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Abstract: We discuss mathematical and physical arguments contrasting continuous and discrete, lim-
itless discretization as arbitrary granularity. In this regard, we focus on Incomputable (lacking an
algorithm that computes in finite time) Real Numbers (IRNs). We consider how, for measurements, the
usual approach to dealing with IRNs is to approximate to avoid the need for more detailed, unrealistic
surveys. In this regard, we contrast effective computation and emergent computation. Furthermore,
we consider the alternative option of taking into account the properties of the decimal part of IRNs,
such as the occurrence, distribution, combinations, quasi-periodicities, and other contextual proper-
ties, e.g., topological. For instance, in correspondence with chaotic behaviors, quasi-periodic solutions,
quasi-systems, uniqueness, and singularities, non-computability represents and corresponds to theo-
retically incomplete properties of the processes of complexity, such as emergence and quantum-like
properties. We elaborate upon cases of equivalences and symmetries, characterizing complexity and
infiniteness as corresponding to the usage of multiple non-equivalent models that are constructively and
theoretically incomplete due to the non-exhaustive nature of the multiplicity of complexity. Finally, we
detail alternative computational approaches, such as hypercomputation, natural computing, quantum
computing, and analog and hybrid computing. The reality of IRNs is considered to represent the
theoretical incompleteness of complex phenomena taking place through collapse from equivalences and
symmetries. A world of precise finite values, even if approximated, is assumed to have dynamics that
are zippable in analytical formulae and to be computable and symbolically representable in the way it
functions. A world of arbitrary precise infinite values with dynamics that are non-zippable in analytical
formulae, non-computable, and, for instance, sub-symbolically representable, is assumed to be almost
compatible with the coherence of emergence. The real world is assumed to be a continuous combination
of the two—functioning and emergent—where the second dominates and is the norm, and the first is
the locus of primarily epistemic extracts. Research on IRNs should focus on properties representing and
corresponding to those that are detectable in real, even if extreme, phenomena, such as emergence and
quantum phenomena.

Keywords: computability; discretization; emergence; equivalence; incompleteness; symmetry

1. Introduction

There is an intense discussion of the mathematical and philosophical literature on
contrasting continuous and discrete in terms of limitless discretization and arbitrary gran-
ularity, using formalistic and constructivist views (see, for example, [1,2]). For instance,
in [3], Chaitin writes:

“Mathematicians, however, freely fantasize with infinite-precision real numbers. Never-
theless within pure math the notion of a real number is extremely problematic.”

Here, we consider this problem as being related to the contrast in the discrete–continuum
in the infinitesimal (arbitrary small) and the infinite (arbitrary large) as well as the corre-
sponding effective computation versus continuous–emergent computation.

In the first case, we deal with effective computation and its finite, complete attributes
(computable numbers are the real numbers that can be computed by a Turing machine
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terminating in a finite amount of time and with arbitrary precision). In Scheme 1, we
present a schematic overview of number types considered in number theory.

Systems 2021, 9, 44 2 of 15 
 

 

In the first case, we deal with effective computation and its finite, complete attributes 
(computable numbers are the real numbers that can be computed by a Turing machine 
terminating in a finite amount of time and with arbitrary precision). In Scheme 1, we pre-
sent a schematic overview of number types considered in number theory. 

C  
Complex numbers with the form a + ib, where a and b are real numbers and i is the imaginary 

unit, imaginary solution to the equation x2 = −1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Scheme 1. A schematic representation considered in number theory. 

Irrational, decimal unlimited numbers are not computable in a finite amount of time. 
The continuum seems to be plagued by the problem of the theoretical and practical ad-
missibility of the infinitesimally small. Symmetrically, there is the problem of the infi-
nitely, arbitrarily large, which is more easily admissible but, nevertheless, equally incom-
putable, as it cannot be computed in a finite amount of time. Approximation and discreti-
zation have always been good approaches to dealing with the infinitely small without 
knowing the trend or the numerically, infinitely small behavior, whereas for the infinitely 
large, it is important to know the trend and growth hypotheses in order to produce ap-
proximations in temporal instances, e.g., in cosmology. It is unrealistic to effectively take 
both the infinitesimally small and large into account when they are considered effective 
measurements, whereas it is realistic when dealing with their properties and as represen-
tations of phenomena such as the theorical incompleteness of the dynamics of complex 

R = Q U I 

Real numbers (rational or irrational): They are not all algebraic. 

 

Q                               I 

Rational numbers                     The irrational numbers are all and 

only non-periodic, unlimited, 

algebraic decimal numbers, which, 

therefore, cannot be expressed in the 

form of a fraction, e.g., √2. Algebraic 

irrational numbers are numbers that 

can be obtained as solutions to 

polynomial equations with integer 

coefficients, e.g., x2 – 2 = 0. 

Transcendent numbers are irrational 

but also not algebraic numbers, i.e., 

they are not solutions to any 

polynomial equation, e.g., π and the 

Euler number e, the base of natural 

logarithms. 

Z  
All positive and negative 

integers N  
Natural positive 

Scheme 1. A schematic representation considered in number theory.

Irrational, decimal unlimited numbers are not computable in a finite amount of time.
The continuum seems to be plagued by the problem of the theoretical and practical admis-
sibility of the infinitesimally small. Symmetrically, there is the problem of the infinitely,
arbitrarily large, which is more easily admissible but, nevertheless, equally incomputable,
as it cannot be computed in a finite amount of time. Approximation and discretization
have always been good approaches to dealing with the infinitely small without knowing
the trend or the numerically, infinitely small behavior, whereas for the infinitely large, it is
important to know the trend and growth hypotheses in order to produce approximations in
temporal instances, e.g., in cosmology. It is unrealistic to effectively take both the infinites-
imally small and large into account when they are considered effective measurements,
whereas it is realistic when dealing with their properties and as representations of phe-
nomena such as the theorical incompleteness of the dynamics of complex systems and the
infiniteness of quantum phenomena. Discretization approaches and growth hypotheses,
respectively, deal with the infinitesimal (arbitrary small) and the infinite (arbitrary large).
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In the second case (emergent computation), we consider the situation where the
computation cannot be completely analytically represented and acquired properties cannot
be anticipated by considering the formal computation process. This is the case, for instance,
for artificial neural networks (ANNs) and cellular automata (CA), as elaborated in Section 2.
Examples of cases used in physics are spontaneous symmetry breaking (SSB) and the
spontaneous acquisition of roles, such as ergodic (see Section 3.1). We also mention how this
second case relates, for instance, to analytically irreducible paths of processes of emergence,
and the infiniteness of continuity is a requirement for theoretical incompleteness (closely
related to the uncertainty principles in physics, when phenomena are partially represented
by multiple non-equivalent models; see Section 3) to represent the phenomenology of
emergence, i.e., sequences of equivalences and their collapse under arbitrary weak forces,
multiple coherences, and sequences of coherence loss and recovery. Determination of the
freedom of emergence between any level of discrete precision and any specific model
requires the use of multiple theoretical, inexhaustible, nonconverging modeling stages. The
approach used is to induce acquisitions and variations of properties in combination with
the usual prescriptive ones. Emergence is intended to be a continuous [4], irregular, and
unpredictable process involving the acquisition of sequences of properties from complex
systems that are non-equivalent, non-deducible from one another, and locally coherent [5,6].
The generic process of emergence is intended to involve multiple selections, through
fluctuations and weak forces, of multiple configurations while maintaining coherence.
Selection through fluctuations and weak forces is at the root of the radical unpredictability
of classic radical emergence and is characterized by singularities, e.g., order–disorder
transitions, protein folding, and the formation and conservation of dissipative structures,
whereas quantum radical emergence relates to phenomena such as superconductivity
and superfluidity.

In the following text, when conceptually dealing with the discrete–continuum con-
trast and the corresponding effective computation–emergent computation, we refer tout
court to Incomputable (unavailability of an algorithm that computes in finite time and
with arbitrary precision) Real Numbers (IRNs) and their properties, including algebraical
irrational, trigonometric (based on Euler’s formula), transcendent numbers, some points of
convergence, and some special numbers, such as the Chaitin omega number. We mention
that an algebraic number is any number x, real or complex, that satisfies an algebraic
equation of the form anxn + an − 1xn−1 + . . . a1x + a0 = 0, where an are rational numbers
that are not all null. Algebraic irrational numbers are irrational numbers that can be ob-
tained as solutions to an algebraic equation. They include polynomials, fractions, and their
powers with integer or fraction exponents, e.g., x3/5 + 7x = 0. Transcendent numbers are
non-algebraic irrational numbers. Furthermore, Euler’s formula states that, for any real
number x, we have

eix = cos x + i sinx (1)

where e is the base of natural logarithms, i is the imaginary unit, and sine and cosine are
trigonometric functions. Euler’s formula gives rise to the so-called Euler identity, which
relates e, i, π, 1, and 0:

ei π + 1 = 0. (2)

The geometric interpretation of the formula allows complex numbers to be viewed as
points in the plane.

We consider several theoretical aspects and conclude that the theoretical incomplete-
ness of IRNs corresponds and is required to represent the theoretical incompleteness of real
physical phenomena, such as quantum phenomena and the phenomenology of emergence.
This relates to issues of betweenness interfaces, such as between macro and micro, between
open and closed, between levels of emergence, and transience between validity regimes
(see Section 3). This is the reality of IRNs. In Table 1, we contrast IRNs and non-IRNs.
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Table 1. Cases of IRNs and non-IRNs.

Computable (availability of an algorithm that computes in finite
time and with arbitrary precision) Real Numbers

Incomputable (unavailability of an algorithm that computes in
finite time and with arbitrary precision) Real Numbers (IRNs)

Generic cases include rational non-periodic, limited, algebraic
decimal numbers, whereas specific cases include perfect roots.

Include algebraic, irrational, trigonometric (based on Euler’s
formula), transcendent numbers, some points of convergence,

and some special numbers, such as the Chaitin omega number.

A world of precise finite values, even if approximated, with dynamics that are zippable
in analytical formulae and computable and symbolically representable, is supposed to
function. A world of arbitrary precise infinite values with dynamics that are non-zippable
in analytical formulae, non-computable, and, for instance, sub-symbolically representable,
is supposed to have the possibility of emerging effectively.

The real world is supposed to be a continuous combination of the two.

2. Computational Processes and Emergent Computation

In some ways, the discrete–continuous and effective–emergent computation contrasts
resemble axiomatic vs. non-axiomatic approaches in terms of what Feynman considered
“Greek” versus “Babylonian” mathematics. The “Greek” approach to mathematics is
characterized by the tendency to arrange theories on an axiomatic basis, whereas Feynman
wrote:

“What I have called the Babylonian idea is to say, ‘I happen to know this, and I happen to
know that, and maybe I know that; and I work everything out from there. Tomorrow I
may forget that this is true, but remember that something else is true, so I can reconstruct
it all again. I am never quite sure of where I am supposed to begin or where I am supposed
to end. I just remember enough all the time so that as the memory fades and some of the
pieces fall out I can put the thing back together again every day’”

([7], p. 45).

and

“In physics we need the Babylonian method, and not the Euclidian or Greek method”

(Ibid., p. 47).

From a constructivist point of view, we differentiate between symbolic computational
processes and their effective computability. In the second case, although the computation
process is formally available, it may be not Turing-computable; for instance, it may occur
in non-limited time. In such a case, we do not use results; rather, we use representations of
computational processes, such as numbers with exponents and numerical fractions. We
use and do not compute such computational representations.

Some irrational numbers that are algebraic, e.g., solutions to x2 − 2 = 0 as well as
IRNs in general, correspond to, represent, and are the implicit generative computational
processes that are only sometimes effectively computable. We process their generative
mechanisms, rather than their approximated values.

Another case relates to the non-explicitness of the computing, for example, for emer-
gent computation [8].

In the case of explicit, complete representation, the program explicitly and completely
represents and is the processing, whether it is effectively computable or not. When com-
putable, knowledge of the program is equivalent to knowledge of the result.

We consider cases where the computation cannot be analytically represented and
where acquired properties may not be anticipated by considering the computation process,
requiring instead that computation be performed in full until the results and the prop-
erties are acquired. In Table 2, we contrast effective computability, incomputability, and
emergent computation.
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Table 2. Effective computation, incomputability, and emergent computation.

Effective Computability Incomputability Emergent Computation

We differentiate between symbolic
computational processes and their

effective computability. In the last case,
the step-by-step computation process is

formally available and is
Turing-computable, i.e., it ends always

and in a finite amount of time.

We differentiate between symbolic
computational processes and their

non-effective computability. In the last
case, although the step-by-step

computation process is formally
available, it is not Turing-computable; for

instance, it does not end in a limited
amount of time. In such a case, we do not

use results. Rather, it is possible to use
approximations or computational

symbolic representations for possible
groupings and simplifications, such as

numbers with exponents and numerical
fractions, simplifications that are

impossible when using approximate
values that are indeed only calculated at

the end.

The computation cannot be analytically
completely represented, and acquired

properties cannot be anticipated by
considering the formal computation

process.The computational processing is
non-explicit, not analytically represented,

and called sub-symbolic, even if the
program being performed is an explicit,

computable algorithm, such as ANN.
Systemically, properties are acquired

during ongoing networked
computations.

An example of non-explicitness is sub-symbolic computing in ANN [9–12]. This in-
volves multi-layered weighted nets according to which the computation is distributed.
The computational processing is represented in a non-analytical way through levels and
weighted connections whose weights can change contextually during the process [13], as
schematized in Figure 1.
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A specific case is represented by recurrent neural networks (RNNs) [14], which can
use their internal states to process sequences of inputs. An example of an acquired property
is machine learning.

For this reason, the processing is considered non-explicit and not analytically repre-
sented, and it is called sub-symbolic, even if the program performing the ANN/RNN is an
explicit, computable algorithm. Systemically, this is easily understood as non-reductionism;
namely, the biological neural networks are not the thought but the context from which
it emerges.
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If we consider the ANN instant by instant as the calculation is carried out, the process
will be incomprehensible; thus, we must wait for the final result (in correspondence with
the fact that knowledge of the instantaneous behavioral configurations of a flock does not
allow us to determine the subsequently acquired properties of its global behavior).

The whole set of weights and levels used cannot be “zipped” or analytically repre-
sented as individual general formulae or functions, being, instead, a dynamic, contextual,
ongoing process of computational emergence [8].

We specify how the term “zipped” applies to the possibility of algorithmic compres-
sion according to Chaitin and Kolmogorov [15–17].

This situation also applies to properties acquired by other computational processes,
such as cellular automata (CA), which involve the acquisition of the emergence of localized
patterns that can alternatively grow and contract. An example of an acquired property is
the well-known Conway’s Game of Life.

3. Arbitrary Discretization

In the literature, the following statement can be found:

“Experimental physicists know how difficult accurate measurements are. No physical
quantity has ever been measured with more than 15 or so digits of accuracy” [3].

This also relates to the usage and modeling of the so-called “grey systems,” which are
characterized by practical incompleteness in measurements when system information about
the elements, the structure, the boundary, and the system’s behaviors is incomplete [18,19].

We consider that infinite aspects of IRNs do not represent a maniacal, unrealistic
search for completeness and precision, but only some aspects to be considered non-
computationally, and even computationally in case of deterministic chaos that is very
sensitive to the initial conditions (see Equation (3)).

Approximability relates to effective functioning in terms of its unavoidable finiteness
and context of finite granularity, whereas in their decimal parts, IRNs can correspond
to and represent the theoretical incompleteness [20–22] of intangible processes such as
indefinite interchangeability, allowing ergodicity ([23], pp. 302–305; [24], pp. 107, 165)
and dynamics of the multiplicity of emergence [25], processes of decision-making from
information and timings, Big Data [26], and quantum phenomena. Multiple systems are
established by considering the multiple roles of their interacting components and their
interchangeability, such as in in ergodic behavior. Components of populations assume
ergodic behaviors if they interact in such a way that when x% of the population is in a
particular state at any moment in time, then each component of the population spends x%
of time in that state. In real cases, we consider percentages that establish significant levels
of ergodicity. Realistically, components assume the same roles at different times as well as
assuming different roles simultaneously but with the same percentages. This is a matter of
interchangeability of components that play the same role at different times. Ergodicity is a
recurrence property of statistical systems. Equivalences and various multiple interactions
are used to establish multiple roles.

The consideration of approximations and granularity substitutions in impossible ana-
lytical representations hides characterizing properties such as the dynamics of coherences,
their loss and recovery, correlations, power laws, multiplicities, SSB-like and spontaneous
acquisition of roles, and the incompleteness of properties that are irregularly and unevenly
present [27,28], as graphically represented in Figure 2.
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Furthermore, as for any phenomenon, when considering constraints and limit values,
their formal respect is just one aspect of the behavioral properties of a system, whereas
the modalities with which the constraints are respected, e.g., assuming values that are
close to the max and min, as well as random, can provide information that would be
otherwise ignored.

The reality of IRNs lies in the representative modeling roles of some of their properties,
such as their infiniteness, uniqueness, singularities, and non-computability, which repre-
sent and correspond to theoretical incomplete properties of processes such as emergence
and quantum-like phenomena, whereas theoretical representation, partly differentiating
from the classical representation, can be applied to model very complicated transient
dynamics between phases occurring when classical and quantum aspects mix.

In the case of IRNs, their generative processes, e.g., exponential, can be symbolically
processed; for example, they can be simplified and added to one another in the same way
as imaginary numbers.

While the usual numerical strategy of using IRNs consists of simplifying them by using
their approximated values from truncated computations, determining the granularity assuming the
insignificance of lower levels, and assuming de facto a conceptual reverse reductionist approach that
is microscopically limited, the use of other approaches may relate to the consideration of properties
of decimal parts of IRNs, such as how they occur, e.g., level of randomicity; distribution, e.g.,
clusterizations; combinations of cases; quasi-periodicities, e.g., in correspondence with properties
of chaotic behaviors and attractors in the phase space and in whirlpool-like phenomena, quasi-
periodic solutions, and quasi-systems [24]; and other contextual properties, e.g., topological. Quasi-
periodicity is intended to be related, for instance, to irregular periodicity, recurrences with
a component of unpredictability, and increasing regularity over multiple periods. We focus
on their properties and usage rather than on their computation in analogy, for instance,
with imaginary numbers, e.g., the use of imaginary time in some approaches for special
relativity and quantum mechanics.
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Furthermore, the completeness of real numbers (for instance, Dedekind and Cauchy
completeness) may be intended as a source and representation of theoretical incomplete-
ness and indefiniteness, i.e., always having reachable non-equivalences, uniqueness and
singularities, and non-computability.

Furthermore, the infiniteness of IRNs corresponds and allows us to represent arbitrary
symmetries and levels of equivalence between sequences of values, with the equivalence
being broken only when arbitrary infinitesimal differences are reached. Arbitrary infinitesi-
mal differences between IRNs are considered to correspond to virtual selections between
equivalences and symmetries at any level, for example, collapsing under arbitrary weak
forces, e.g., in nuclear physics, and when there is an unlimited lower percentage of all
forces involved at a given moment or virtual one, e.g., IRNs used as data, information, and
in quantum systems with an infinite number of states.

The research on IRNs should then not be considered an abstract exercise of mathematicians
but as research in a field considered to possess properties representing and corresponding
to those detectable in real, even if extreme, phenomena, such as emergence and quantum
phenomena.

3.1. Equivalences and Symmetries

However, the collapse of equivalences may also relate to the collapse of symme-
tries. There are invariable symmetries, such as those for fractals, which are approximated
in nature.

We may consider systems that, due to their evolution or external influences, lose the
symmetry of their evolutionary numerical paths and solutions, but not of their analytical
descriptions.

A case of collapsing is represented by the phenomenon known as symmetry breaking,
which occurs when a symmetry transformation leaves the form of the evolution equations
invariant but changes the form of their solutions. Spontaneous symmetry breaking (SSB)
occurs when a physical system in a symmetric state ends up in an asymmetric state. As
an example, we may consider the theory of phase transitions (PT) using the spontaneous
symmetry breaking (SSB) mechanism in quantum field theory (QFT) [29,30].

To represent a general, dynamic symmetry condition, let us consider an ideal condition,
such as a symmetric upward dome with a trough circling the bottom—a metaphoric
“Mexican Hat.” If we place a ball at the very peak of the dome, the system is symmetric
with respect to rotation around its central axis. The ball is positioned in an unstable
equilibrium. If an even infinitesimal energetic variation that is sufficient (role of the IRNs)
to break the equilibrium occurs, the ball will roll down the gradient to some position in
the circular valley at the bottom. The ball will come to rest at some fixed point on the
perimeter. The “Mexican Hat” and the ball will retain their individual symmetry, but the
system will not.

The ball may be material and thus sensible to infinitesimal energy, or it may be
virtual, such as in the form of data values and information; however, its energetic aspects,
represented by IRNs, collapse into decisions, information, and a quantum infinite number
of states. The spontaneity of the SSB lies in the fact that after the rolling of the ball, the
system is no longer symmetric.

The rolling down represents a process of radical emergence phenomena. In the
event that one of the parameters is linked to the available energy changes, the system
distributes itself in one of the possible ground states with consequent energy redistribution
characterizing its macroscopic properties.

We mention how such spontaneous configurational changes are also related to cases
where, in collective systems, e.g., interacting agents, the dynamics cause elements to
simultaneously belong to multiple specific clusters (considering, for instance, classes of
distances or patterns in multiple collective systems) having, for instance, unwanted ergodic
roles ([23], pp. 302–305) represented by IRNs (see Figure 2) and Table 3.
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Table 3. Equivalence and coherence.

The role of equivalence in maintaining coherence in collective systems

Within collective systems of interacting elements, equivalence is intended to be a reason for their unpredictable microscopic
behavior, incomplete representations, and regardless of the source stability, the robustness of the collective behavior, which can be

represented in different though equivalent ways.

Equivalence relates to the interchangeability of roles assumed by interacting elements. There are countless (non-equivalent) ways of
maintaining the same equivalent level of coherence even after going through temporary local incoherencies that are recovered in a

number of ways.

For instance, there are several variable correlations among temporary, local, and different non-equivalently correlated communities,
e.g., groups of people that make up the nightlife, rather than only establishing the same long-range correlation, e.g., flocks.

The breaking of equivalences corresponds to the breaking of symmetries as particular
equivalences. The infinitesimal digits of IRNs may lead to bifurcations, i.e., SSB, and the
differentiation between crucial initial conditions in chaotic behaviors, triggering completely
different behaviors. We remind the reader of the so-called Lorenz equations that model
the occurrence of deterministic chaos, i.e., apparently random motion stemming from
deterministic equations. The very sensitive dependence on initial conditions is the essence
of deterministic chaos. In such a case, at any point in time, the difference between two
behaviors with two different initial conditions increases exponentially over time, however
small their difference is. The Lorenz equations are

ẋ = σ (y − x)ẏ = rx – y – xzż = xy – bz (3)

where r, b, and σ are control parameters.
Furthermore, in physics, quantum systems with an infinite number of states are differ-

ent non-unitarily equivalent representations of the same possible system, and accordingly,
PT can structurally modify the system by means of the SSB. Phenomena on different scales
are considered SSB processes, such as Cooper pairs (of electrons bound together at low tem-
peratures in superconductivity phenomena), the Higgs mechanism, and multiple vacuum
states in elementary particle physics phonons in a crystal.

3.2. Discretization, Multiple Modeling, and Non-Predictability

In classic systems, arbitrary discretization, i.e., the possibility of selecting any dis-
cretization that is arbitrarily small, is then a requirement and a necessary approach for
effectively and approximatively dealing with non-analytically representable phenomena,
e.g., emergence.

Furthermore, the use of partial modeling also conceptually corresponds to arbitrary
discretization. Phenomena of multiple emergence are non-analytically representable and
require simultaneous multiple representations and multiple non-equivalent models, as
considered by the DYnamic uSAge of Models (DYSAM) ([23], pp. 64–70), see Figure 3,
including the well-known Bayesian method, statistical approaches based on “continuous
exploration” of the events, the well-known uncertainty principles [31], the complementarity
principle, so-called ensemble learning using machine learning techniques [32], and the
so-called evolutionary game theory [33,34]. Non-equivalent models may be of any number;
however, because of the theoretical incompleteness of complex phenomena, they cannot
reach final convergence to complete models. This multiple, incomplete form of modeling
shares properties with IRNs, such as incomputability and indefiniteness. Examples include
chaotic and collective emergent behaviors.
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The usual approach consists of considering complex phenomena that are sufficiently
approximated with single models in limited numbers. This allows the phenomenon to
be tractable and approachable, even through approximations and simplifications, and for
details that are deemed irrelevant to be neglected. The alternative strategy for dealing with
complex systems is to have available approaches that can influence the system and submit
suitable input to be then processed by the systems; that is, it involves combining prescrip-
tions, imposing changes, and allowing the system to process configurational, balance-
proposed, induced variations. It is a question of establishing hypothetical, continuous
negotiations with the system in the context of confirmatory and try-and-try-again iterations.

Multiple modeling is an approach that was developed to propose changes to be
processed by the system and not only to impose changes. This is a typical approach used
in medicine and learning. It should be considered theoretically.

In this regard, we mention the two contrasting concepts of logically closed modeling
and logical openness introduced in the literature ([23], pp. 111–112; [24], pp. 47–51; [35])
on which DYSAM is based.

The first case is intended to occur when there is conceptual availability of a complete,
formal description of the relations between the state variables of the phenomenon of
the system and of complete, analytically describable representations of the interactions
between the phenomenon or system and its environment. Such availability allows all
possible assumable states to be deduced. It may be intended to correspond to the concept
of computability or the situation where a finite procedure is intended to exhaust the
representation of a process.

The second case relating to logical openness is intended to be based on violation of
the above points (see Table 4). Logical openness relates to the undefined, non-depleting
number of degrees of freedom in a phenomenon or system, including the environment,
which is, in principle, independent, and therefore makes the system incomplete. In addition
to phenomenological multiplicity and incompleteness, logical openness relates to the
constructivist nature of models—the inexhaustible multiplicity of the constructivist reality
corresponding to the logical openness of both the world and of understanding.
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Table 4. Logical openness as a violation of logical closedness.

A model represents a system that is logically closed when

(a) There is an almost complete formal, explicit (symbolic, not sub-symbolic) description of the relations between the state variables
of the model available.

(b) There is an almost complete and explicit, i.e., analytically describable, description of the interaction between the system and its
environment available.

(c) The knowledge of values related to the previous two points allows the deduction of all (assumed to be finite and limited
numbers) possible states and properties that the system can take together with its structural characteristics.

A system is classified as logically open when there is a violation of at least one of the three points above. Logical openness is a
specification of the theoretical incompleteness.

Furthermore, we may consider incompleteness as being related to non-predictability.
We may distinguish between at least two types of probability.
Certain probability is intended to represent computable probability, identifying signif-

icant possible extremes, e.g., maximum–minimum, of the phenomenological becoming of
the process under study. The process can take place within such extremes, which can be
computed, for instance, through the Bayes’ theorem. However, we neglect to consider the
modalities with which the extremes are respected.

Uncertain probability is intended as non-computable and refers to the non-predictability
of the processes under study, for example, contexts having, as a component, an environ-
ment with turbulence, processes of emergence, and autonomous processes that cannot be
completely, explicitly, and uniquely defined. Uncertainty relates to probabilities that are
inevitably calculated with reference to a context considered by the observer. This is a matter
of contexts that cannot be assumed to be property-invariant and devoid of influencing
properties [36]. The term “certain probability” should be intended as a simplification.

In this regard, we know that a string is algorithmically random when it is incom-
pressible [37,38]. Empirical data sets should be intended to be algorithmically random
strings of digits. With regard to non-zippability, empirical data exhibit maximal algorithmic
complexity [39,40].

It is also worth mentioning the other well-known case of fuzzy systems whose ele-
ments have membership degrees [41].

We end this section by stressing that:

• The infiniteness of IRNs corresponds to the theoretical incompleteness of several
phenomena and processes mentioned above, such as the processes of emergence and
the phenomena of continuous balance between equivalences and interchangeabilities,
e.g., ergodic, and quantum.

• The non-computability of subsets of real numbers, such as irrational algebraic and
transcendent, i.e., IRNs, corresponds to their non-zippability into complete analytical
formulae or exhaustive single models and their combinations of complexity, such
as processes of emergence, phenomena that continuously acquire, lose, and recover
multiple coherences, e.g., collective behaviors.

3.3. Computability

At this point, it is also worth mentioning suitable possible approaches that are in-
tegrative or alternative to the classic numerical simulations and deal with non-Turing
computability (see Table 5).
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Table 5. Turing computability.

Turing computability

A function is said to be Turing-computable if all the function’s values can be computed with a
Turing machine.

We may specify such generic definition.

Formally, a Turing machine is specified as a quadruple T = (Q, Σ, s, δ) where

- Q is a finite set of states qi;
- Σ is a finite set of symbols sj, e.g., an alphabet;
- s is the initial state s ⊂ Q, where Q is the set of all the possible states;
- δ is a transition function that determines the next acquired state. It occurs from computation

state to computation state in finite time and with arbitrary precision.

It is well known that various versions of the Turing machine are all computationally
equivalent [42]. It is also well known that Turing himself introduced a possible window
for different levels [43–45] of non-equivalent computability by introducing the concept of
the oracle, an abstract machine that is supposed to be able to solve decision problems of
any class of complexity as undecidable problems, e.g., the well-known halting problem.
However, although the alternative hypercomputations considered below are supposed to
be able to determine whether particular Turing machines will halt on particular inputs,
they cannot determine whether or not machines equivalent to themselves will halt.

In this regard, hypercomputers [46–48] have been introduced to perform hypercom-
putations intended to be super-Turing computations. This refers to models of computation
that are non-equivalent to Turing computability, i.e., able to solve problems that Turing
computations cannot [49–51].

Examples of hypercomputation include:

• Nondeterministic computation when, from a given input and state, the abstract
machine may jump to several different possible states;

• Probabilistic computation when considering the probability of a given initial state
given by a stochastic vector and the probability of a particular state transition [52]
([53], pp. 341–347).

• Hypercomputation of the so-called Ω Chaitin constant or the halting probability,
consisting of a real number expressing the probability that a randomly constructed
program will halt depending on the program encoding used and its length [17,53–55].
The importance of the Chaitin constant lies in the fact that various problems in number
theory are equivalent to solving the halting problem for special programs, such as
searching for counterexamples and halting if one is found. For instance, this is the case
for the so-called Goldbach conjecture, which states that every even integer number
greater than 2 can be always expressed as the sum of two primes [56].

Examples of hypercomputers include:

• Inductive Turing machines, which perform a list of defined instructions depending
on the initial states and acquire a series of successive states by applying inductive
reasoning and being dependent on environment phenomenology [57].

• Quantum computers, which are based on the possibility of being in superposed
states. Whereas a bit can only have two states, i.e., 0 or 1, a qubit state is a linear
superposition of the basis states that is described by probability amplitudes. Multiple
qubits can exhibit quantum entanglement. The Quantum Universal Turing Machine
(QUTM) takes advantage of the superposition principle and the entanglement among
qubits [58–63], raising the research issue of whether or not it is a Turing machine.

Other cases to be mentioned are as follows:

• Qualitative analysis, which involves determining and elaborating qualitative prop-
erties of a phenomenon in a way that allows the identification or exclusion of subse-
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quently acquired properties, such as convergence, that deal with numerical sequences,
analytic properties of a function without calculating it, and pattern and multiple
dynamic coherence recognition. We believe this is a very promising field of research
and one that can be used to introduce new, unimaginable approaches.

• Analog and hybrid computers use the continuously changing properties of physical
phenomena, such as electrical, hydraulic, and mechanical properties, to model the
problem being solved rather than computing it [64,65].

• Natural computing uses natural processing abstracted from natural phenomena [66,67].

A typical example of a field of application for such approaches is that of Big Data,
where, for example, the properties of infraclusters can be considered [26,68].

In summary, we can make the following conclusions:

• The infiniteness of IRNs corresponds to the necessary but unpredictable collapse of any
equivalence, reaching arbitrary points of difference at suitable levels of description,
e.g., the quantum description level;

• The incomputability of IRNs corresponds to the non-zippability of complexity into a
single analytical formula or exhaustive single model [69].

4. Conclusions

In this paper, we elaborated the reality of real numbers. In particular, we focused on
the reality of IRNs, whose reality is not denied by their incomputability, but rather, remains
in their properties, representing physical aspects. We considered the properties of their
decimal parts, such as those related to their occurrence, distribution, combinations, quasi-
periodicities, and topological properties. The focus was on their properties and uses, rather
than on their computation in analogy, for instance, with imaginary numbers. Furthermore,
the incompleteness of IRNs is related to the theoretical incompleteness of their complexity.
Moreover, the infiniteness of IRNs corresponds to any arbitrary symmetries and levels
of equivalence where arbitrary infinitesimal differences are intended to correspond to
selections, for example, due to collapsing under arbitrary weak forces, or even virtual,
such as data, information, and quantum systems with an infinite number of states. We
considered properties that do not relate to computability.

The reality of IRNs thus lies in representing the incompleteness of phenomena occur-
ring, such as those collapsing from equivalences with any arbitrary dimensions, collapsing
and occurring at any decimal digit, and those representing, for instance, infinitesimal but
crucial weak forces and fluctuations.

Whereas in physical phenomena involving matter (even with particles of infinitesimal
size), the nth decimal digit can reasonably be considered limited or in any case adequately
approximable, this is not true for physical phenomena, such as those of a quantum nature,
e.g., optical phenomena and those where the infinite number of states of quantum systems
needs to be considered; temporal and cognitive; and those dealing with theoretical incom-
pleteness and a latent order of complexity [70,71] requiring multiple types of modeling,
such as logical openness and DYSAM.

We discussed suitable possible approaches that are integrative or alternative to classic
numerical simulations and deal with non-Turing computability, such as hypercomputation,
hypercomputers, quantum computing, and qualitative analysis.

The consideration of IRNs is not reduced to approximations, but the consideration
of their properties in correspondence and validation of theoretical incompleteness is an
alternative to discrete understanding, logically closed, and is always assumable as a
particular case, whereas the reverse is not true.

The research on IRNs should be considered research in a field that is considered
to have properties representing and corresponding to those detectable in real, even if
non-classic, phenomena, such as emergence and quantum phenomena [72].

The present research work is dedicated to the memory of Eliano Pessa to celebrate his
valuable insights and expertise in the science of complexity.
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