistical analysis was
not conducted; however, the results were considered in the analysis of EDRM evaluation model
performance. The results shown in Table 4 were produced using uncorrected EDRM with the default
power utility exponent of α = 0.88. These results support Hypothesis 1.

Table 4. EDRM compared with results of Framing of Decisions and the Psychology of Choice. T j is the
prospect of the choice. Calc % and Actual % provide comparison of model results to those reported by
Tversky and Kahneman. Note that problem 4 makes use of the dominance effect. Underlines indicate
the greater values.

α=0.88, β=1

Problem (Value, Probability) EDRM Calc % Actual % Diff Match

Choice A Choice B TA TB A B A B ∆% Y/N

1 (200) (600, 1/3) 106 89 75 25 72 28 −3 Yes

2 (−400) (0, 1/3; −600,
2/3) −195 −154 18 82 22 78 4 Yes

3i (240) (1000, 0.25) 124 114 71 29 84 16 13 Yes
3ii (−750) (−1000, 0.75) −339 −270 16 84 13 87 −3 Yes

4 (240, 0.25; −760, 0.75) (250, 0.25;
−750, 0.75) −180 −176 0 100 2 0 100 0 Yes

5 (30) (45,.8) 20 19 59 41 78 22 19 Yes
6 1 (30) (45,.8) 20 19 59 41 74 26 15 Yes
7 (30,.25) (45,.2) 5.2 6.4 41 59 42 58 1 Yes

Notes: 1. Problem 6 is the second stage of a two-stage version of problem 5 where there is only a 25% chance of
proceeding past the first stage; however, as stated by Kahneman and Tversky in problem 10 of Prospect Theory,
people tend to disregard the first stage [14]. Therefore, the first stage is not applied in this model; 2. Dominance is
present, so the evaluation model returns 100% for the choice with the greater prospect.

5.6. Rational Choice and the Framing of Decisions (Tversky and Kahneman)

While the paper, Rational Choice and the Framing of Decisions, includes problems that are identical
to those in other papers, such as Framing of Decision and the Psychology of Choice, two of the problems
presented (7 and 8) are of particular interest to this research because they contain mixes of gains
and losses, more than three states, and dominance [63]. Additionally, both problems have the same
expected values for their respective choices which would otherwise incorrectly predict Choice B for
both problems. As shown in Table 5, EDRM accurately predicts the results of both, noting that the
percentage result in problem 7 applies the dominance special case. Normatively, problems 7 and 8
should be equivalent; however, subjects appear to intuitively evaluate differences in certainty consistent
with CPT as predicted by EDRM. This result supports Hypothesis 1.

5.7. Gain-Loss Separability (Wu and Markle)

George Wu and Alex Markle focused their research on the separability of gain and losses of
mixed gambles, which provides data that can be used to validate the EDRM’s ability to model choices
consisting of mixed gains and losses. Their study was made up of six different surveys of 59 to 81
participants, depending upon the test. Surveys 1, 2, and 3 were conducted using prepared booklets
for which subjects were paid for completing, while surveys 4, 5, and 6 were performed by subjects
using a computer with a randomized order of gambles in a format designed to replicate that of the
booklets [67]. This variation in test method may have produced differing results, as observed when
compared with EDRM predictions. Due to the generated mix of positive and negative prospects, this
study also serves as a validation test for the evaluation model itself. Figure 14, graphically compares
actual results with the EDRM prediction by survey number, showing reasonable alignment.
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Table 5. EDRM compared with results of select problems from Tversky and Kahneman’s Rational
Choice and the Framing of Decisions having more than three states and mixtures of gains and losses. T j is
the prospect of the choice. Calc % and Actual % provide comparison of model results to those reported.
Similar results were achieved with a wide range of power utility function exponents. Underlines
indicate the greater values.

α=0.88, β=1

Problem (Value, Probability) EDRM Calc % Actual % Diff Match

Choice A Choice B TA TB A B A B ∆% Y/N

7
(0, 0.9; 45, 0.06; 30,

0.01;−15, 0.01;
−15, 0.02)

(0, 0.9; 45, 0.06;
45, 0.01;−10,

0.01,
−15, 0.02)

2.71 3.14 0 100 1 0 100 0 Yes

8
(0, 0.9; 45, 0.06, 30,

0.01;
−15, 0.03)

(0, 0.9; 45, 0.07;
−10, 0.01,−

15, 0.02)
2.95 2.40 52 48 58 42 6 Yes

Note: 1. Dominance is present, so the evaluation model returns 100% for the choice with the greater prospect.
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Figure 14. Wu and Markle Gain/Loss versus EDRM. This study was chosen because it provides a 
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and calculated percentages (H) first by survey number and then by problem number. Note that all 
the non-matching binary results occur in surveys 1, 2, and 3, which were conducted differently in the 
original study. 

EDRM predicted results that agree with 82.4% of the binary results. Assuming EDRM is 
accurate, the comparative statistical analysis shows that all of the non-conformities were contained 
within the first three booklet-based surveys, especially survey 2 with three negative results, which 
appears significant given the comparatively lower value of 𝑅ଶ (0.69 for correct binary results, 0.35 
for all results including incorrect). The tests were designed to increase subject response to the “high” 
choice (H) with survey number, which was by design of the test. EDRM likewise shows an increasing 
trend with survey number but with a lesser slope. Despite these concerns and based upon the 
statistical results in Table 6, and notwithstanding variability in the subject data, EDRM is shown to 

Figure 14. Wu and Markle Gain/Loss versus EDRM. This study was chosen because it provides a
challenging test of EDRM’s ability to handle mixtures of gains and losses. The plot shows the actual
and calculated percentages (H) first by survey number and then by problem number. Note that all
the non-matching binary results occur in surveys 1, 2, and 3, which were conducted differently in the
original study.

EDRM predicted results that agree with 82.4% of the binary results. Assuming EDRM is accurate,
the comparative statistical analysis shows that all of the non-conformities were contained within
the first three booklet-based surveys, especially survey 2 with three negative results, which appears
significant given the comparatively lower value of R2 (0.69 for correct binary results, 0.35 for all results
including incorrect). The tests were designed to increase subject response to the “high” choice (H)
with survey number, which was by design of the test. EDRM likewise shows an increasing trend with
survey number but with a lesser slope. Despite these concerns and based upon the statistical results
in Table 6, and notwithstanding variability in the subject data, EDRM is shown to generally predict
results of mixed gambles with a Spearman rank correlation coefficient of 0.695 (See Appendix C.4),
which supports Hypothesis 1.
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Table 6. EDRM Performance with Wu and Markle Gain–Loss Separability Study (mixed gambles). T j is the prospect of the choice, vi j is the state value, pi j is the state
relative certainty, and τi j is the state proximity. Note that in this analysis, 6 of 34 problems have non-matching binary results, which are italicized. Underlines indicate
the greater values.

Choice H Choice L Proximity Prospect Results (%)
Calc Actual Eval

v1,H p1,H v2,H p2,H v1,L p1,L v2,L p2,L τ1,H τ2,H τ1,L τ2,L TH TL H L H L ∆% Y/N

1 150 0.3 −25 0.7 75 0.8 −60 0.2 0.30 0.58 0.66 0.22 14 21 38 62 22 78 −16 Y
2 1800 0.05 −200 0.95 600 0.3 −250 0.7 0.09 0.84 0.30 0.58 −20 8 37 63 21 79 −16 Y
3 1000 0.25 −500 0.75 600 0.5 −700 0.5 0.26 0.62 0.43 0.43 −33 −17 39 61 28 72 −11 Y
4 200 0.3 −25 0.7 75 0.8 −100 0.2 0.30 0.58 0.66 0.22 21 17 59 41 33 67 −26 N
5 1200 0.25 −500 0.75 600 0.5 −800 0.5 0.26 0.62 0.43 0.43 −13 −35 62 38 43 57 −19 N
6 750 0.4 −1000 0.6 500 0.6 −1500 0.4 0.36 0.50 0.50 0.36 −96 −108 60 40 51 49 −9 Y
7 4200 0.5 −3000 0.5 3000 0.75 −6000 0.25 0.43 0.43 0.62 0.26 171 160 59 41 52 48 −7 Y
8 4500 0.5 −1500 0.5 3000 0.75 −3000 0.25 0.43 0.43 0.62 0.26 439 411 62 38 48 52 −14 N
9 4500 0.5 −3000 0.5 3000 0.75 −6000 0.25 0.43 0.43 0.62 0.26 213 160 63 37 58 42 −5 Y
10 1000 0.3 −200 0.7 400 0.7 −500 0.3 0.30 0.58 0.58 0.30 68 43 63 37 51 49 −12 Y
11 4800 0.5 −1500 0.5 3000 0.75 −3000 0.25 0.43 0.43 0.62 0.26 480 411 65 35 54 46 −10 Y
12 3000 0.01 −490 0.99 2000 0.02 −500 0.98 0.04 0.93 0.05 0.90 −175 −170 42 58 59 41 17 N
13 2200 0.4 −600 0.6 850 0.75 −1700 0.25 0.36 0.50 0.62 0.26 178 53 67 33 52 48 −15 Y
14 2200 0.2 −1000 0.8 1700 0.25 −1100 0.75 0.22 0.66 0.26 0.62 −94 −112 61 39 58 42 −4 Y
15 1500 0.25 −500 0.75 600 0.5 −900 0.5 0.26 0.62 0.43 0.43 16 −52 65 35 51 49 −14 Y
16 5000 0.5 −3000 0.5 3000 0.75 −6000 0.25 0.43 0.43 0.62 0.26 281 160 65 35 65 35 0 Y
17 1500 0.4 −1000 0.6 600 0.8 −3500 0.2 0.36 0.50 0.66 0.22 8 −110 66 34 59 41 −7 Y
18 2025 0.5 −875 0.5 1800 0.6 −1000 0.4 0.43 0.43 0.50 0.36 183 209 37 63 72 28 35 N
19 600 0.25 −100 0.75 125 0.75 −500 0.25 0.26 0.62 0.62 0.26 37 −18 66 34 58 43 −8 Y
20 5000 0.1 −900 0.9 1400 0.3 −1700 0.7 0.14 0.77 0.30 0.58 −48 −229 67 33 40 60 −27 N
21 700 0.25 −100 0.75 125 0.75 −600 0.25 0.26 0.62 0.62 0.26 47 −29 67 33 71 29 4 Y
22 700 0.5 −150 0.5 350 0.75 −400 0.25 0.43 0.43 0.62 0.26 102 56 66 34 63 37 −3 Y
23 1200 0.3 −200 0.7 400 0.7 −800 0.3 0.30 0.58 0.58 0.30 90 7 67 33 70 30 3 Y
24 5000 0.5 −2500 0.5 2500 0.75 −6000 0.25 0.43 0.43 0.62 0.26 355 55 68 32 79 21 11 Y
25 800 0.4 −1000 0.6 500 0.6 −1600 0.4 0.36 0.50 0.50 0.36 −89 −121 64 36 58 43 −6 Y
26 5000 0.5 −3000 0.5 2500 0.75 −6500 0.25 0.43 0.43 0.62 0.26 281 15 67 33 71 29 4 Y
27 700 0.25 −100 0.75 100 0.75 −800 0.25 0.26 0.62 0.62 0.26 47 −58 68 32 73 28 5 Y
28 1500 0.3 −200 0.7 400 0.7 −1000 0.3 0.30 0.58 0.58 0.30 123 −16 68 32 75 25 7 Y
29 1600 0.25 −500 0.75 600 0.5 −1100 0.5 0.26 0.62 0.43 0.43 25 −85 67 33 73 28 6 Y
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Table 6. Cont.

Choice H Choice L Proximity Prospect Results (%)
Calc Actual Eval

v1,H p1,H v2,H p2,H v1,L p1,L v2,L p2,L τ1,H τ2,H τ1,L τ2,L TH TL H L H L ∆% Y/N

30 2000 0.4 −800 0.6 600 0.8 −3500 0.2 0.36 0.50 0.66 0.22 112 −110 68 32 65 35 −3 Y
31 2000 0.25 −400 0.75 600 0.5 −1100 0.5 0.26 0.62 0.43 0.43 88 −85 68 32 80 20 12 Y
32 1500 0.4 −700 0.6 300 0.8 −3500 0.2 0.36 0.50 0.66 0.22 67 −194 69 31 78 23 9 Y
33 900 0.4 −1000 0.6 500 0.6 −1800 0.4 0.36 0.50 0.50 0.36 −75 −147 66 34 70 30 4 Y
34 1000 0.4 −1000 0.6 500 0.6 −2000 0.4 0.36 0.50 0.50 0.36 −61 −173 67 33 78 23 10 Y
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In addition to the 34 mixed gamble problems analyzed for EDRM validation, the study included
another 68 single non-zero-state choices of gains or losses, which were decompositions of the mixed
problems. To maximize the number of correct binary results for the full set of 102 problems, β was
increased from 1 to 1.26, assuming α = 0.88, which resulted in 78.4% (80/102) matches. Wu and Markle
conclude that α = 0.5, which results in EDRM β = 0.5 to maximize results of the 34 mixed problems of
interest with essentially no difference in the comparative result. This research agrees with Wu and
Markle’s conclusion that mixed gambles cannot be simply deconstructed into separate gambles.

6. Summary of Analyses

EDRM has been shown to effectively predict results of the studies considered using a standard
value of α = 0.88 and the neutral value of β = 1 and assuming no loss aversion (i.e., λ = 1). This section
will show that these values naturally maximize valid binary results through comparison of plots of the
results obtained by varying these factors over nominal ranges for the prior studies considered in this
research. Specifically, α is varied from 0 to 1 and β is varied from 0 to 2, holding λ constant at 1; λ is
then varied from 1 to 3, holding β constant at 1.

Two types of plots are discussed, the first is a subset of the data included in the second. Figure 15
illustrates results for a sample Wu and Markle problem (number 25) as the difference between the
prospect of the two choices (TA − TB), which clearly shows a linear preference reversal relationship
between the factors. The standard values of α and β are well within the range for selecting Choice A,
which is consistent with reported results.
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Figure 15. (Sample) Wu and Markle Problem 25 (Actual Choice: A). This contour plot illustrates
predicted subject choice for varying values of exponents α and β. For the standard values of
α = 0.88, β = 1, and λ = 1, choice A will be preferred. Plots such as this were generated for all the
choices considered in this research for evaluation as a system.

System-Level Analysis of Choices (Sensitivity)

Independent of the subject percentages and PEM results, by layering only the binary results
of each problem analyzed in this paper upon one other, the effect of varying α, β, and λ, using the
relationship in Equation (14), can be considered at a system level, where results from multiple studies
are integrated. Figures 16 and 17 demonstrate the results of combining the 63 previously discussed
problems from Prospect Theory, Allais Paradox, Framing of Decisions and the Psychology of Choice,
and Wu and Markle’s Gain-Loss Separability (mixed). The standard values are shown using dashed
lines and clearly fall within the white zone for the 57 problems correctly predicted by EDRM (90.5%).
The remaining six negative binary results were discussed in Section 5.7.
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predict the binary result for a maximum of 57 of 63 choices analyzed. This shows that loss aversion is 
present for negative state values, but validates its consideration as a secondary effect, since the 
standard values of 𝛼 = 0.88 and 𝛽 = 1 are valid assuming loss aversion is not present (i.e., 𝜆 = 1). 
Plotting of 𝛽-vs-𝜆 has nearly identical results. 

This observation serves four purposes. The first is that it validates the value of 𝛼 determined 
from prior studies as a standard for subject responses in selecting between choices, along with the 
neutral value of 𝛽 = 1; the plot is optimized at 𝛼 = 0.88 and 𝛽 = 1.07. Secondly, this result shows 

Figure 16. EDRM Multiple Study α-vs-β Sensitivity Analysis (λ = 1). This plot represents a compilation
of all 63 choices evaluated in this research for which EDRM correctly predicted the binary result for 57
(90.5%). The legend shows the z-axis representing the percentage of the problems with a correct binary
result as α and β are varied, up to a maximum of 57, which correlates to 100% on the plot. The results
clearly demonstrate that the standard values of α = 0.88 and β = 1 are valid, affirming the original
work by Kahneman and Tversky and EDRM.
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Figure 17. EDRM Multiple Study α-vs-λ Sensitivity Analysis (β = 1). Formatted similarly to Figure 16,
this plot shows that as λ (loss aversion factor) increases, slightly wider ranges of αwill correctly predict
the binary result for a maximum of 57 of 63 choices analyzed. This shows that loss aversion is present
for negative state values, but validates its consideration as a secondary effect, since the standard values
of α = 0.88 and β = 1 are valid assuming loss aversion is not present (i.e., λ = 1). Plotting of β-vs-λ has
nearly identical results.



Systems 2020, 8, 46 29 of 36

This observation serves four purposes. The first is that it validates the value of α determined
from prior studies as a standard for subject responses in selecting between choices, along with the
neutral value of β = 1; the plot is optimized at α = 0.88 and β = 1.07. Secondly, this result shows
that there is a mostly linear relationship between α and β (Figure 17). Third, this analysis further
validates EDRM’s universality and consistency when applied to differing sources and researchers,
which supports Hypothesis 1. Lastly, the assumption that loss aversion is a secondary effect is validated,
although some loss aversion is evident.

7. Discussion

The broad goal of this research is to provide a method for addressing the mismatch between
standard expected utility risk analysis tools and decision makers, ultimately to enable quantization of
risk in fungible terms. In the process of answering this question, the present research has developed the
predictive EDRM decision model developed from utility theory, statistical mechanics, and information
theory that is highly consistent with myriad studies. Although derived independently, EDRM bears
resemblance to several prior descriptive positive models from Kahneman and Tversky, Luce et al.,
Gonzalez and Wu, Prelec, and Quiggin, which lends significant credence to the validity of approach
and the result. This research also reinforces validation of the various studies used in the analyses,
especially that of CPT.

This research demonstrates that entropy divergence from certainty can be used to develop a
positive decision model from basic theory that accurately predicts prior study results and provides
a translation between positive and normative decision theory domains by relating subjective and
objective probabilities, respectively. Tversky and Kahneman introduced this technique of translation
when they stated, “In expected utility theory the utility of an uncertain outcome is weighted by its
probability; in prospect theory the value of an uncertain outcome is multiplied by a decision weight
w(p),” [62]. Since the decision weight and proximity are synonymous, Equation (A4) provides a
translation between the two domains.

The first hypothesis is proven through the validation demonstrated in Section 5 and, in the process,
it was demonstrated that gains and losses can be accurately considered together without correction;
i.e., the assumption that λ = 1 is valid. This conclusion establishes the basis for expressing risks with
measurable objective probabilities in terms useable by decision makers. It also permits translation
of subjective prospects based upon perception of an outcome into standard objective utility risk
models. Additionally, the assumption that gains and losses can generally be considered contiguously
is validated.

The second hypothesis is also proven. As the prior studies used in this analysis are understood to
accurately represent subject behavior, which have been shown to align with the EDRM prospect and is
by definition based upon subjective probability, it follows that people do understand probabilities;
however, as subjective probability. There is also some evidence that as choice complexity increases
(greater number of states and mixtures of gain and loss states within a choice), decisions more closely
align with uncorrected EDRM, which is consistent with intuitive system 1 behavior.

With the PEM validated and demonstrating consistent performance within this research, there is
clearly potential application to other related studies to permit comparison of decision model outputs
and subject responses. Since PEM quantifies relative choice difficulty as the difference between
percentages, from an economics perspective it may be useful for engineering alternatives that are easier
for subjects to choose between (i.e., make it easier to select one product over another). Additionally,
there is an opportunity to conduct further research to understand how this relates as a function of
variance in subject responses, i.e., is there more variance in difficult decisions?

With the positive results of the two hypotheses proven, the initial step towards quantizing
programmatic risk is addressed, that is considering the mismatch between how decisions should be
and are made. Future research to further evaluate the EDRM model in greater depth is requisite,
especially the complex interactions of an increased number of states and mixtures of gains and losses
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within a choice, which are evident in many complex economic scenarios. Future research in this area
will also consider application of continuous probability distributions and the use of utility functions
other than the exponential power utility (i.e., logarithmic expected utility) to understand perception
of risk.
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Appendix A. Derivation of Proximity from Entropy

The EDRM is derived by calculating the Kullback–Leibler entropy divergence of the state
probabilities from certainty, where P is a continuous distribution as a linear function of τ and certainty
is a value of 1 for all values of τ, which is also an integration of information theory entropy for a single
state, shown in Equation (7) [11,35,73]. Like micro probabilities in statistical mechanics, one should
note that proximity is a subjective probability as is not directly measurable. Derivation is as follows:

f (p) = DKL(P||Certainty) = DKL(P||1) =
∫ 1

0
τ log2

(
τ
1

)
dτ , (A1)

so
DKL =

c1

ln 16

(
τ2 ln τ2

− τ2
)
+ c2 . (A2)

Given constraints DKL(0) = 1 and DKL(1) = 0, then c1 = ln 16 and c2 = 1, so Equation (A2)
simplifies to

DKL = τ2 ln τ2
− τ2 + 1 . (A3)
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Figure A1. Divergence, or relative entropy, is the distance between certainty and uncertainty for a
given subjective probability. The arrow shows how the divergence curve is flipped when converted to
Shannon’s redundancy, which is referred to herein as relative certainty and is an objective probability.
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The relationship between DKL and proximity is illustrated in Figure A1, along with the Shannon
entropy (base 2) for a single state which has a maximum at 1/e. Kullback–Leibler entropy divergence is
also known as relative entropy, which can be used to express relative certainty, p(τ), in terms of Shannon
redundancy, which is one minus relative entropy, as shown in Equation (A4) and Figure A2. Figure 7
shows the inverted relationship for determining proximity as a function of relative certainty, which is
more useful since subjects are usually provided relative certainty (objective probability) to evaluate a
choice, which is expressed as

p(τ) = 1−DKL = τ2
− τ2 ln τ2 = τ2 ln

( e
τ2

)
. (A4)

Additionally, through the course of this research an alternate equation based upon Shannon’s
redundancy and entropy of a single state was derived which, with the right factors, closely approximates
the ideal Equation (A4) for probabilities not near the extremes of 0 or 1. Because equality (A4) is not
invertible, the following relationship may be more convenient mathematically:

Ti j � vi jpa
i j

1−
Hb

i j

cHmax

 , (A5)

where a = 0.7276587, b = 0.401077, c = 2.664828, and Hmax = 1.0.

Appendix B. Very Small Probabilities

The relationship for small probabilities is derived by introducing the factor β to the proximity
relationship expressed in Equation (A4) and assuming p

(
τβ

)
= τ2/β

− τ2/βln τ2/β, where the log ratio is

log p
(
τβ

)
log τ

. (A6)
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Substituting p
(
τβ

)
and taking the limit as τ→ 0 ,

lim
τ→0

log
(
τ2/β
− τ2/β ln τ2/β

)
log(τ)

= 2/β . (A7)

Therefore, the exponential factor for very small probabilities converges to

p
(
τβ

)
= τ2/β . (A8)

For uncorrected EDRM, β = 1 by definition, so a profoundly simple relationship between objective
and subjective probabilities results for very small probabilities, which is consistent with Born rule of
quantum mechanics:

τ =
√

p . (A9)

β’s broader application as a factor in Equation (A4) is considered in Section 4.6.5 and in future
research after validation of the ideal model in this report.

Appendix C. Statistical Analyses

Appendix C.1. Percentage Evaluation Model

Table A1. Statistical analysis of EDRM Percentage Evaluation Model using eight data sets from
Birnbaum, Birnbaum and Bahra, Kahneman and Tversky, Tversky and Kahneman, Wu and Gonzalez,
Wu and Markle, and Prelec with matching binary results and optimized values of α and β to
validate performance.

Regression analysis: Coefficient of determination ( R2
)

Actual percentages compared with calculated for matching binary results only 0.8026

Spearman rank correlation coefficient (Rho) 0.8899

ANOVA (∆% actual vs. calculated) Df Sum Sq Mean Sq F-Value Prob(>F) Result

Study source 7 517.8 73.977 0.8601 0.5401 Not Significant
Type of choice (gain, loss, mix) 2 96.0 48.005 0.8828 0.5737 Not Significant
Interaction between source and type 5 379.7 75.932 0.8828 0.4947 Not Significant
Residuals 128 11,009.5 86.012

Normality Assumption

Shapiro–Wilk W = 0.99522 p-value = 0.9218 Normal

Conclusions
1. Cannot reject and null hypothesis, which means that the EDRM evaluation model is likely effective at expressing
relative differences in prospect as percentages. Criteria 4 and 5 are met.
2. T-statistic test confirms no survey source is significant.

Appendix C.2. Prospect Theory

Table A2. Statistical analysis of EDRM performance with Prospect Theory showing 100% binary
agreement and excellent alignment between reported percentages and those calculated using the PEM.

Binary matching (yes/no) (percentage) 100%

Regression analysis: Coefficient of determination (R2)

Actual percentages compared with calculated (all match) 0.8581

Spearman rank correlation coefficient (Rho) 0.6966
ANOVA (∆% actual vs. calculated) Df Sum Sq Mean Sq F-Value Prob(>F) Result
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Table A2. Cont.

Type of gamble (gain or loss) 1 58.98 59.983 0.4648 0.5051 Not Significant
# of Non-zero States (1 or 2) 1 36.66 36.658 0.2889 0.5983 Not Significant
Residuals 15 2030.40 126.900

Normality Assumption

Shapiro–Wilk W = 0.94119 p-value = 0.2771 Normal

Conclusions
1. Cannot reject any of the null hypotheses, which means that EDRM reasonably predicts results of Prospect Theory.

Appendix C.3. Cumulative Prospect Theory

Table A3. Statistical analysis of EDRM Performance with Cumulative Prospect Theory showing nearly
perfect alignment between a priori EDRM and data reported by Tversky and Kahneman. These results
suggest that there is some difference between gains and losses, but as a second-order effect. The number
of states (1 or 2) has no effect.

Regression analysis: Coefficient of determination (R2)

Actual values (not percentages) compared with calculated values 0.9971
Actual values (not percentages) compared with calculated values (Positive only) 0.9885
Actual values (not percentages) compared with calculated values (Negative only) 0.9980

Spearman rank correlation coefficient (Rho) 0.9982

ANOVA (∆CE actual vs. calculated) Df Sum Sq Mean Sq F-Value Prob(>F) Result
Type of gamble (gain or loss) 1 172.62 172.62 3.9040 0.05339 Marginal
# Non-zero states (1 or 2) 1 48.40 48.40 1.0946 0.30020 Not significant
Residuals 53 2343.49 44.217

Normality Assumption

Shapiro–Wilk W = 0.97213 p-value = 0.2196 Normal

Conclusions
1. The coefficient of determination values for the comparison of actual and calculated values indicates near-perfect
alignment and affirms Hypothesis 1. The ANOVA results for type of gamble do not reject the null hypothesis of no
significant effect; however, the probability is very close to the 5% significance value indicating there is some
difference between gains and losses, but that they can be considered as a secondary effect in this research given there
is nearly no difference in the R2 for positive (0.9885) and negative (0.9980) problems. Using a value of β = 0.947
rather than 1 increases the type of gamble Prob(>F) to nearly 0.35 from 0.053.

Appendix C.4. Wu and Markle Gain-Loss Separability

Table A4. Statistical analysis of EDRM Performance on Wu and Markle Gain-Loss Separability Study.
Because there were non-matching binary results, binomial and nonparametric tests are shown to
confirm general alignment between the EDRM and the reported results.

Binary matching (yes/no) (percentage) 82.3%

Binomal test (Probability > 50%) # Y:28, # Trials: 34 p-value 1.95 × 10−4

Nonparametric analysis using Wilcoxon test V = 206 p-value 0.1207 Agreement likely

Spearman rank correlation coefficient (Rho) 0.6946

ANOVA(∆% actual vs. calc, matching only) Df Sum Sq Mean Sq F-Value Prob(>F) Result
Survey (6 surveys total) 5 1602.40 320.48 8.7410 1.60 × 10−4 Significant
Prospect signs (both pos, both neg, mix) 2 66.56 33.28 0.9077 0.4194 Not significant
Residuals 20 733.28 36.66

Normality Assumption

Shapiro–Wilk (All-including non-matching) W = 0.81802 p-value = 5.832 × 10−5 Not normal
Shapiro–Wilk (matching binary result only) W = 0.96881 p-value = 0.5492 Normal
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Table A4. Cont.

Conclusions
1. Wilcoxon null hypothesis cannot be rejected, so bias between calculated and actual values is unlikely. Additionally, this result
further strengthens the PEM validation.
2. The sign of the resulting choice prospects has no significant effect.
3. The survey number is significant. All of the non-matching problems come from the surveys 1 through 3, which were conducted
differently than surveys 4, 5, and 6; Survey 1 has a significantly higher difference mean than the other surveys.
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