
Journal of

Low Power Electronics
and Applications

Article

Optimized VLSI Architecture of HEVC Fractional
Pixel Interpolators with Approximate Computing

Stefania Preatto, Andrea Giannini, Luca Valente *, Guido Masera and Maurizio Martina

Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy;
stefania.preatto@studenti.polito.it (S.P.); andrea.giannini@studenti.polito.it (A.G.);
guido.masera@polito.it (G.M.); maurizio.martina@polito.it (M.M.)
* Correspondence: s257373@studenti.polito.it

Received: 15 June 2020; Accepted: 11 August 2020; Published: 17 August 2020
����������
�������

Abstract: High Efficiency Video Coding (HEVC) is the latest video standard developed by the Joint
Video Exploration Team. HEVC is able to offer better compression results than preceding standards
but it suffers from a high computational complexity. In particular, one of the most time consuming
blocks in HEVC is the fractional-sample interpolation filter, which is used in both the encoding
and the decoding processes. Integrating different state-of-the-art techniques, this paper presents
an architecture for interpolation filters, able to trade quality for energy and power efficiency by
exploiting approximate interpolation filters and by halving the amount of required memory with
respect to state-of-the-art implementations.

Keywords: VLSI architecture; approximate computing; HEVC fractional pixel interpolators

1. Introduction

Nowadays, the ubiquitous presence of cameras in daily lives requires high video compression
efficiency with respect to storage size, bitrate and energy consumption while retaining an acceptable
visual quality. The most recent video compression standard developed by the Joint Video Exploration
Team is the High Efficiency Video Coding (HEVC) standard, also known as H.265, which is able to offer
a doubled compression ratio over the preceding standard, the H.264 or the Advanced Video Coding
(AVC) standard, while retaining a comparable visual quality. While the overall functional structure of
the two standards is similar, HEVC can provide better results (higher coding efficency, lower bitrates)
than H.264/AVC by exploiting a more complex partitioning scheme with many more prediction and
transform possibilities [1–3]. These algorithmic techniques enable a significant decrease in bitrate at
the cost of an increase in computational complexity and external memory bandwidth. In this regard,
several works were proposed to cope with the strong limitations introduced by the I/O schemes and
the Memory access Bandwidth on the algorithm’s performance [4–6]. However, this work, like many
others [7–13], focuses exclusively on the optimization of the computational kernel in order to maximize
its throughput: Different works in the literature, including [14], show that a relevant portion of HEVC
complexity is due to the motion estimation. Indeed, HEVC features a two-step motion compensation
process, which first works on different search window sizes and then exploits an interpolation step
for fractional pixel search refinement. This second step relies on a separable 2D interpolation filter.
In the last years several architectures for HEVC interpolation filters have been proposed in the
literature, e.g., [7–13]. Most of the published architectures, including [7,9–12], concentrate on the
standard HEVC interpolation filters, hereinafter referred to as legacy filters. However, the work in [15]
showed that algorithmic-level approximate computing can be exploited to achieve energy efficiency in
HEVC decoding and, to the best of our knowledge, [13] is the first paper showing an architecture for
interpolation filters where energy/quality trade-offs can be exploited. In particular, in [13] multiply

J. Low Power Electron. Appl. 2020, 10, 24; doi:10.3390/jlpea10030024 www.mdpi.com/journal/jlpea

http://www.mdpi.com/journal/jlpea
http://www.mdpi.com
http://www.mdpi.com/2079-9268/10/3/24?type=check_update&version=1
http://dx.doi.org/10.3390/jlpea10030024
http://www.mdpi.com/journal/jlpea

J. Low Power Electron. Appl. 2020, 10, 24 2 of 23

units are dynamically multiplexed, thus allowing to reduce the filter order at the runtime. Even though
this solution consumes the lowest amount of energy per interpolated pixel among state of the art
solutions [8–10,12], further optimizations can be conceived to reduce the area overhead and to increase
the throughput.

2. Contribution

In this work, we stem from the architecture in [13] and we coherently integrate it, for the first time,
with other state-of-the-art techniques [10,15–17] and an alternative scheduling algorithm. The result
obtained is a new optimized interpolation filter architecture, where important optimizations are
introduced: (i) The amount of memory is drastically reduced, (ii) multipliers are substituted with
adders by extending the optimized structure presented in [10] for legacy filters to the case of lower
order filters. Moreover, we find an appropriate internal architecture for the adders that are involved in
the filtering operation, to further increase the throughput of the system, and limit drawbacks in terms
of area overhead and power dissipation. The paper is organized as follows: Section 3.1 aims to give
an overview of legacy and approximate lower order HEVC filters. Then, in Section 3.2, the used set
of interpolation filters for encoding and decoding in conjunction with the proposed architecture will
be presented. In Section 3.4 precise and approximate adders solutions are applied to the suggested
architectures. Lastly, Section 4 will present the obtained results and discuss them.

3. Materials and Methods

3.1. Interpolation Filters

The standard HEVC interpolation filters for subpixel motion estimation and compensation, show
different structures for Luma and Chroma channels [18] and feature several differences with respect
to the AVC ones, as it is more precisely presented in [19]. Namely, an eight-tap and a seven-tap
DCT-based filters are used for the HEVC fractional pixel interpolation: Pixels at half-sample position
(α = 1/2) are originated using the eight-tap filter in contrast to the six-tap one used by H.264/AVC.
Moreover, the quarter-sample pixels (α = 1/4) are evaluated using the seven-tap filter without any
average operation between two neighbouring sub-samples. This allows reducing the error due to
intermediate rounding and removing the two-stage interpolation process of the H.264/AVC algorithm.
Moreover, HEVC uses a single separable interpolation process for all fractional position pixels. Overall,
the error due to cascaded rounding operations in H.264/AVC can be reduced from 33/128 to only
1/128 in HEVC for some of the interpolated pixels [19]. The Luma filter coefficients are reported in
Table 1. Chroma interpolation (Table 2) is similar: Since the Chroma signals are smoother than the
Luma ones, four four-tap filters are used, thus there is no need to use longer filters for high frequency
Chroma components in contrast to H.264/AVC, which uses a two-tap bilinear filter.

Table 1. Luma filter coefficients.

Ntap α = 1/4 α = 1/2

Legacy −1, 4,−10, 58, 17,−5, 1 −1, 4,−11, 40, 40,−11, 4,−1
7 −1, 4,−10, 58, 17,−5, 1 −1, 4,−11, 40, 40,−11, 3
5 1,−6, 20, 54,−5 2,−9, 40, 40,−9
3 −4, 20, 48 −9, 41, 32
1 64 64

In addition, it is possible to present a computational complexity-wise optimization of the legacy
filters. It has already been shown that approximation techniques can drastically reduce the energy
consumptions [15]. The current work focuses on the same type of approximate filters proposed in [15]
for HEVC encoding, which are reported in Tables 1 and 2, respectively. Figures 1 and 2 show the

J. Low Power Electron. Appl. 2020, 10, 24 3 of 23

amplitude response of the adopted half-pel approximate filters with respect to the legacy ones used in
the HEVC standard. As it can be observed, the response of the 5-tap Luma approximate filter is slightly
different from the original 8-tap one, thus creating some artifacts. This effect is even more evident for
the 3-tap filter which may cause losses in texture details. A similar behavior can be observed for the
chrominance filter. Since the focus in [15] is on the decoder side, this current work aims to complete
the analysis on the encoder side as well.

Table 2. Chroma filter coefficients.

Ntap α = 1/8 α = 2/8 α = 3/8 α = 4/8

Legacy −2, 58, 10,−2 −4, 54, 16,−2 −6, 46, 28,−4 −4, 36, 36,−4
3 −3, 62, 5 −5, 58, 11 −7, 51, 20 −6, 42, 28
2 57, 7 50, 14 41, 23 32, 32
1 64 64 64 64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

Normalized frequency

A
m

pl
it

ud
e

HEVC 8-tap
5-tap half-pel
3-tap half-pel

Figure 1. Half-pel approximate Luma interpolation filter amplitude response comparison.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

Normalized frequency

A
m

pl
it

ud
e

HEVC 4-tap
2-tap half-pel

Figure 2. Half-pel approximate Chroma interpolation filter amplitude response comparison.

The approximate filters have been implemented into the HM 16.15 software model [18], and PSNR
analysis has been performed to clearly assess the impact of the approximate filters on the rate-distorion
(RD) performance of the HEVC system. The combined PSNR (i.e., PSNRYUV) is calculated as the
weighted sum of the PSNR per frame of its individual components (PSNRY, PSNRU, PSNRV),
as suggested in [1]. A complete analysis of the HM system is carried out by applying approximate
interpolation filters for several different configurations with the proposed architecture: In addition to
the entirely correct or approximate solution, two hybrid conditions are added (legacy encoder and
approximate decoder and vice-versa). Some significant experimental results are depicted in Figures 3
and 4, where the RD-curves obtained for the BasketballDrive test sequence with the Random Access
and Low-Delay profiles (as recommended by the Common-Test-Conditions [20]) are shown.

Figures 3 and 4 highlight that the solution with both approximate encoder and decoder is the
best one to obtain an acceptable PSNR, especially for higher bitrates. It is also possible to notice that
the solution with an approximate encoder performs better than the one with an approximate decoder,
with a reasonable PSNR for low bitrates.

J. Low Power Electron. Appl. 2020, 10, 24 4 of 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

32

34

36

38

40

42

44

Bitrate[MBits/s]

P
S
N
R

Y
U
V
[d
B
]

Correct

Approx Encoder and Decoder

Approx Encoder Luma3/Chroma2

Approx Encoder Luma5/Chroma2

Approx Decoder Luma3/Chroma2

Approx Decoder Luma5/Chroma2

Figure 3. PSNR comparison between ideal processing and different approximate-computing options
(BasketballDrive [20], 1920 × 1080, Random Access).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
28

30

32

34

36

38

40

42

44

Bitrate[MBits/s]

P
S
N
R

Y
U
V
[d
B
]

Correct

Approx Encoder and Decoder

Approx Encoder Luma3/Chroma2

Approx Encoder Luma5/Chroma2

Approx Decoder Luma3/Chroma2

Approx Decoder Luma5/Chroma2

Figure 4. PSNR comparison between ideal processing and different approximate-computing options
(BasketballDrive [20], 1920 × 1080, Low Delay).

3.2. Proposed Architecture

Based on the profiling results available in [14], it is clear that fractional-pixel interpolation used
by motion estimation and by motion compensation is one of the most CPU time expensive blocks
of HEVC (up to 43% of the time is spent in motion compensation on a ARM ISA, and up to 49%
for a ×86 ISA [14]). In this Section, a hardware architecture for the DCT-based interpolation filter
(DCT-IF) is derived by exploiting multiplier-less solutions, hardware reconfigurability and approximate
computing in order to reduce the energy consumption, while ensuring a certain energy-quality tradeoff.
Each Luma and Chroma prediction block interpolation process is performed using two separable 1D
filters for the horizontal and the vertical direction respectively (horizontal first in HEVC). According to
the HM reference software [18], there are two options to perform a 2D separable filter computation:

• Parallel Interpolation filter (Figure 5)
• Folded Interpolation filter (Figure 6)

The first one is a straightforward hardware implementation of the algorithm: It relies on two
different filtering units and an intermediate buffer (Figure 5).

Consecutive pixel rows of a prediction block can be provided to the horizontal 1D filter in
consecutive clock cycles, then the output can be temporarily stored in a buffer for the following vertical

J. Low Power Electron. Appl. 2020, 10, 24 5 of 23

filtering process. In this case, with 16-bit samples (as required by the standard), for the legacy 8-tap
filter, the buffer size is roughly

(Ntap,max − 1 + Wmax) · Hmax = 64 · (64 + 8− 1) = 71 · 64 samples = 9.09 kB (1)

where Wmax is the maximum width of the prediction block and Hmax its maximum height. This solution
allows for a very high throughput, since both the filters can work in parallel with new data after the
first prediction block has been horizontally interpolated. The key weakness of this option is the large
amount of memory required to store the intermediate partly interpolated samples.

On the other hand, the folded structure does not reduce the size of the internal buffer but is able
to save some hardware at the expense of throughput (Figure 6).

Intermediate Buffer
64x(64+N-1)x16 bit(8-bit input)

DCT-IF 1-D
(16-bit input)

DCT-IF 1-D

Figure 5. Parallel interpolation filter architecture with intermediate block buffer.

Intermediate Buffer
64x(64+N-1)x16 bit

DCT-IF 1-D
(16-bit input)

Figure 6. Folded interpolation filter architecture with intermediate block buffer.

One advantage of the parallel interpolation scheme derives from the fact that a 1D filtering
operation needs just a number of samples equal to the filter number of taps before starting the filtering
process. In addition, in the parallel scheme, there is no need to wait for one entire prediction block to
be partly sub-sampled before starting a new 1D filtering process. As these features allow reducing
the latency and the memory cost, the parallel option has been selected as the starting point for our
optimization. Figure 7 shows the scheduling of the implemented filter. Each location represents a pixel,
the ones highlighted in the upper part of the Figure refer to the input pixels provided to the first 1D
filter, the locations in the middle of the figure refer to the 1D filtered samples outputs of the first filter
and the shaded pixels in the bottom part represent the output of the two-dimensional interpolation.

Let Ntap be the number of coefficients of the DCT-IF filter: As soon as Ntap − 1 columns have
been stored in an input buffer, the first 1D filter starts computing one pixel per cycle. The second filter
waits only for the availability of Ntap − 1 partly interpolated samples, then it can start interpolating in
parallel to the first stage filter. The throughput is the same as the previous solution, considering that
when the vertical filter reaches the last column sample, it should wait for Ntap − 1 cycles, because of
the data dependencies between the two filter stages. With this scheduling, it is possible to move the
buffer to the input of the system, as shown in Figure 8.

J. Low Power Electron. Appl. 2020, 10, 24 6 of 23

Figure 7. Filter alternative scheduling example with time stamp in clock cycle count with Ntap − 1 = 3.

Input Buffer
(N-1)x64x8b (8-bit input)

DCT-IF 1-D
(16-bit input)

DCT-IF 1-D

Figure 8. Alternative scheduling filter architecture.

Thus, the proposed scheduling algorithm greatly reduces the required memory buffer to just:

(Ntap,max − 1) ·Wmax = 7× 71 samples = 497 B (2)

thanks to the fact that now the samples are 8 bit wide, which means about a 18× factor reduction with
respect to the initial size of 9.09 kB. This enables an on-chip implementation, which is important for
the case of multiple filter instances required in high resolution video sequences.

3.3. One-Dimensional DCT-IF Architecture

The single 1D DCT-IF architecture can be easily implemented and pipelined as a direct form FIR
architecture using a spatial delay line and a set of multiply and accumulate blocks to get the final result:

y[n] =
N

∑
i=0

Bi · xi[n− i], i = 0, ..., N (3)

where Bi are the filter coefficients that depend on the filter applied in the interpolation process.
In order to reduce the amount of energy per computation required by the 1D architecture, a commonly
adopted operand substitution method relies on replacing all the multiplications with additions
and shifting operations. This is a particularly suitable technique with filter architectures since the
multiplier coefficients are known at design time. However, keeping a certain order of coarse-grained
reconfigurability in a multiplier-less approach is not easily achievable as with direct form FIR filters.
Several methods have been proposed in order to find a reconfigurable multiplier-less 1D filter
architecture ([7,9,11] and others). Among those, the one implemented here is a slightly modified
version of the filters introduced by Diniz et al. in [10]. The Luma legacy datapath is depicted in
Figure 9, with the Luma and Chroma legacy multiplier-less solutions in Figures 10 and 11.

The element composing the 2D interpolation filter above are the following:

• Shift Register Bank (SRB): This represents the input buffer. As soon as it receives a pixel row in
input it sends it to the RtU and the content of the corresponding Shift Register is shifted.

• Address Counter (CNT): This is a programmable counter that points to a SRB shift register. It fills
the lines used to start the filtering process.

• Routing Unit (RtU): This redirects the output of the memory bank toward the inputs of the filter.
• DCT-IF: This represents the Luma and Chroma legacy multiplier-less architecture described below.

J. Low Power Electron. Appl. 2020, 10, 24 7 of 23

• Rounding Unit (Round): This applies an half-up rounding at the output of the second filter,
when required.

• Clipping Unit (Clip): This manages the arithmetic saturation.

In

Vin SRB RtU DCT-IF

RtU

(8-bit input)

DCT-IF
(16-bit input)

Round Clip

S
R

InData

Addr_IN

o6
o5
o4
o3
o2

o0
o1

in7
in6
in5
in4
in3
in2
in1
in0

conf

o6
o5
o4
o3
o2

o0
o1

o7 s0_1
s1_1
s2_1
s3_1
s3_2
s2_2
s1_2
s0_2

confVect1

confVect2

s0_1
s1_1
s2_1
s3_1
s3_2
s2_2
s1_2
s0_2

confVect1

confVect2

in7
in6
in5
in4
in3
in2
in1
in0

o6
o5
o4
o3
o2

o0
o1

o7

conf

� 11

� 6

� 5
CNT

mod clear

wr_n

clk

t_cntcnt
clk

clk

SE

clk

clk

clk

clk

clk

clk

clk

Out

Vout

0

1

0

1

0

1

clk

fir1or2

fir1or2

8

8

8 8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

clk

clk

clk

9 9

9 9

9 9

9 9

16
16

16
1616

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

23

23

23

12

17

16

12
’0’11

17
’0’

17

12 11

17

"0...0"
8

17 17

1 1 1

1

ME_MCBi

1

1

1

1

modAddr_IN

7

7 1

7

1

1

2

2

2

2

conf_rout1

conf_rout2

conf1_sg1

conf1_sg2

conf2_sg1

conf2_sg2

t_cntAdd
wr_n

SE

1

LE_regout

le

le

le

le

le

le

le

le

le

le

Figure 9. Datapath 2D DCT-based interpolation filter (DCT-IF) Luma legacy.

J. Low Power Electron. Appl. 2020, xx, 5 7 of 27

In

Vin SRB RtU DCT-IF

RtU

(8-bit input)

DCT-IF
(16-bit input)

Round Clip

S
R

InData

Addr_IN

o6
o5
o4
o3
o2

o0
o1

in7
in6
in5
in4
in3
in2
in1
in0

conf

o6
o5
o4
o3
o2

o0
o1

o7 s0_1
s1_1
s2_1
s3_1
s3_2
s2_2
s1_2
s0_2

confVect1

confVect2

s0_1
s1_1
s2_1
s3_1
s3_2
s2_2
s1_2
s0_2

confVect1

confVect2

in7
in6
in5
in4
in3
in2
in1
in0

o6
o5
o4
o3
o2

o0
o1

o7

conf

� 11

� 6

� 5
CNT

mod clear

wr_n

clk

t_cntcnt
clk

clk

SE

clk

clk

clk

clk

clk

clk

clk

Out

Vout

0

1

0

1

0

1

clk

fir1or2

fir1or2

8

8

8 8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

clk

clk

clk

9 9

9 9

9 9

9 9

16
16

16
1616

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

23

23

23

12

17

16

12
’0’11

17
’0’

17

12 11

17

"0...0"
8

17 17

1 1 1

1

ME_MCBi

1

1

1

1

modAddr_IN

7

7 1

7

1

1

2

2

2

2

conf_rout1

conf_rout2

conf1_sg1

conf1_sg2

conf2_sg1

conf2_sg2

t_cntAdd
wr_n

SE

1

LE_regout

le

le

le

le

le

le

le

le

le

le

Figure 9. Datapath 2D DCT-based interpolation filter (DCT-IF) Luma legacy.

s1 � 2 0

1s0

s3 � 5
s3 � 6
s3 � 1

s2

s3 � 3
s3 � 1
s2 � 4

s0
s1

s2 � 3
s1 � 2

s2 � 1
0

s2

s3 � 3

0

1

0

1

0

1

0

1

00

01

10

11

00

01

10

10, 18

8, 16

13, 21

14, 22

9, 17

8, 16

11, 19

9, 17

12, 20

8, 16

8, 16

11, 19

10, 18

9, 17

8, 16

11, 19

10, 18

14, 22

12, 20

8, 16

11, 19

9, 17

11, 19

15, 22

15, 22

15, 22

12, 19

12, 19

13, 20

o

conf(7,6)

conf(5,4)

conf(3)

conf(2)

conf(1)

conf(0)

conf(8)

Figure 10. Reconfigurable legacy Luma filter.Figure 10. Reconfigurable legacy Luma filter.

J. Low Power Electron. Appl. 2020, 10, 24 8 of 23
J. Low Power Electron. Appl. 2020, xx, 5 8 of 27

0

1

00

01

10

00

01

10

00

01

10

11

0

1

0

1

00

01

10

0

1

0

1

s1 � 5
s1 � 6

s2 � 5
s2 � 4
s2 � 3

s2 � 1
s2 � 2

0

s1 � 1
s1 � 4
s1 � 2

0

s0 � 2
s0 � 1

s1 � 3
s3 � 2

s3 � 1
s0 � 1

0

s1 � 1
0

s2 � 2
0

13, 21

14, 22

13, 21

12, 20

11, 19

9, 17

10, 18

9, 17

12, 20

10, 18

10, 18

9, 17

11, 19

10, 18

9, 17

9, 17

9, 17

10, 18

15, 22

14, 22

13, 21

10, 18

12, 20

10, 18

11, 19

9, 17

9, 17

10, 18

15, 22

16, 22

12, 20

12, 19

10, 18

12, 20

12, 20

o

conf(12)

conf(11,10)

conf(9,8)

conf(7,6)

conf(5)

conf(4)

conf(3,2)

conf(1)

conf(0)

Figure 11. Reconfigurable legacy Chroma filter.

The element composing the 2D interpolation filter above are the following:

• Shift Register Bank (SRB): This represents the input buffer. As soon as it receives a pixel row in
input it sends it to the RtU and the content of the corresponding Shift Register is shifted.

• Address Counter (CNT): This is a programmable counter that points to a SRB shift register. It fills
the lines used to start the filtering process.

• Routing Unit (RtU): This redirects the output of the memory bank toward the inputs of the filter.
• DCT-IF: This represents the Luma and Chroma legacy multiplier-less architecture described

below.
• Rounding Unit (Round): This applies an half-up rounding at the output of the second filter, when

required.
• Clipping Unit (Clip): This manages the arithmetic saturation.

The 3-tap and 5-tap configurations were considered for the Luma datapath, the 2-tap one for the
Chroma datapath (Tables 1 and 2). Higher order Luma filters were not considered because the energy
benefit results reported in [13] do not encourage such a choice, since it gave no energy consumption

Figure 11. Reconfigurable legacy Chroma filter.

The 3-tap and 5-tap configurations were considered for the Luma datapath, the 2-tap one for the
Chroma datapath (Tables 1 and 2). Higher order Luma filters were not considered because the energy
benefit results reported in [13] do not encourage such a choice, since it gave no energy consumption
reduction with respect to the legacy implementation. Figures 12 and 13 report the 5-tap and the 3-tap
reconfigurable Luma DCT-IFs implementations respectively, while in Figure 14 the reconfigurable
Chroma 2-tap architecture is shown. Table 3 gives the add and shift replacements implemented in our
architecture with the respective multiplier coefficients.

J. Low Power Electron. Appl. 2020, 10, 24 9 of 23
J. Low Power Electron. Appl. 2020, xx, 5 10 of 27

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0
x0

0
x3 � 1

x0 � 1
x2 � 2

x2 � 3
x3 � 2

x2 � 5
x2 � 4

x3 � 3
x3 � 5

x3 � 4

x1

x1 � 1

x3 � 5

x4

x1 � 3
x1 � 2

x4 � 3
x4 � 2

8, 16
8, 16

9, 17
9, 17

10, 18

9, 17

10, 18

11, 19
11, 19

10, 18

13, 21

13, 21

12, 20

13, 21
11, 19

13, 21

13, 21
13, 21

12, 20

9, 17
8, 16

9, 17

8, 16

11, 19
11, 19

10, 18

11, 19
11, 19

10, 18

10, 17

12, 19

14, 21

10, 17

12, 20

13, 19

15, 22

13, 20

15, 22

16, 22
o

conf

conf

conf

conf

conf

conf

conf

conf

conf

conf

Figure 12. Reconfigurable approximate Luma 5-tap filter.Figure 12. Reconfigurable approximate Luma 5-tap filter.

J. Low Power Electron. Appl. 2020, 10, 24 10 of 23
J. Low Power Electron. Appl. 2020, xx, 5 11 of 27

0

1

conf

0

1

conf

0

1

conf

0

1

conf

0

1

conf

0

1

conf

x1 � 5
x1 � 4

x2 � 5
x2 � 4

x1 � 3
x1 � 2

x1

x2 � 5

x0 � 3
x0 � 2

x0

0

o

13, 21

12, 20

13, 21

12, 20

11, 19

10, 18

8, 16

13, 21

11, 19

10, 18

8, 16

13, 21

13, 21

11, 19

13, 21

11, 19

14, 21

12, 19

14, 22

15, 21

16, 22

8, 16

Figure 13. Reconfigurable approximate Luma 3-tap filter.Figure 13. Reconfigurable approximate Luma 3-tap filter.

Table 3. Luma and Chroma approximate coefficient multiplications replaced by add/shift.

Shift—Coeff 1 2 4 5 6 7 9 14 20 23 32 40 41 48 50 54 57

x + + − + − + +

x � 1 + + − + +

x � 2 + + + + +

x � 3 + + − + + −
x � 4 + + + + +

x � 5 + + + + + + +

x � 6 +

J. Low Power Electron. Appl. 2020, 10, 24 11 of 23J. Low Power Electron. Appl. 2020, xx, 5 12 of 27

00

10

11

01

00

11

01

10

00

01

11

10

00

01

10

11

00

01

10

11

00

01

10

11

x0 � 5
x0 � 6

x1 � 5
x1 � 3
x0 � 4

0

x0

x0 � 1

0
x1 � 4
x0 � 3

x1

x1 � 1
0

0
x0 � 3
x1 � 3

13, 19

14, 20

13, 19

11, 17

12, 18

8, 14

9, 15

12, 18

11, 17

9, 15

8, 14

11, 17

11, 17

14, 20

13, 19

9, 15

12, 18

9, 15

11, 17

14, 20

13, 19

12, 18

14, 20

14, 20
o

conf

conf

conf

conf

conf

conf

Figure 14. Reconfigurable approximate Chroma 2-tap filter.Figure 14. Reconfigurable approximate Chroma 2-tap filter.

The Luma datapath of the proposed architecture is shown in Figure 15. This structure is able
to perform both the approximate and the legacy filters to better exploit energy-quality scalability.
The datapath is composed by different parallel filter branches, each one related to a specific
reconfigurable DCT-IF implementation. Depending on the input requirements, multiplexers select
which branch output should be considered for the first and for the second stage. As it will be shown in
Section 4, it is important to block the switching of the inputs of the unused filters to reduce the total
activity and consequently the power consumption. Rather than the use of demultiplexers to the RtUs’

J. Low Power Electron. Appl. 2020, 10, 24 12 of 23

inputs, this blocking behaviour is directly embedded in the RtUs by means of AND ports (not showed
in the Figure).

In

Vin SRB

InData

Addr_IN

o6
.
.
.
.

o0

.

CNT
mod clear

wr_n

clk

t_cntcnt
clk

clk

clk

8

8

8 8

8

modAddr_IN

7

7 1

7

1
t_cntAdd

wr_n
1

S
R

SE

clk

1
SE

� 6

� 6 � 5

16
12

’0’11
0

1

fir1or2

12

1

Round Clip

clk

clk

Out

Vout

0

1

clk

11

17

"0...0"
8

17 17

1 1 1

1

ME_MCBi

1

1

LE_regout

clk

2

2
conf3_rout1

clk
le

2

2
conf_rout1

clk

2

2

clk

2

2

clk

2

2

clk

2

2

clk

2

2
conf3_sg1

clk

18

18
conf_sg1

clk

2

2

clk

2

2

clk

18

18

clk

2

2

� 6

RtU
3-tap

RtU
legacy

RtU
5-tap

RtU
3-tap

RtU
legacy

RtU
5-tap

DCT-IF
3-tap

DCT-IF
5-tap

DCT-IF
legacy

DCT-IF
3-tap

DCT-IF
5-tap

DCT-IF
legacy

� 5

11

00

10

11

00

10

clk

dpSelect

2

2

2

64
56

le

le

le le

le le

le le

le le

le le

le le

le

le

le

24

64

40

(In,o6,o5)

(In,o6,...,o3)

128128

48

80

24

64

40

16

16

16

16 2

16

48

128

80

(16x8)

22

22

23 17

16

17

’0’

16

17

’0’

17 17

17

12

conf5_rout1 conf5_sg1

conf3_rout2

conf_rout2

conf3_sg2

conf_sg2

conf5_rout2 conf5_sg2

Figure 15. Datapath 2D DCT-IF Luma approximate.

3.4. Optimized Adder Architectures

Additional improvements can be applied to the proposed architecture at different levels of the
design, in order to further increase the throughput of the system. Indeed, two different approaches are
proposed: An exact solution, regarding the adoption of parallel and prefix adders is described here
below, while an approximate alternative, with Generic Accuracy Configurable Adders on the second
stage interpolation filters is described in the following Section.

Parallel Prefix Adders (i.e., PPAs) are able to speed-up the carry computation, which is
the bottleneck in the critical path evaluation [21]. In the proposed work we combined two
different topologies:

• Han–Carlson (H.C.): This achieves a good trade-off between complexity, fan-out and perfomance
by combining outer Brent–Kung layers and inner Kogge–Stone layers.

• The topology in [16], which uses outer Brent–Kung layers and inner Ladner-Fischer layers.
This solution is able to shorten the critical path delay with respect to the tree of prefix operators.

The [16] topology is applied to the Chroma Legacy architecture as it shows the best improvements
in performance, at the cost of a negligible area overhead and power dissipation. On the other hand,
the Han–Carlson one is applied to the Luma Approximate because it guarantees the highest precision.

3.5. Generic Accuracy Configurable Adders

Generic Accuracy Configurable (GeAr) adders [22] support both an exact mode and an
approximate mode, so allowing a dynamic tuning of the accuracy.

In this work we implement a particular version of the GeAr adder proposed in [17], which exploits
a Complementary Modules scheme to limit the magnitude of the generated errors. Figure 16 is used to
illustrate the concept. Two different types of adders, introducing errors of opposed polarity (+ε and
−ε), are used together with an Error Detection (ED) mechanism: When an error at the first adder is
detected (ED = 1), it will select the adder, the output of the adder with negative error (A2b) is selected
as the final sum. In this way the total error is always kept between 0 and |ε|.

J. Low Power Electron. Appl. 2020, 10, 24 13 of 23

Figure 16. Scheme principle of complementary module.

As reported in [17], by breaking the carry-chain, a GeAr adder supports a generic model for
block-based adders: It exploits multiple sub-adder units of equal length and allows the implementation
of an error correction unit. So, given two N-bits operands to be added, a GeAr computes the sum
through k L-bits (L ≤ N) sub-adders, that perform the sum operation in parallel. Let R be the number
of resultant bits contributing to the final sum, and P the number of previous bits used for the carry
prediction for each sub-adder: The first one computes the precise sum over L = R + P bits, while all the
other sub-adders are R-bit blocks. The carry-in is generated by a Carry Generator Unit, implemented
as a P-bit Carry Look-Ahead adder.

The work in [17] also shows that it is possible to define two different types of GeAr: Standard
GeAr and Complementary GeAr (CGeAr) and they differ between each other by just the input carry cin.
For the GeAr, it is always set to 0, while for the CGeAr is always set to 1, therefore, CGeAr and GeAr
introduce errors of opposed polarity. This allows implementing Complementary Modules as circuits able
to switch between a GeAr and a CGeAr. The final result is an approximate adder with an adaptive
behaviour, with just the addition of two XOR gates instead of the any other user-driven EC logic [17].

The implementation adopted in this work, and shown in Figure 17, introduces three distinct
sub-blocks (k = 3) and two 1-bit Carry Look-Ahead Adder (P = 1).

Figure 17. Architecture of GeAr and CGeAr k = 3, P = 1.

The logic circuit that computes the cin for the jth sub-adder of the ith+1 adder uses the error
detection signal of the previous GeAr block, according to this equation:

cini+1,j = cini,j ⊕ EDi,j (4)

J. Low Power Electron. Appl. 2020, 10, 24 14 of 23

The ED signal of the jth sub-adder can be obtained as follows:

EDj = cpj · (cinj ⊕ coutj−1) (5)

where cg and cp are the outputs of the jth CLA and, given P = 1, are equal to:

cg = Aj · Bj + cin · cp

cp = Aj ⊕ Bj

where Aj and Bj are the inputs of the jth CLA (in this case A[R], A[L + R− 1], B[R] and B[L + R− 1]).
The choice P = 1, simplifies the equations to obtain cg and cp. This reduces the occupied area overhead
and the critical path delay, but generates a higher number of errors.

In the Luma Legacy architecture the majority of adders are chosen with an adaptive approximate
configuration to earn in speed, area and energy efficiency. In order to assess the impact of this approach
in terms of PSNR degradation on the entire HEVC system [18] we inserted in the model an error
contribution ε′ with the same probability distribution as the hardware interpolation filters architecture.

The probability density function that characterizes the interpolation process was derived by
evaluating the difference between exact and approximated values and deriving the corresponding
histogram. As reported in Figure 18 and Table 4 the error distribution is well modeled as it is composed
by the superposition of three normal density functions with similar standard deviation and different
mean. Finally, a random noise is generated following the three Gaussian statistics. This error is inserted
in the HM software and the PSNR is evaluated for different sequences presented in [20], obtaining
the results depicted in Figures 19–30. In this set of Figures, each couple of adjacent pictures refers to
a given video sequence. Moreover, left pictures show the results obtained with the Random Access,
while right pictures present PSNR results for the case of Low Delay access. These results show that
the PSNR degratation introduced by the approximate encoder and decoder in the HEVC system is
marginal as the maximum difference between the two PSNR is always between 0.4 dB and 1.8 dB,
and no significant trade-off has been made. Indeed, the approximated adders were chosen to explore
the maximum achievable throughput without significantly downgrading the performance. Thus,
the main impact on the PSNR has to be attributed to the choice of Ntap [15].

−130−70−10 145 195 245 390 450 5100

1

2

3

4

5

6

7

8

9
Error Gaussian Distribution (k=3,P=1)

Figure 18. Probability density functions for error distribution k = 3, P = 1.

Table 4. Mean and standard deviation for Gaussian distributions k = 3, P = 0.

Gaussian 1 Gaussian 2 Gaussian 3

µ –41.09 214.23 472.73
σ 41.98 42.51 41.63

J. Low Power Electron. Appl. 2020, 10, 24 15 of 23

2 4 6 8 10 12 14 16 18

32

34

36

38

40

42

44

Bitrate[MBits/s]

P
SN

R
Y

U
V
[d

B
]

Correct
Luma GeAr

Figure 19. PSNR degradation with GeAr (BasketballDrive [20], 1920 × 1080, Random Access).

2 4 6 8 10 12 14 16 18

32

34

36

38

40

42

44

Bitrate[MBits/s]

P
SN

R
Y

U
V
[d

B
]

Correct
Luma GeAr

Figure 20. PSNR degradation with GeAr (BasketballDrive [20], 1920 × 1080, Low-Delay).

0 1 2 3 4 533
34
35
36
37
38
39
40
41
42
43
44

Bitrate[MBits/s]

P
SN

R
Y

U
V
[d

B
]

Correct
Luma GeAr

Figure 21. PSNR degradation with GeAr (Kimono, [20], 1920 × 1080, Random Access).

J. Low Power Electron. Appl. 2020, 10, 24 16 of 23

0 1 2 3 4 5 633
34
35
36
37
38
39
40
41
42
43
44

Bitrate[MBits/s]

P
SN

R
Y

U
V
[d

B
]

Correct
Luma GeAr

Figure 22. PSNR degradation with GeAr (Kimono [20], 1920 × 1080, Low-Delay).

0 1 2 3 4 5 6 7 8 9 1031
32
33
34
35
36
37
38
39
40
41

Bitrate[MBits/s]

P
SN

R
Y

U
V
[d

B
]

Correct
Luma GeAr

Figure 23. PSNR degradation with GeAr (ParkScene, [20], 1920 × 1080, Random Access).

0 1 2 3 4 5 6 7 8 9 1031
32
33
34
35
36
37
38
39
40
41

Bitrate[MBits/s]

P
SN

R
Y

U
V
[d

B
]

Correct
Luma GeAr

Figure 24. PSNR degradation with GeAr (ParkScene, [20], 1920 × 1080, Low-Delay).

J. Low Power Electron. Appl. 2020, 10, 24 17 of 23

0 10 20 30 40 50 6030
31
32
33
34
35
36
37
38
39
40
41

Bitrate[MBits/s]

P
SN

R
Y

U
V
[d

B
]

Correct
Luma GeAr

Figure 25. PSNR degradation with GeAr (BQTerrace, [20], 1920 × 1080, Random Access).

0 10 20 30 40 50 6030
31
32
33
34
35
36
37
38
39
40
41

Bitrate[MBits/s]

P
SN

R
Y

U
V
[d

B
]

Correct
Luma GeAr

Figure 26. PSNR degradation with GeAr (BQTerrace, [20], 1920 × 1080, Low-Delay).

0 1 2 3 430

32

34

36

38

40

42

Bitrate[MBits/s]

P
SN

R
Y

U
V
[d

B
]

Correct
Luma GeAr

Figure 27. PSNR degradation with GeAr (BasketballDrill [20], 832 × 480, Random Access).

J. Low Power Electron. Appl. 2020, 10, 24 18 of 23

0 1 2 3 4 4.530

32

34

36

38

40

42

Bitrate[MBits/s]

P
SN

R
Y

U
V
[d

B
]

Correct
Luma GeAr

Figure 28. PSNR degradation with GeAr (BasketballDrill [20], 832 × 480, Low-Delay).

0 0.3 0.6 0.9 1.2 1.5
28

30

32

34

36

38

40

42

Bitrate[MBits/s]

P
SN

R
Y

U
V
[d

B
]

Correct
Luma GeAr

Figure 29. PSNR degradation with GeAr (RaceHorses, [20], 416 × 240, Random Access).

0 0.3 0.6 0.9 1.2 1.5 1.826

28

30

32

34

36

38

40

42

Bitrate[MBits/s]

P
SN

R
Y

U
V
[d

B
]

Correct
Luma GeAr

Figure 30. PSNR degradation with GeAr (RaceHorses [20], 416 × 240, Low-Delay).

J. Low Power Electron. Appl. 2020, 10, 24 19 of 23

4. Results and Discussion

The described architecture was modeled in VHDL: The Power estimation has been performed
with Synospsys R©, while the place and route has been sythetized using Cadence R© Innovus, with the
UMC 65 nm standard cell technology [23], at 1.2 V, typical process (TT) for the lowest clock frequency
achievable by Chroma and Luma filters, which is fmax = 435 MHz.

Figures 31 and 32 report the throughput results in numbers of pixels per cycle given the prediction
block dimensions used by the HEVC standard for both legacy and approximate filters. From these
Tables it is possible to notice that, given the prediction block dimensions, reducing the order filter
increases the throughput (up to +79% for the Luma architecture and up to +61.1% for the Chroma
one) and lowers the energy consumptions. Moreover, the best gains in throughput are achieved with
H equal to 4, for the Luma case, and equal to 2, for the Chroma one, which are respectively the lowest
H values possible, while changing the value of W does not show any advantage. These cases are
the ones that have the lowest number of pixels to process and that can simultaneously take the most
advantage by the proposed alternative scheduling. From Figures 31 and 32 we can also compute the
needed Processing Elements to perform the standard HEVC algorithm: To process UHD resolution
video sequences at 60 fps and with 4:2:2 Chroma subsampling, the interpolator has to provide 500 and
250 Mpixels/s respectively for Luma and for chroma. We support a throughput between 0.395 and
0.907 pixels per cycle for the Luma Legacy and between 0.432 and 0.918. Clocked at 435 MHz, for the
worst pel/cycle, three Luma and two Chroma in parallel meet the required throughput constraints
while only two Luma and one Chroma in parallel are needed for the best pel/cycle.

Table 5 presents the proposed Luma architectures and the best state-of-the-art
implementations [6,11,13], including FPGA implementations that cannot be compared to our
design. Firstly, it is possible to notice how, thanks to the proposed alternative scheduling, the presented
architecture can achieve much higher frequency, up to 64 MHz more, than the architecture [11].
Secondly, Table 5 allows us to assess the impact of the H.C. adder and of the GeAr adder on the
perfomance of the Luma Processing Element: The employment of Han–Carlson adders is responsible
for a reduction in power (−4.43% for the 3-tap Luma case) and occupied area (−2.36%) while the
GeAr shows a performance improvement of 3.45% with drawbacks in terms of area overhead (+7.86%)
and power consumption (+6.42%). Thirdly, it clearly indicates that the Power Consumption reduction
is mainly due to the Ntap reduction rather than due to the adder choice and not on the Adders’ side.
Thus, it is possible to observe that the choice of the H.C. and GeAr adders respectively slightly reduces
the fmax · pelmax/A ratio. Therefore, for the Luma case, having the possibility to choice the adder
allows us to model the Processing Element according to our needs, but always reducing the ratio
between throughput and Area.

Table 5. Luma legacy filter synthesis results with optimized adder and Ntap architectures.

Ntap P [mW] fmax [MHz] Technology A [µm2] fmax·pelmax
A [pel

s·µm2]

Luma Legacy [13] 8 11 213 Artix-7 28 nm FPGA - -

Luma Approximated [13]

8 12 200 Artix-7 28 nm FPGA - -
7 11 200 Artix-7 28 nm FPGA - -
5 10 200 Artix-7 28 nm FPGA - -
3 10 200 Artix-7 28 nm FPGA - -

Luma Legacy [6] 8 - 76.49 Intel 60 nm FPGA - -

Luma Legacy [11] 8 - 384 65 nm - -

Luma Legacy 8 9.95 (+0%) 435 65 nm 60.28 6.54× 106

Luma Legacy GeAr 8 10.589 (+6.42%) 450 65 nm 65.04 6.25× 106

Luma 5-tap 5 9.062 (–8.92%) 438 65 nm 66.89 6.18× 106

Luma 5-tap H.C. 5 9.131 (–8.23%) 427 65 nm 65.31 6.05× 106

Luma 3-tap 3 7.384 (–25.8%) 438 65 nm 66.89 6.35× 106

Luma 3-tap H.C 3 7.057 (–29.1%) 427 65 nm 65.31 6.20× 106

J. Low Power Electron. Appl. 2020, 10, 24 20 of 23

Ntap

W H 8 7 5 3
8 8 0.566 0.604 0.696 0.821
16 16 0.709 0.740 0.810 0.895
32 32 0.825 0.846 0.892 0.943
64 64 0.903 0.916 0.942 0.970
8 4 0.395 0.432 0.533 0.696
4 8 0.604 0.640 0.727 0.842
16 8 0.549 0.587 0.681 0.810
8 16 0.723 0.753 0.821 0.901
32 16 0.702 0.734 0.805 0.892
16 32 0.830 0.850 0.895 0.945
64 32 0.823 0.844 0.890 0.942
32 64 0.904 0.917 0.943 0.971
16 12 0.646 0.681 0.762 0.865
12 16 0.714 0.744 0.814 0.897
16 4 0.379 0.416 0.516 0.681
4 16 0.753 0.780 0.842 0.914
32 24 0.780 0.805 0.861 0.925
24 32 0.827 0.848 0.893 0.943
32 8 0.541 0.579 0.674 0.805
8 32 0.839 0.859 0.901 0.948
64 48 0.874 0.890 0.924 0.961
48 64 0.903 0.916 0.942 0.970
64 16 0.699 0.730 0.803 0.890
16 64 0.907 0.919 0.945 0.972
AVG + ∆% 0 4.15% 14% 27%
MAX + ∆% 0 9% 16% 79%

Figure 31. Two-dimensional legacy and approximate Luma architecture throughput (pel/cycle).

Ntap

H W 4 2
4 4 0.640 0.842
8 8 0.753 0.901
16 16 0.850 0.945
32 32 0.917 0.971
4 2 0.471 0.727
2 4 0.727 0.889
8 4 0.604 0.821
4 8 0.780 0.914
16 8 0.740 0.895
8 16 0.859 0.948
32 16 0.846 0.943
16 32 0.919 0.972
8 6 0.696 0.873
6 8 0.762 0.906
8 2 0.432 0.696
2 8 0.842 0.941
16 12 0.810 0.928
12 16 0.853 0.946
16 4 0.587 0.810
4 16 0.877 0.955
32 24 0.892 0.961
24 32 0.918 0.971
32 8 0.734 0.892
8 32 0.924 0.973
AVG + ∆% 0 % 19.8%
MAX + ∆% 0 % 61.1%

Figure 32. Two-dimensional legacy and approximate Chroma architecture throughput (pel/cycle).

Table 6 shows that the higher speed of the approximate solution can be exploited to reduce the
energy consumption: For instance, considering the Luma 64 × 64 case, a −16.5% and a −35.9% of
energy reduction is obtained using the 5-tap or the 3-tap filter respectively.

J. Low Power Electron. Appl. 2020, 10, 24 21 of 23

Table 6. Maximum and minum energy per operation for the approximate Luma architecture (nJ/op).

Ntap 8 5 3

(E/op)max 88.85 47.66 24.71
(E/op)min 20.84 17.40 13.36

It is possible to extend the same considerations on the Chroma Processing Elements (Tables 7
and 8). As for the Luma case, the Chroma architecture takes advantage of the increase in performance
granted by the reduction of Ntap: Given a 32× 32 block, a−34.9% of energy reduction is achieved when
considering the 2-tap filter instead of the legacy 4-tap one (Table 8). Most importantly, Table 7 shows
that, differently from he H.C. and GeAr adders in the Luma case, the Adder presented in [16] shows
for the Chroma case a huge improvement in terms of area reduction (−28.37%) and fmax · pelmax/A
ratio (+40, 6%) at the minor cost of a performance reduction (−4.39%) and a power consumption
increase (+1.58%).

Table 7. Chroma legacy filter synthesis results with optimized adder and Ntap architectures.

Ntap P [mW] fmax [MHz] Technology A [µm2] fmax·pelmax
A [pel

s·µm2]

Chroma Legacy [13] 4 9 217 Artix-7 28 nm FPGA - -

Chroma 4 9 200 Artix-7 28 nm FPGA - -
Approximated 3 8 200 Artix-7 28 nm FPGA - -

[13] 2 6 200 Artix-7 28 nm FPGA - -

Chroma Legacy 4 2.966 (+0%) 501 65 nm 21.99 21.04× 106

Chroma Legacy 4 3.013 (+1.58%) 479 65 nm 15.75 29.58× 106

Adder [16]

Chroma 2-tap 2 2.157 (–27.3%) - 65 nm - -

Table 8. Maximum and minum energy per operation for the approximate Chroma architecture [nJ/op].

Ntap 4 2

(E/op)max 23.79 8.25
(E/op)min 6.01 3.91

5. Conclusions

This paper presented an hardware architecture able to perform the fractional-sample filtering
required by both the HEVC encoder and decoder. Section 3.1 introduced a set of approximated
filters for both Luma and Chroma components. The optimized multiplier-less two-dimensional
filter architecture has been described in Section 3.2 featuring hardware reconfiguration, throughput
adaptation, on-chip storage and clock gating, guaranteeing a tunable interpolation system able to offer
a trade-off in energy saving versus visual quality. Furthermore, the paper introduces a number of
architecture-level optimizations that allow to reach a speed enhancement in both Luma and Chroma
proposed structures and characterizes the impact of different adders in terms of area, throughput
and power. The implemented architectures are fully standard compliant, addressing the 1D and 2D
interpolation processes of all the different Luma and Chroma prediction unit sizes adopted by HEVC.

Author Contributions: Investigation, S.P. and A.G.; resources, M.M. and G.M.; writing–original draft preparation,
S.P. and A.G.; writing–review and editing, L.V.; supervision, M.M. and G.M.; project administration, M.M.
and G.M. All authors have read and agree to the published version of the manuscript.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

J. Low Power Electron. Appl. 2020, 10, 24 22 of 23

Abbreviations

The following abbreviations are used in this manuscript:

HEVC High Efficient Video Coding
AVC Advanced Video Coding
RD Rate Distorsion
RCA Ripple-Carry Adder
PPAs Parallel Prefix Adders
H.C. Han–Carlson
L.F. Ladner-Fischer
EDC Error Detection and Correction
SAM Standard Approximate Module
ED Error Detection
CAM Complementary Approximate Module
GeAr Generic Accuracy
CGeAr Complementary GeAr

References

1. Ohm, J.R.; Sullivan, G.J.; Schwarz, H.; Tan, T.K.; Wiegand, T. Comparison of the Coding Efficiency of Video
Coding Standards-Including High Efficiency Video Coding (HEVC). IEEE Trans. Circuits Syst. Video Technol.
2012, 22, 1669–1684. [CrossRef]

2. Sayood, K. Introduction to Data Compression, Third Edition (Morgan Kaufmann Series in Multimedia Information
and Systems); Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2005; pp. 571–614.

3. Sullivan, G.J.; Ohm, J.R.; Han, W.J.; Wiegand, T. Overview of the High Efficiency Video Coding (HEVC)
Standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1649–1668. [CrossRef]

4. Aiyar, M.L.; Kenchappa, R. A high-performance and high-precision sub-pixel motion estimator-interpolator
for real-time HDTV(8K) in MPEGH/HEVC coding. In Proceedings of the 2016 International
Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), Pudukkottai, India,
24–26 February 2016; pp. 1–8.

5. Tikekar, M.; Huang, C.; Juvekar, C.; Sze, V.; Chandrakasan, A.P. A 249-Mpixel/s HEVC Video-Decoder Chip
for 4K Ultra-HD Applications. IEEE J. Solid-State Circuits 2014, 49, 61–72. [CrossRef]

6. Da Silva, R.; Siqueira, I.; Grellert, M. Approximate Interpolation Filters for the Fractional Motion Estimation
in HEVC Encoders and their VLSI Design. In Proceedings of the 2019 32nd Symposium on Integrated
Circuits and Systems Design (SBCCI), Sao Paulo, Brazil, 26–30 August 2019; pp. 1–6.

7. Guo, Z.; Zhou, D.; Goto, S. An optimized MC interpolation architecture for HEVC. In Proceedings of the
2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan,
25–30 March 2012; pp. 1117–1120. [CrossRef]

8. Afonso, V.; Maich, H.; Agostini, L.; Franco, D. Low cost and high throughput FME interpolation for the
HEVC emerging video coding standard. In Proceedings of the IEEE Latin America Symposium on Circuits
and Systems, Cusco, Peru, 27 February–1 March 2013; pp. 1–4.

9. Kalali, E.; Adibelli, Y.; Hamzaoglu, I. A Reconfigurable HEVC sub-pixel interpolation hardware.
In Proceedings of the 2013 IEEE Third International Conference on Consumer Electronics, Berlin
(ICCE-Berlin), Berlin, Germany, 9–11 September 2013; pp. 125–128. [CrossRef]

10. Diniz, C.M.; Shafique, M.; Bampi, S.; Henkel, J. A Reconfigurable Hardware Architecture for Fractional Pixel
Interpolation in High Efficiency Video Coding. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2015,
34, 238–251. [CrossRef]

11. Diefy, A.; Shalaby, A.; Sayed, M.S. Low cost Luma interpolation filter for motion compensation in HEVC.
In Proceedings of the 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS),
Abu Dhabi, UAE, 16–19 October 2016; pp. 1–4. [CrossRef]

12. Ghani, A.; Kalali, E.; Hamzaoglu, I. FPGA implementations of HEVC sub-pixel interpolation using high-level
synthesis. In Proceedings of the IEEE International Conference on Design and Technology of Integrated
Systems in Nanoscale Era, Istanbul, Turkey, 12–14 April 2016; pp. 1–4.

http://dx.doi.org/10.1109/TCSVT.2012.2221192
http://dx.doi.org/10.1109/TCSVT.2012.2221191
http://dx.doi.org/10.1109/JSSC.2013.2284362
http://dx.doi.org/10.1109/ICASSP.2012.6288083
http://dx.doi.org/10.1109/ICCE-Berlin.2013.6698023
http://dx.doi.org/10.1109/TCAD.2014.2384517
http://dx.doi.org/10.1109/MWSCAS.2016.7870056

J. Low Power Electron. Appl. 2020, 10, 24 23 of 23

13. Sau, C.; Palumbo, F.; Pelcat, M.; Heulot, J.; Nogues, E.; Menard, D.; Meloni, P.; Raffo, L. Challenging the
Best HEVC Fractional Pixel FPGA Interpolators With Reconfigurable and Multifrequency Approximate
Computing. IEEE Embed. Syst. Lett. 2017, 9, 65–68. [CrossRef]

14. Bossen, F.; Bross, B.; Suhring, K.; Flynn, D. HEVC Complexity and Implementation Analysis. IEEE Trans.
Circuits Syst. Video Technol. 2012, 22, 1685–1696. [CrossRef]

15. Nogues, E.; Menard, D.; Pelcat, M. Algorithmic-level Approximate Computing Applied to Energy Efficient
HEVC Decoding. IEEE Trans. Emerg. Top. Comput. 2016, 1–12. [CrossRef]

16. Esposito, D.; Caro, D.D.; Strollo, A.G.M. Variable Latency Speculative Parallel Prefix Adders for Unsigned
and Signed Operands. IEEE Trans. Circuits Syst. 2016, 63, 1200–1209. [CrossRef]

17. Mazahir, S.; Hasan, O.; Shafique, M. Adaptive Approximate Computing in Arithmetic Datapaths.
IEEE Des. Test 2017, 35, 65–74.

18. ITU-T Video Coding Experts Group; ISO/IEC Moving Picture Experts Group. HM16.15. Available online:
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.15/ (accessed on 20 June 2020).

19. Ugur, K.; Alshin, A.; Alshina, E.; Bossen, F.; Han, W.J.; Park, J.H.; Lainema, J. Motion Compensated Prediction
and Interpolation Filter Design in H.265/HEVC. IEEE J. Sel. Top. Signal Process. 2013, 7, 946–956. [CrossRef]

20. Bossen, F. Common test conditions and software reference configurations. In Proceedings of the Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 Wp 3 and ISO/IEC JTC 1/SC 29/WG 11,
12th Meeting, Geneva, Switzerland, 14–23 January 2013.

21. Macedo, M.; Soares, L.; Silveira, B.; Diniz, C.M.; da Costa, E.A.C. Exploring the Use of Parallel Prefix Adder
Topologies into Approximate Adder Circuits. In Proceedings of the IEEE Transactions on Circuits and
Systems, Batumi, Georgia, 5–8 December 2017; pp. 298–301.

22. Shafique, M.; Ahmad, W.; Hafiz, R.; Henkel, J. A low latency generic accuracy configurable
adder. In Proceedings of the 52nd Annual Design Automation Conference, San Francisco, CA, USA,
8–12 June 2015; p. 86.

23. (UMC), U.M.C. 65 Nanometer. Available online: http://www.umc.com/english/pdf/UMC%2065nm.pdf
(accessed on September 2018). Now Available online: https://www.umc.com/en/Product/process_
technologies/Detail/55_65_90nm (accessed on 10 June 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LES.2017.2703585
http://dx.doi.org/10.1109/TCSVT.2012.2221255
http://dx.doi.org/10.1109/TETC.2016.2593644
http://dx.doi.org/10.1109/TCSI.2016.2564699
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.15/
http://dx.doi.org/10.1109/JSTSP.2013.2272771
http://www.umc.com/english/pdf/UMC%2065nm.pdf
https://www.umc.com/en/Product/process_technologies/Detail/55_65_90nm
https://www.umc.com/en/Product/process_technologies/Detail/55_65_90nm
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Contribution
	Materials and Methods
	Interpolation Filters
	Proposed Architecture
	One-Dimensional DCT-IF Architecture
	Optimized Adder Architectures
	Generic Accuracy Configurable Adders

	Results and Discussion
	Conclusions
	References

