
Journal of

Low Power Electronics
and Applications

Article

Low-Complexity Run-time Management of
Concurrent Workloads for Energy-Efficient
Multi-Core Systems †

Ali Aalsaud 1,2, Fei Xia 2 , Ashur Rafiev 2, Rishad Shafik 2,* , Alexander Romanovsky 3

and Alex Yakovlev 2

1 School of Engineering, Al-Mustansiriyah University, Baghdad 10052, Iraq; ali.m.m.aalsaud@gmail.com
2 School of Engineering, Newcastle University, Newcastle NE1 7RU, UK; Fei.Xia@newcastle.ac.uk (F.X.);

Ashur.Rafiev@newcastle.ac.uk (A.R.); Alex.Yakovlev@newcastle.ac.uk (A.Y.)
3 School of Computing, Newcastle University, Newcastle NE1 7RU, UK;

alexander.romanovsky@newcastle.ac.uk
* Correspondence: Rishad.Shafik@ncl.ac.uk
† This paper is an extended version of our paper published in PATMOS, A. Aalsaud, A. Rafiev, F. Xia, R.

Shafik and A. Yakovlev, “Model-Free Run-time Management of Concurrent Workloads for Energy-Efficient
multi-core Heterogeneous Systems.” In Proceedings of the 2018 28th International Symposium on Power
and Timing Modeling, Optimization and Simulation (PATMOS), Platja d’Aro, 2018; pp. 206–213,
doi:10.1109/PATMOS.2018.8464142.

Received: 30 June 2020 ; Accepted: 10 August 2020; Published: 25 August 2020
����������
�������

Abstract: Contemporary embedded systems may execute multiple applications, potentially concurrently
on heterogeneous platforms, with different system workloads (CPU- or memory-intensive or both)
leading to different power signatures. This makes finding the most energy-efficient system configuration
for each type of workload scenario extremely challenging. This paper proposes a novel run-time
optimization approach aiming for maximum power normalized performance under such circumstances.
Based on experimenting with PARSEC applications on an Odroid XU-3 and Intel Core i7 platforms,
we model power normalized performance (in terms of instruction per second (IPS)/Watt) through
multivariate linear regression (MLR). We derive run-time control methods to exploit the models in
different ways, trading off optimization results with control overheads. We demonstrate low-cost and
low-complexity run-time algorithms that continuously adapt system configuration to improve the
IPS/Watt by up to 139% compared to existing approaches.

Keywords: energy-efficient computing; run-time management; machine learning; concurrent
workloads; multi-core systems

1. Introduction

Modern computing continues to evolve with increasing complexity in both hardware and software.
More applications of different types are concurrently executed on platforms featuring an increasing
number and type of parallel computing resources (cores) [1,2]. The advantages are clear, as parallel
computing can help delay the potential saturation of Moore’s Law and better use the performance
and energy efficiency opportunities provided by technology scaling [3,4]. However, managing
resources in this complex space for energy efficiency is proving highly challenging, especially when
different application scenarios (single or concurrent) need to be taken into account [5,6].

Contemporary processors, such as those from Arm and Intel, feature dynamic voltage
frequency scaling (DVFS) as a means of handling the energy and performance trade-off [7,8].
Power governors enable DVFS at the system software level. For instance, Linux includes different

J. Low Power Electron. Appl. 2020, 10, 25; doi:10.3390/jlpea10030025 www.mdpi.com/journal/jlpea

http://www.mdpi.com/journal/jlpea
http://www.mdpi.com
https://orcid.org/0000-0002-3426-8406
https://orcid.org/0000-0001-5444-537X
http://www.mdpi.com/2079-9268/10/3/25?type=check_update&version=1
http://dx.doi.org/10.3390/jlpea10030025
http://www.mdpi.com/journal/jlpea

J. Low Power Electron. Appl. 2020, 10, 25 2 of 25

power governors that can be activated based on the system requirements. These include powersave for
low-power, low-performance mode, ondemand for performance-sensitive DVFS, performance for higher
performance, and userspace for user-specified DVFS. These governors attempt to suitably tune the
voltage/frequency pairs according to performance and energy requirements and workload variations.
The voltage/frequency can be tuned to just satisfy the performance requirements according to the
workload, but not more, in order to reduce energy consumption.

Performance requirements continue to increase, making DVFS alone less effective [9]. As a result,
DVFS is often coupled with task mapping (TM), which distributes workloads among multiple cores [10].
When satisfying the same performance requirement, using more cores means that each core has a lighter
load and aggressive DVFS can be applied to reduce the overall energy consumption. On the other hand,
in order to achieve such energy efficiency, it is crucial to understand the synergy between hardware
and software [11].

Core allocations to threads (TM) are usually handled by a scheduler, instead of the governor which
takes care of DVFS [12]. A typical Linux scheduler does load balancing, i.e., it distributes the overall
workload at any time across all available cores to achieve maximum utilization. Although this objective
is rational the implementation tends to be crude. For instance, there is usually no discrimination about
the type of task or thread being scheduled, such as CPU- or memory-intensive [12]. Given particular
performance requirements, different types of threads should be treated differently for performance
and energy optimization. Indiscriminate treatment may lead to sub-optimal energy efficiency [13].

A number of approaches have been reported on the research of using DVFS and TM synergistically
for energy-efficient multi-core computing [13]. These approaches broadly fit into two types: offline
(OL) and run-time (RT). In OL approaches, the system is extensively reasoned to derive energy
and performance models [13,14], which lead to run-time decisions based on these models which stay
constant. In RT approaches, the models are typically learned using monitored information [15,16].
Since RT modeling is costly in terms of resources, often a combination of OL and RT are used [13].

Section 2 provides a brief review of these approaches. A recurring scheme in these approaches is
that the focus is primarily on single-application workloads in isolation. However, the same application
can exhibit different energy/performance trade-offs depending on whether it is running alone
or concurrently with other different workloads. This is because: (a) a workload application may switch
between memory- and CPU-intensive routines, and (b) architectural sharing between applications affect
the energy/performance trade-offs (see Section 7.1.2). Table 1 summarizes the features and limitations
of existing approaches.

Table 1. Features and limitations of existing methods when compared with the proposed approach.

Approach Platforms WLC Validation Apps Controls Size

[17,18] homo. No simulation single TM+DVFS P

[19] hetero. No simulation single RT, TM+DVFS P

[15] homo. No practical single RT, DVFS L
[14] hetero. No simulation single OL, TM+DVFS P

[13] hetero. OL practical conc. RT, DVFS NP

[16] not CPUs. RT practical conc. RT, DVFS NP

This work hetero. RT practical conc. RT, TM+DVFS L

Tackling energy efficiency in concurrent applications considering the workload behavior changes
highlighted above is non-trivial. When mapping onto heterogeneous multi-core systems, this becomes
more challenging because the state space is large and each application requires different optimization.
The hardware state space of a multi-core heterogeneous system includes all possible core allocations
and DVFS combinations. Here, we discuss this using the scenario of multiple parallel applications
running on one of the example experimental platforms used in this paper, the Odroid XU3 (detailed

J. Low Power Electron. Appl. 2020, 10, 25 3 of 25

in Section 4.2), which has two types of CPU cores, A7 and A15, organized into two DFVS domains,
as motivational examples. Here, Napps is the total number of concurrent applications running on
the system; NA7 is the number of A7 cores used and NA15 is the number of A15 cores used. Table 2
shows the number of possible core allocations for a total Napps number of applications running on the
Odroid with NA7 = 3 and NA15 = 4. The “brute force” value represents (NA7 + 1)Napps · (NA15 + 1)Napps

combinations, not all of which are actually allowed considering the following rules: (1) each application
must have at least one thread; and (2) no more than one thread per core is allowed. However, there is
no simple algorithm to iterate through only valid core allocations and an explosion of the search state
space is inevitable. The number of possible core allocations is then multiplied by the number of DVFS
combinations, which is calculated as MA7 ·MA15, where MA7 is the number of DVFS points in the A7
domain, and MA15 is the number of DVFS points in the A15 domain.

Table 2. Number of possible core allocations for different multi-application scenarios.

N-apps Brute Force Valid

1 20 19

2 400 111

3 8000 309

4 1.6 · 105 471

5 3.2 · 106 405

6 6.4 · 107 185

7 1.28 · 109 35

In this work, we addressed these limitations with an adaptive approach, which monitors
application scenarios at RT. The aim was to determine the optimal system configuration such that the
power normalized performance can be maximized at all times. The approach is based on profiling
single and concurrent applications through power and performance measurements. For the first time,
our study reveals the impact of parallelism in different types of heterogeneous cores on performance,
power consumption, and power efficiency in terms of instruction per second (IPS) per unit power
(i.e., IPS/Watt) [20]. In our proposed approach, we make the following specific contributions:

1. using empirical observations and CPU performance counters, derive RT workload
classification thresholds;

2. based on the workload classification and multivariate linear regression (MLR) to model power
and performance trade-offs expressed as instructions per second (IPS) per Watt (IPS/Watt),
propose a low-complexity approach for synergistic controls of DVFS and TM;

3. using synthetic and real-world benchmark applications with different concurrent combinations,
investigate the approach’s energy efficiency, measured by power-normalized performance in
IPS/Watt, and implement the low-complexity approach as a Linux power governor and validate
through extensive experimentation with significant IPS/Watt improvements.

To the best of our knowledge, this is the first RT optimization approach for concurrent applications
based on workload classification, refined further with MLR-based modeling, practically implemented
and demonstrated on both heterogeneous and homogeneous multi-core systems. The rest of the paper
is organized as follows. Section 2 reviews the existing approaches. The proposed system approach
is described in Section 3. Section 4 shows the configuration of systems used in the experiments
and the applications. Workload classification techniques are described in Section 5, where Section 5.2
details the run-time implementations. Section 6 deals with combining workload classification with
multivariant linear regression, with the decision space of the latter significantly reduced by the former.
Section 7 discusses the experimental results, and, finally, Section 8 concludes the paper.

J. Low Power Electron. Appl. 2020, 10, 25 4 of 25

2. Related Work

Energy efficiency of multi-core systems has been studied extensively over the years. A power
control approach for multi-core processors executing single application has been proposed in
Reference [21]. This approach has three layers of design features also shown by other researchers:
firstly, adjusting the clock frequency of the chip depending on the power budget; secondly, dynamically
group cores to run the same applications (as also shown in Reference [22,23]), and finally, modifying the
frequency of each core group (as also shown in Reference [11,24]). Among others, Goraczko et al. [17]
and Luo et al. [18] proposed DVFS approaches with software task partitioning and mapping of single
applications using a linear programming (LP) based optimization during RT to minimize the power
consumption. Goh et al. [25] proposed a similar approach of task mapping and scheduling for single
applications described by synthetic task graphs.

Several other works have also shown power minimization approaches using practical
implementation of their approaches on heterogeneous platforms. For example, Sheng et al. [19]
presented an adaptive power minimization approach using RT linear regression-based modeling of
the power and performance trade-offs. Using the model, the task mapping and DVFS are suitably
chosen to meet the specified performance requirements. Nabina and Nunez-Yanez [15] presented
another DVFS approach for field-programmable gate array (FPGA)-based video motion compensation
engines using RT measurements of the underlying hardware.

A number of studies have also shown analytical studies using simulation tools, like gem5, together
with McPAT [14,26], for single applications. These works have used DVFS, task mapping, and offline
optimization approaches to minimize the power consumption for varying workloads.

Over the years substantial research has been carried out addressing RT energy minimization
and/or performance improvement approaches. These approaches have considered a single-metric
based optimization: primarily performance-constrained power minimization, or performance
improvement within a power budget [27]. For example, Shafik et al. proposed an RT DVFS control
approach for power minimization of multiprocessor embedded systems [28]. Their approach uses
performance and user experience constraints to derive the lowest possible operating voltage/frequency
points through reinforcement learning and transfer principles. Das et al. presented another power
minimization approach that models RT workload characterization to continually update the DVFS
and core allocations through multinomial logic regression based predictive controls [29].

An RT classification of workloads and corresponding DVFS controls based on similar principles
is proposed by Wang and Pedram for performance-constrained power minimization [16]. As far as
performance optimization within a power budget is concerned, Chen and Marculescu proposed a
distributed reinforcement learning algorithm to model power and performance trade-offs during
RT [30]. Using this model, the DVFS and core allocations are adapted dynamically using feedback from
the performance counters. Another power-limited performance optimization approach is presented
by Cochran et al. showing programming model based power budget annotations and corresponding
controls [31]. Based on application requirements, Nabina and Nunez-Yanez [15] presented a DVFS
approach for FPGA-based video motion compensation engines. Santanue et al. [32] and Tiago et al. [33]
suggested a smart load balancing technique to improve energy efficiency for single applications
running on heterogeneous systems. This technique depends on the sense-predict-balance process
through the variation of workload and performance/power trade-offs.

Gem5 with McPAT have been used to demonstrate four different core types, where each core
operated in a fixed frequency. Petrucci et al. [14] proposed a thread scheduling algorithm called (lucky),
which is based on lottary scheduling. This algorithm is implemented by using Linux 2.6.34 kernel
with performance monitor to optimize the thread-to-core affinity. Matthew et al. [34] proposed
a DVFS approach with different core allocated for controlling concurrent applications exercised on
homogeneous systems at RT.

Numerous studies have focused on using classification-based techniques in dynamic power
management with DVFS together at run-time [9,31,35–39]. For instance, Gupta et al. [9] proposed

J. Low Power Electron. Appl. 2020, 10, 25 5 of 25

a new run-time approach based on workload classification. To build this classifier extensive offline
experiments are made on heterogeneous many core platforms and MATLAB is used to determine
the classifier parameters offline. Pareto function is used to determine the optimal configuration.
However, this classification is heavily based on offline analysis results and assigns an application
a fixed type, regardless of its operating context. It also requires the annotation of applications by
application programmers through using a special API.

Dey et al. [40] suggested a new management technique for a power and thermal efficiency agent
for mobile MPSoC platforms based on reinforcement learning. Fundamental to this approach is
the use of software agent to explore the DVFS in mobile CPU and GPU based on user’s interaction
behavior. This approach has been validated on Galaxy Note 9 smartphone utilizing Exynos 9810.
The experimental results show that this new management technique can increase performance while
reducing temperature and power consumption.

A model-free RT workload classification (WLC) approach with corresponding DVFS controls is
proposed by Wang and Pedram [16]. This approach employs reinforcement learning, with the action
space size a big concern for the authors, even though for only homogeneous systems at much higher
granularity than CPU cores. WLC has also been used OL, but this produces a fixed class for each
application [13] and cannot deal with workload behavior changes during execution.

For a comprehensive survey on the wider related field of energy management in energy-critical
systems, see Reference [41]. This paper is based on our previous work published in PATMOS 2018 [42],
with substantial extensions.

3. Proposed Methodology

Our method studies concurrent application workloads being executed on various hardware
platforms with parallel processing facilities, and we attempt RT management decision optimization
from the results of this analysis.

The RT management (RTM) decisions consist of TM and DVFS, which influence system
performance and power dissipation [11]. The RTM takes as input information derived from system
monitors, including hardware performance counters and power monitors, available from modern
multi-core hardware platforms. Based on this information, the RTM algorithms attempt to increase
power normalized performance by tuning the TM and DVFS outputs. The general architecture of this
system view is shown in Figure 1. We develop a simple RTM algorithm based on workload classification
(WLC), which classifies each workload by its usage of CPU and memory (Section 5). This minimal-cost
algorithm may be used on its own or be optionally augmented and refined with an MLR procedure to
further optimize the power normalized performance of the execution at an additional cost (Section 6).
The WLC procedure significantly reduces the decision space of any additional MLR step making the
total overhead much lower than implementing the entire optimization process purely with MLR [6]
(Section 7).

Task1

Task2

Task3

Taskm

RTM

Control
Algorithm

Control
Decisions

Hardware

Core1

Core2

Coren

Monitors
(PCs, PMs)

Actuators
(DVFS, TM)

Figure 1. Run-time management (RTM) architecture showing two-way interactions between concurrent
applications and hardware cores.

J. Low Power Electron. Appl. 2020, 10, 25 6 of 25

4. System Fundamentals

In this section, we describe the platforms, workload applications, and performance counters
used in this investigation. We study a homogeneous and a heterogeneous parallel processing
platform, which both provide all the performance counters and power monitors we need for
the methodology. We chose standard benchmark application workloads, which provide a variety of
degrees of concurrency and memory access and CPU usage scenarios. The two hardware platforms,
PARSEC workload applications, and performance counters are further detailed below.

4.1. Homogeneous System

The homogeneous experimental platform is a PC based on an Intel Core i7 Sandybridge CPU
which contains no on-chip GPU facility. This CPU is chosen because it has a reasonable number of hard
(4) and soft (8) cores, has no on-chip GPU to complicate the power consumption and communications,
and has a relatively large number of possible operating frequencies and voltages. The operating system
is Ubuntu Linux.

Run-time power monitoring is developed for the experimental platform for validation purposes.
This is done by inserting a precision shunt resister into the earth side of the power connection to
the CPU. As high-precision current meters tend to have a 1A upper limit, which many CPU operations
will exceed, the shunt resister allows the inference of current via measuring voltage.

The performance and power utility Likwid [43] is used to obtain the majority of the experimental
data. Likwid makes use of on-chip performance counters (sensors) in Intel CPUs to collect performance
and power data. For instance, the Running Average Power Limit (RAPL [44]) counters are accessed
to infer power dissipation. The form factor of the platform allows the actual measurement of CPU
power by way of an inserted shunt resister into the CPU power supply circuit, and readings from these
measurements were used in initial experiments to build confidence on the RAPL readings.

Before the main experiments, Likwid was first confirmed to be accurate for the experimental
platform through cross-validation with physical power measurements using the shunt resister,
described above. The use of performance counters rather than external power measurement in
most of the experiments is motivated by the desire of developing an RTM, which, for practicality
and wide applicability, can only rely on built-in sensors and not shunt resisters.

4.2. Heterogeneous System

The popularity of heterogeneous architectures, containing two or more types of different CPU
cores, continues to grow [45]. These systems offer better performance and power trade-off flexibility;
however, it may be more complicated to ensure optimal energy consumption. The Odroid-XU3 board
supports techniques, such as DVFS, affinity, and core disabling, commonly used to optimize system
operation in terms of performance and energy consumption [46,47].

The Odroid-XU3 board is a small eight-core computing device implemented on energy-efficient
hardware. The board can run Ubuntu 14.04 or Android 4.4 operating systems. The main component of
Odroid-XU3 is the 28nm System-on-Chip (Soc) Exynos 5422. This SoC is based on the ARM big.LITTLE
heterogeneous architecture and consists of a high performance Cortex-A15 quad core processor block,
a low power Cortex-A7 quad core block, Mali-T628 MP6 GPU cluster, and 2GB DRAM LPDDR3.
The board contains four real time current sensors that give the possibility of power measurement
on the four separate power domains: big (A15) CPUs, LITTLE (A7) CPUs, GPU cluster, and DRAM.
In addition, there are also four temperature sensors for each of the A15 CPUs and one sensor for
the GPU cluster. This work only concerns the CPU blocks, and the other parts of the SoC may be
investigated in future work.

On the Odroid-XU3, for each CPU power domain, the supply voltage (Vdd) and clock frequency
can be tuned through a number of pre-set pairs of values. The performance-oriented Cortex-A15
block has a range of frequencies between 200 MHz and 2000 MHz with a 100 MHz step, whilst the

J. Low Power Electron. Appl. 2020, 10, 25 7 of 25

low-power Cortex-A7 quad core block can scale its frequencies between 200 MHz and 1400 MHz with
a 100 MHz step.

4.3. Workload Applications

The PARSEC [48] benchmark suite attempts to represent both current and emerging workloads
for multiprocessing hardware. It is a commonly used benchmark suite for evaluating concurrency
and parallel processing. We therefore use PARSEC on the Odroid-XU3 platform, in which heterogeneity
can be representative of different design choices that can greatly affect workloads. PARSEC applications
exhibit different memory behaviors, different data sharing patterns, and different workload partitions
from most other benchmark suites in common use. The characteristics of applications, according to
Reference [48], which are used in this paper can be seen in Table 3.

Table 3. Qualitative summary of the inherent key characteristics of PARSEC benchmarks [48].

Program Application Domain Type Parallelization
Model Granularity Working Set Data Usage

Sharing Exchange

bodytrack Computer Vision CPU+mem data-parallel medium medium high medium

ferret Similarity Search CPU pipeline medium unbounded high high

fluidanimate Animation mem data-parallel fine large low medium

canneal Engineering CPU unstructured medium unbounded high high

freqmine Data Mining CPU data-parallel fine unbounded high medium

streamcluster Data Mining mem data-parallel medium medium low medium

Whilst we experimented with all PARSEC applications at various stages of work, six applications
from the suite are selected for presentation in the paper to represent CPU-intensive, memory-intensive,
and a combination of both. Such a classification reduces the effort of model characterization for
combinations of concurrently running applications (Section 5). We found no surprises worth reporting
in the accumulated experimental data with regard to the other PARSEC applications.

4.4. Performance Counters

In this work, we use performance counters to monitor system performance events (e.g., cache
misses, cycles, instruction retired) and, at the same time, capture the voltage, current, power,
and temperature directly from the sensors of Odroid-XU3. For the Intel Core i7, real power
measurements with a shunt resister were used to establish confidence in the RAPL power counters
initially, whilst the majority of experiments are based on performance counter readings once
the confidence has been achieved. The performance counter consists of two modules: kernel module
and a user space module.

For the Odroid, the hardware performance counter readings are obtained using the method
presented by Walker et al. [49], with similar facilities used through Likwid for the Core i7.

Here, we describe the Odroid case in more detail. In the user space module, the event specification
is the means to provide details of how each hardware performance counter should be set up. Table 4
lists notable performance events, some of which are explained as follows:

1. INST_RETIRED is the retired instruction executed and is part of the highly reported instruction
per cycles (IPC) metric.

2. Cycles is the number of core clock cycles.
3. MEM_ACCESS is Memory Read or Write operation that causes a cache access to at least the level

of data.
4. L1I_CACHE is level 1 instruction cache access.

J. Low Power Electron. Appl. 2020, 10, 25 8 of 25

Table 4. Performance counter events.

perf_eventt_name Description

INST_RETIRED Instruction architecturally executed.

BUS_CYCLE Bus cycle

MEM_ACCESS Data memory access.

L1I_CACHE Instruction Cache access.

L1D_CACHE_WB Data cache eviction.

L2D_CACHE Level 2 data cache access

L2D_CACHE_WB Level 2 data cache refill

L2D_CACHE_REFILL Level 2 data cache write-back.

5. Workload Classification RTM

This section makes use of both heterogeneous and homogeneous systems in its investigations
but mainly concentrates on the heterogeneous Odroid XU3 in its discourse, unless otherwise noted.
Different types of cores are especially useful for demonstrating the advantages of the approach.

5.1. Workload Classification Taxonomy

The taxonomy of workload classes chosen for this work reflects differentiation between
CPU-intensive and memory-intensive workloads, with high- or low-activity. Specifically, workloads
are classified into the following four classes:

• Class 0: low-activity workloads;
• Class 1: CPU-intensive workloads;
• Class 2: CPU- and memory-intensive workloads; and
• Class 3: memory-intensive workloads.

Extensive exploratory experiments are run in this work to investigate the validity of these
general concepts.

The experiments are based on our synthetic benchmark, called mthreads [50], which attempts to
controllably re-create the effect of memory bottleneck on parallel execution. The tool accomplishes
this by repeatedly mixing CPU-intensive and memory-intensive operations, the ratio of each type
is controlled by the parameter M. The CPU-intensive operation is a simple integer calculation.
The memory-intensive operation is implemented by randomly writing to a 64 MB pre-allocated
array. The randomization helps reduce the effect of caching. Parameter M = 0 gives CPU-intensive
execution, M = 1 leads to memory-intensive execution; the values in between provide a linear relation
to the number of memory accesses per instruction. The execution is split into N identical parallel
threads, each pinned to a specific core. Figure 2 presents the flowchart of the tool.

Figure 3 shows the energy efficiency of mthreads running on 2 to 4 A7 cores (one of the A7
cores may have a heavy operating system presence—if C0 is turned off, the operating system stops;
hence, this data does not include the single core case, which would be skewed by this system behavior)
with M values ranging from 0 to 1. It can be seen that it is better to use fewer cores for memory-intensive
tasks (larger M), but it is better to run more cores in parallel for CPU-intensive tasks (smaller M).
Characterization results sweeping through the frequency ranges and core combinations with mthreads
confirm the validity of the classification taxonomy and establish a TM and DVFS strategy based on
relative CPU and memory use rates. The full set of mthreads data, supported by experiments with
applications other than mthreads including the entire PARSEC suite, is used to generate our run-time
management (RTM) presented in subsequent sections.

J. Low Power Electron. Appl. 2020, 10, 25 9 of 25

START

END

...

Create N threads

Join threads

Pin to Core C1

Loop work_size times

Loop 1000·M times

Write to a random memory location

Loop 1000·(1 – M) times

Do a simple integer calculation

Th
re

ad
 1

 o
n

Co
re

 C
1

Th
re

ad
 2

 o
n

Co
re

 C
2

Th
re

ad
 N

 o
n

Co
re

 C
N

Figure 2. Flowchart of mthreads synthetic benchmark. M and N are controlled parameters.

Figure 3. instruction per second (IPS)/Watt for different memory use rates (0 ≤ M ≤ 1).

5.2. Run-time Management Based on Workload Classification

Figure 1 presents the general architecture of RTM inside a system. In this section, we explain
the central RTM functions—classification and control actions based on performance monitors
and actuators (e.g., TM and DVFS). The general approach does not specify the exact form of
the taxonomy into which workloads are classified, the monitors and actuators the system need to
have, nor the design figure of merit. Our examples classify based on differentiating CPU and memory
usages and the execution intensiveness, try to maximize IPS/Watt through core-allocation and DVFS,
and get information from system performance counters [42].

The governor implementation is described in Figure 4, which refines Figure 1. At time ti, task i
is added to the execution via the system function execvp(). The RTM makes TM and DVFS decisions
based on metric classification results, which depends on hardware performance counters and power
monitors to directly and indirectly collect all the information needed. This helps avoid instrumenting
applications and/or special API’s (unlike, e.g., Reference [51]), providing wider support for existing
applications. The TM actuation is carried out indirectly via system functions. For instance, core pinning

J. Low Power Electron. Appl. 2020, 10, 25 10 of 25

is done using sched_affinity(pid), where pid is the process ID of a task. DVFS is actuated through the
userspace governor as part of cpufreq utilities.

Concurrent
Apps

Task1
Task2

.

.

.

Taskm

RTM

Metric Classifier

Control Decisions:

Hardware

C0
C1
C2
C3

A7 Power

C4
C5
C6
C7

A15 Power

Monitors

Userspace

Execvp()

OS scheduler

TM

DVFS
sched_setaffinity (pid)

Perf Counters

Power
Monitors

Figure 4. Governor implementation based on RTM.

5.3. Workload Classification

Real applications do not have precisely tuneable memory usage rates, unlike mthreads. They may
also have phases during which they may appear to be one class or another during their execution;
therefore, attempts at classifying each application as a whole offline (as seen in Reference [13]) may be
of limited value (see Section 7.1.1 for detailed discussions). In this work, information from performance
counters is used to derive the classes of all applications running on the system for each control decision
cycle. The assumption is that, during a control decision cycle, the class of an application is unlikely to
change. This assumption requires that the length of control cycles is sufficiently short relative to the rate
of class change of the applications (according to the Nyquist/Shannon sampling principle). The choice
of control cycle length therefore depends on expected application scenarios and what happens when/if
Nyquist/Shannon is violated should be carefully considered by the designer. This point will be
discussed in detail in Section 7.1.2, with the help of system design case studies.

The classification using performance counter readings is based on calculating a number of metrics
from performance counter values recorded at set time intervals and then deriving the classes based on
whether these metrics have crossed certain thresholds. Example metrics and how they are calculated
are given in Table 5.

Table 5. Metrics used to derive classification.

Metrics Definitions

nipc (InstRet/Cycles)(1/IPCmax)

iprc InstRet/ClockRe f

nnmipc (InstRet/Cycles−Mem/Cycles)(1/IPCmax)

cmr (InstRet−Mem)/InstRet

uur Cycles/ClockRe f

Normalized instructions per clock (nipc) measures how intensive the computation is. It is
the instructions per unhalted cycle (IPC) of a core, normalized by the maximum IPC (IPCmax). IPCmax

can be obtained from manufacturer literature. Cycles is the unhalted cycles counted. Normalization
allows nipc to be used independent of core types and architectures.

Instructions per reference clock (iprc) contributes to determining how active the computation is.
ClockRef is the total number of clock cycles given by ClockRe f = Freq/Time with Freq and Time from
the system software.

J. Low Power Electron. Appl. 2020, 10, 25 11 of 25

Normalized non-memory IPC (nnmipc) discounts memory accesses from nipc, indicating CPU
activity. From experiments with our synthetic benchmark, this shows an inverse correlation to
the memory use rate.

CPU to memory ratio (cmr) relatively compares CPU to memory activities.
Unhalted clock to reference clock ratio (urr) determines how active an application is.
The general relationship between these metrics and the application (workload) classes are clear,

e.g., the higher nnmipc is, the more CPU-intensive a workload will be. A workload can be classified
by comparing the values of metrics to thresholds. Decision-making may not require all metrics.
The choice of metrics and thresholds can be made by analyzing characterization experiment results
for each platform. From studying the relationship between M and the list of metrics from mthreads
experiments on the Odroid XU3, we find that nnmpic and cmr show the best spread of values with
regard to corresponding to different values of M (see Figure 5). Whichever one of these to use depends
on designer preferences on the range of threshold values between different application classes to use.
We choose nnmipc to differentiate CPU and memory usage rates and urr to differentiate low and high
activity. The thresholds used are determined based on our mthreads characterization database and
given in Table 6. We tested this approach by running PARSEC programs and obtaining values of the
chosen metrics, with the results shown in Table 7. These confirm that nnmipc can be used to differentiate
CPU- and memory-intensive applications. For instance, ferret is regarded as CPU-intensive [52] and its
per-core nnmipc value is above 0.35. The other metrics may work better on other platforms and are
included here as examples of potential candidates depending on how a mthreads-like characterization
program behaves on a platform with regard to the relationships between M values and the metrics.

Figure 5. CPU to memory ratio (cmr) and Normalized non-memory IPC (nnmipc) metrics for different
memory use rates (0 ≤ M ≤ 1).

Table 6. Classification details for Odroid XU3.

Metric Ranges Class

urr of all cores [0, 0.11] 0: low-activity

nnmipc per-core [0.35, 1] 1: CPU-intensive

nnmipc per-core [0.25, 0.35) 2: CPU+memory

nnmipc per-core [0, 0.25) 3: memory-intensive

J. Low Power Electron. Appl. 2020, 10, 25 12 of 25

Table 7. PARSEC applications and their performance counter metrics on XU3.

Applications nnmipc nipc iprc cmr urr

Bodytrack 0.306 0.417 0.503 0.754 0.603

Ferret 0.384 0.560 0.978 0.739 1.01

Fluidanimate 0.206 0.317 0.690 0.723 1.08

Streamcluster 0.166 0.286 0.570 0.465 0.995

To confirm our approach, another set of experiments were carried out on the Intel Core i7
platform, as can be seen in Table 8. These results agree with those found from the Odroid XU3. Based
on these experiments, we also choose nnmipc to differentiate CPU and memory usage rates and urr for
differentiating low and high activity. Threshold values are established from Core i7 characterization
experiments and are different from those for Odroid XU3.

Table 8. PARSEC applications and their performance counter metrics on Intel i7 Processor.

Applications iprc nnmipc cmr

Bodytrack 0.727449908 0.573472873 0.788333

Caneal 0.71442 0.58642 0.750138

Fluidanimate 0.6949938 0.50526088 0.727001

Freqmine 0.867086053 0.629553377 0.726056

Streamcluster 0.370102144 0.248135025 0.67045

In principle, for each hardware platform, based on the available performance counters, the choice
of metrics and the classification threshold values should both be based on classification results obtained
from that platform.

5.4. Control Decision Making

This section presents an RTM control algorithm that uses application classes to derive its decisions.
The behavior is specified in the form of two tables: a threshold table (Table 6), used for determining
application classes; and a decision table (Table 5), providing a preferred action model for each
application class.

The introduction of new concurrent applications or any other change in the system may cause
an application to change its behavior during its execution. It is therefore important to classify
and re-classify regularly. The RTM works in a dedicated thread, which performs classification
and decision-making action every given time frame. The list of actions performed every RTM cycle is
shown in Algorithm 1.

Algorithm 1 Inside the RTM cycle.

1: Collect monitor data
2: for each application do
3: Compute classification metrics . Section 5.3
4: Use metric and threshold table to determine application class . Table 5
5: Use decision table to find core allocation and frequency preferences . Table 6
6: Distribute the resources between the applications according to the preferences
7: Wait for Tcontrol . Section 5.4
8: end for
9: return

In Algorithm 1, Tcontrol is the time between two RTM control cycles. The RTM determines the TM
and DVFS of power domains once each control cycle, and these decisions keep constant before the next

J. Low Power Electron. Appl. 2020, 10, 25 13 of 25

control cycle. The data from the system monitors (performance counters and power meters) is collected
asynchronously. Every core has a dedicated monitor thread, which spends most of its time in a sleep
state and wakes every Tcontrol to read the performance counter registers. The readings are saved in
the RTM memory. This means that the RTM always has the latest data, which is at most Tcontrol old.
This is mainly done because ARM performance counter registers can be accessed only from code on
the same CPU core. In this case, asynchronous monitoring has been empirically shown to be more
efficient. In our experiments, we chose Tcontrol = 500 ms, which has shown a good balance between RT
overhead and energy minimization. The time the RTM takes (i.e., RT overhead) is negligible compared
to 500 ms for the size of our system. This interval can be easily reduced with slightly higher overheads
or increased with less energy efficiency trade-offs. The flowchart of the entire RTM cycle is shown in
Figure 6.

Ev
er

y
T c

o
n
tr
ol

Collect monitor data

Compute classification metrics (Table 5)

Determine task/app class (Table 6)

TM and DVFS decisions (Table 9)

Distribute resources between
tasks/apps (Algorithm 2)

Figure 6. Flowchart of the RTM cycle.

The RTM uses monitor data to calculate the classification metrics discussed in Section 5.2.
These metrics form a profile for each application, which is compared against the thresholds (Table 6).
Each row of the table represents a class of applications and contains a pre-defined value range for each
classification metric. Value ranges may be unbounded. A metric x can be constrained to the range
[c, +∞), equivalent to x ≥ c. An application is considered to belong to a class, if its profile satisfies
every range in a row. If an application does not satisfy any class, it is marked as “unclassified”
and gets a special action from the decision table. An application is also unclassified when it first joins
the execution. In that case, it goes to an A15 core for classification.

The decision table (Table 9) contains the following preferences for each application class, related
to system actuators (DVFS and core allocation decisions): number of A7 cores, number of A15
cores, and clock frequencies. Number of cores can take one of the following values: none, single,
or maximum. Frequency preference can be minimum or maximum. The CPU-intensive application
class (Class 1) runs on the maximum number of available A15 cores at the maximum frequency as
this has shown to give the best energy efficiency (in terms of power normalized performance) in our
previous observations [7].

J. Low Power Electron. Appl. 2020, 10, 25 14 of 25

Table 9. RTM control decisions.

Class Frequency A7 A15

0 min single none

1 max none max

2 min max max

3 max max none

unclassified min single none

Tables 6 and 9 are constructed OL in this work based on large amounts of experimental data,
with those involving PARSEC playing only a supporting role. For instance, although ferret is regarded
as CPU-intensive, it is so only on average and has non CPU-intensive phases (see Section 7.1.1).
Therefore, Table 9 is obtained mainly from analyzing experimental results from our synthetic
benchmark mthreads (which has no phases), with PARSEC only used for checking if there are gross
disagreements (none was found). Because of the empirical nature of the process, true optimally is
not claimed.

In this work, we assume that the RTM does not have to deal with more threads than the number
of cores in the system—if there are more threads than cores, some will not get scheduled by the system
scheduler, which is outside the domain of the RTM. Our experiments therefore do not feature
more concurrent applications than the number of cores in the system. The RTM attempts to satisfy
the preferences of all running applications. In the case of conflicts between frequency preferences,
the priority is given to the maximum frequency. When multiple applications request cores of the same
type, the RTM distributes all available cores of that type as fairly as possible. When these conflicting
applications are of different classes, each application is guaranteed at least a single core. Core allocation
(TM) is done through the following algorithm.

Algorithm 2 shows the procedure APPLYDECISION for mapping the RTM decisions to
the core affinity masks. RTM provides a decision for each app and for each core type dj,i ∈
{NONE, MIN, MAX}, where j ∈ {A7, A15} is the core type, and 1 ≤ i ≤ m is the app index,
given the total number of apps m. The decisions are arranged in arrays DA7 = (dA7,1, . . . , dA7,m)

and DA15 = (dA15,1, . . . , dA15,m). Additional constants used by the algorithm are: nA7, nA15 are the total
number of little and big cores, respectively, and the IDs of cores by type are listed in the pre-defined
CA7 =

(
cA7,1, . . . , cA7,nA7

)
, CA15 =

(
cA15,1, . . . , cA15,nA15

)
. The complexity of the algorithm is linear to m.

The result of the algorithm is the set of core IDs Ci, which can be used to call the sched_setaffinity
function for the respective app i.

J. Low Power Electron. Appl. 2020, 10, 25 15 of 25

Algorithm 2 mapping the RTM decisions to the core affinities

1: procedure APPLYDECISION(DA7, DA15)
2: (rA7,1, . . . , rA7,m)← REQCORES (DA7, nA7) . Get per-app number of little cores
3: (rA15,1, . . . , rA15,m)← REQCORES (DA15, nA15) . Get per-app number of big cores
4: for 1 ≤ i ≤ m do
5: Ci,A7 ← (next rA7,i elements from CA7)
6: Ci,A15 ← (next rA15,i elements from CA15)
7: Ci ← Ci,A7 ∪ Ci,A15 . Use Ci to set core affinity mask for the app i.
8: end for
9: end procedure

10: function REQCORES((d1, . . . , dm) , n)
11: kMIN ← count (di = MIN) for 1 ≤ i ≤ m
12: kMAX ← count (di = MAX) for 1 ≤ i ≤ m
13: if kMAX > 0 then
14: v← b(n− kMIN) /kMAXc . v is the MAX number of cores
15: w← (n− kMIN) mod kMAX . w is the remainder
16: end if
17: for 1 ≤ i ≤ m do
18: if di = MAX then
19: if w > 0 then . Distribute the remainder
20: ri ← v + 1
21: w← w− 1
22: else
23: ri ← v
24: end if
25: else if di = MIN then
26: ri ← 1
27: else
28: ri ← 0
29: end if
30: end for
31: return (r1, . . . , rm)
32: end function

6. Low-Complexity Run-time with WLC and MLR

Although an RTM purely based on workload classification is low-cost, its coarse granularity may
affect its optimality, and further improvement may be possible with an additional MLR step to refine
the control decisions. Figure 7 shows the algorithm with which workload classification may be used
to reduce the decision space of the subsequent MLR step to achieve a right balance of complexity
reduction and optimization quality.

The first step is to update the application queue—during the preceding interval, new applications
may have joined the queue. If so, Algorithm 1 is used to determine the application class of each new
interval, as explained in Section 5.1. This may reduce the state space of the subsequent search for
optimality. For example, for Class 0, the search of optimal configuration for Odroid XU-3 is reduced
from 4× 13× 4× 19 = 4004 different frequency and core configurations (four A7 cores with 13 DVFS
points and four A15 with 19 different DVFS points) to one by using C0 (or the first available A7 core)
and F = 200 MHz as the optimal configuration. For class 1, the search for optimal configuration
is reduced by more than 75% because we used the A15 cores at high frequencies (800–2000 MHz),
and the state space is reduced by more than 80% for Class 3 because we used the A7 cores at high
frequencies (800–1400 MHz). After this reduction of search space, MLR is used to determine the optimal
frequency and core allocations for each class type using the method described in Reference [6].

J. Low Power Electron. Appl. 2020, 10, 25 16 of 25

A
p

p
ly

 t
h

e
o

p
ti

m
al

 c
o

n
tr

o
l

Detect WL type

Learn the IPC models with MLR

Max IPS/Watt control decision

Detect new task/app

WL classified already?
No

WL class = 0?

WL IPC models exist?

No

No

Yes

Yes

Yes

Figure 7. Flow chart for multivariate linear regression (MLR) with workload (WL) classification.

7. Experimental Results

Extensive experiments have been carried out with a large number of application scenarios
running on the XU3 platform, with additional confirmatory explorations on the Intel i7 platform.
These experiments include running single applications on their own and a number of concurrent
applications. In the concurrent scenarios, multiple copies of the same application and different
applications of the same class and different applications of different classes have all been tested.

7.1. Workload Classification-Only Results

7.1.1. A Case Study of Concurrent Applications

An example execution trace with three applications is shown in Figure 8. Parts at the beginning and
end of the run contain single and dual application scenarios. The horizontal axis is time, while the vertical
axis denotes TM and DVFS decisions. Cores C0–C3 are A7 cores, and C4–C7 are A15 cores. The figure
shows application classes and the core(s) on which they run at any time. This is described by numbers, for
instance, “2/3” on core C1 means that App 2 is classified as of Class 3 and runs on C1 for a particular time
window. “1/u” means that App 1 is being classified. The lower part of the figure shows the corresponding
power and IPS traces. Both parameters are clearly dominated by the A15 cores.

As can be seen, initial classifications are carried out on C4, but, when C4 is allocated to
an application, C7 is reserved for this purpose. The reservation of dedicated cores for initial
classification fits well for architectures where the number of cores is greater than the number of
applications, as in the case of modern multi-core systems, such as Odroid XU3.

Re-classification happens for all running applications at every 500 ms control cycle, according
to Algorithm 1. Each application is re-classified on the core where it is running. Figures 8 and 9
show the motivation for this. The same application can belong to different classes at different
times. This proves that an OL classification method, which gives each application an invariable
class, is unusable for efficient energy minimization.

Figure 9 shows example traces of the PARSEC apps ferret and fluid animate being classified
whilst running as single applications. It can be seen that the same application can have different
CPU/memory behaviors and get classified into different classes. This is not surprising as the same
application can have CPU-intensive phases when it does not access memory and memory-intensive
phases where there is a lot of memory access. In addition, it is also possible for an application to behave
as belonging to different classes when mapped to different numbers of cores. The classification can also
be influenced by whether an application is running alone or running in parallel with other applications,

J. Low Power Electron. Appl. 2020, 10, 25 17 of 25

if we compare Figures 8 and reftwoapp. These are all strong motivations for RT re-classification.
The result of classification affects an application’s IPS and power (see Figure 8).

0 Time (mSec)

1/u

App1

624 2983

App1

1(2)

1(1)

1(3)

1(3)

1(3)

1(3) 1(2)

1(1)

1(1)

1(3)

1(2)

1(1)

1(1)

1(1)

1(3)

11768

3(3)

3(1)

3(1)

3(2)

3(2)

3(2)

3(1)

3(1)

3(1)

3(1)

3(1)

2/u

2(3)

2(3)

2(1)

2(1)

2(1)

2(1)

2(1)

2(2)

2(2)

2(3)

2(3)

2(3)

2(3)

2(1)

2(1)

2(2)

2(2)

2(3)

2(1)

2(1)

2(1)

2(3)1(3)

2(0)

3(3)

3(3) 2(3)1(2)

15144

1(1)

1(1)

1(3)

3(1)

Po
w
er

IP
S

C0

C1

C2

C3

C4

C6

C5

C7

Figure 8. Execution trace with task mapping (TM) and dynamic voltage frequency scaling (DVFS)
decisions and their effects on performance and power.

Figure 9. Fluid animate (left) and ferret (right) classification and power traces.

7.1.2. RTM Stability, Robustness and Control Decision Cycle Selection

Algorithm 1 can oscillate between two different sets of classification and control decisions in
alternating cycles. This may indicate the loss of stability of the RTM approach. The reasons for such
oscillations have been isolated into the following cases:

• The control cycle length coincides with an application’s CPU and memory phase changes.

J. Low Power Electron. Appl. 2020, 10, 25 18 of 25

• An application’s behavior takes it close to particular threshold values, and different instances of
evaluation put it on different sides of the thresholds.

• An application is not very parallelizable. When it is classified on a single core, it behaves as
CPU-intensive, but, when it is classified on multiple cores, it behaves as low-activity. This causes
it to oscillate between Class 0 and Class 1 in alternating cycles.

We address these issues as follows. Case 1 rarely happens, and, when it happens, it disappears
quickly because of the very low probability of an application’s phase cycles holding constant
and coinciding with the control cycle length. This can be addressed, in the rare case when it is necessary,
by tuning the control cycle length slightly if oscillations persist. In general, if the Nyquist/Shannon
sampling frequency requirement is not violated, this is not a worry.

Case 2 also happens rarely. In general, increasing the number of classes and reducing the distances
between control decisions of adjacent classes reduce the RTM’s sensitivity to threshold accuracy;
hence, Case 2 robustness does not have to be a problem, and thresholds (Table 6) and decisions (Table 9)
can be tuned both OL and during RT.

Case 3 is by far the most common. It is dealt with through adaptation. This type of oscillation
is very easy to detect. We put in an extra class, “low-parallelizability”, and give it a single big core.
This class can only be found after two control cycles, different from the other classes, but this effectively
eliminates Case 3 oscillations.

Empirically, the PARSEC applications used in this paper as examples tend to have relatively
stable periods during which their classes do not change. These periods can run from hundreds of ms
to multiple seconds. We chose a control decision cycle of 500 ms such that it may, on rare occasions,
violate the Nyquist/Shannon sampling principle for some applications, in order to expose potential
oscillatory behavior and test the effectiveness of our mitigating methods. The experimental results
confirm the validity of our methods of dealing with the different cases of oscillatory behavior.

7.1.3. Comparative Evaluation of the WLC-Only RTM

Complexity: Our RTM has a complexity of O(Napp ∗ Nclass + Ncore), where Napp is the number of
applications (tasks) running, Nclass is the number of classes in the taxonomy, and Ncore is the number
of cores. Nclass is usually a constant of small value, which can be used to trade robustness and quality
with cost. The RTM’s computation complexity is therefore linear to the number of applications running
and the number of cores. In addition, the basic algorithm itself is a low-cost, lookup-table approach
with the table sizes linear to Nclass.

Schemes found in existing work, with, e.g., model-based [6], machine-learning [53], linear
programming [18], or regression techniques [6,19], have a decision state space size of O((NA7DVFS
∗ NA15DVFS) ∗ (NA7 ∗ NA15)Napp) , where NA7 and NA15 are the numbers of A7 and A15 cores
and NA7DVFS and NA15DVFS are the numbers of DVFS points of the A7 and A15 power domains,
for this type of platform. This NP complexity is sensitive to system heterogeneity, unlike our approach.

Overheads: We compared the time overheads (OH) of our method with the linear-regression
(LR) method found in, e.g., Reference [6,19]. For each 500 ms control cycle, our RTM, running at
200 MHz, requires 10 ms to complete for the trace in Figure 8. Over 90% of this time is spent on
monitor information gathering. In comparison, LR requires 100 ms to complete the same actions.
It needs a much larger set of monitors. The computation, also much more complex, evenly divides its
time in model building and decision-making. In addition, a modeling control, such as LR, requires
multiple control intervals to settle and the number of control decision cycles needed is combinatorial
with NA7, NA15, NA7DVFS, and NA15DVFS.

Scalability: Our RTM is scalable to any platform as it is (a) agnostic to the number and type of
application running in concurrently and (b) independent of the number or type of cores in the platform,
and their power domains. This is because the complexity of the RTM only grows linearly with increased
number of concurrent applications and cores. Our experiments on the Intel i7 platform confirm this.

J. Low Power Electron. Appl. 2020, 10, 25 19 of 25

7.2. Comparative Results between Our Three RTM Types

In this section, we compare the IPS/Watt results from MLR-only, workload classification-only,
and the combined workload classification plus MLR RTM types.

7.2.1. MLR-Only RTM Results

We previously explored an MLR-only RTM with PARSEC applications on the Odroid XU3 in
comparable experimental conditions [6]. This power governor/RTM aims to improve IPS/Watt,
the same as the RTM’s developed in this paper. The results from Reference [6] are compared to those
obtained from this work in Table 10.

Table 10. Percentage IPS/Watt imporovement of the RTM over the Linux ondemand governor, all with
Odroid XU3.

Application Scenarios Workload Multivariate Linear MLR + WLC
Classification (WLC) Regression (MLR)

Fluidanimate alone 127% 127% 139%

Two different class applications 68.60% 61.74% 128.42%

Three different class applications 46.60% 29.30% 61.27%

Two Class 3 applications 24.50% 19.81% 40.33%

Three Class 3 applications 44.40% 36.40% 58.25%

Two Class 1 applications 31.00% 26.53% 41.74%

7.2.2. WLC-Only and WLC Combined with MLR RTM Results

In this work, we propose two new power governors (RTMs). The first is the light-weight WLC-only
approach described in Section 5. The second is the more sophisticated approach of combining WLC
with a further step of MLR-based optimization, described in Section 6.

Figure 10 shows the results obtained from running the WLC-only RTM on the Odroid XU3,
comparing the IPS/Watt metric obtained with the performance of the Linux ondemand governor [54].
These results show IPS/Watt improvements of 24 to 127% over the benchmark ondemand governor in
the application scenarios included in the figure.

Figure 10. IPS/Watt between the proposed WLC-only power governor and the ondemand governor on
Odroid XU3.

J. Low Power Electron. Appl. 2020, 10, 25 20 of 25

Experiments with the combined WLC+MLR approach demonstrate that it is possible to further
improve IPS/Watt by supplementing the WLC method with additional MLR optimization. Figure 11
show the IPS/Watt comparisons between this method and the Linux ondemand governor on the Odroid
XU3. It can be seen from these results that further improvements over Figure 10 are evident.

Figure 11. IPS/Watt Comparison between the proposed WLC+MLR and ondemand [54] governors on
Odroid XU3 .

This combined method is also applied to the Intel Core i7 platform and the IPS/Watt results
obtained are compared with those from running the Linux ondemand governor in Figure 12.
The improvements on IPS/Watt range from 20% to 40%.

Figure 12. IPS/Watt comparison between the proposed WLC+MLR and ondemand [54] governors on
Intel i7, with all cores allocated to the tasks/apps.

In general, it is found that the heterogeneous Odroid XU3 platform demonstrates the methods
proposed in this paper better than the Intel Core i7 platform. This is mainly because the latter is not
specifically designed for CPU power efficiency, and there is a limited scope for IPS/Watt improvement
by tuning TM and DVFS. There is a comparatively high background power dissipation, whatever
the TM and DVFS decisions are. On the other hand, the Odroid platform, based on ARM big.LITTLE
architecture, has CPU energy efficiency at the core of its hardware design philosophy and provides
a much wider scope of IPS/Watt improvements via TM and DVFS decisions.

J. Low Power Electron. Appl. 2020, 10, 25 21 of 25

As a result, we concentrate on comparing the different RTM methods based on data obtained from
the Odroid XU3 experiments. Table 10 compares the results of all three RTMs against the ondemand
governor on the Odroid XU3 platform.

From Table 10, it can be seen that the improvements in IPS/Watt obtained by the combined WLC
with MLR approach is higher than the WLC-only and MLR-only methods.

The main problem with the MLR-only approach is that it does not take changes of application
behavior in each control decision cycle into account. An MLR model typically takes multiple control
cycles to settle, and, after it settles, it may no longer be optimal.

The WLC-only approach improves on this by re-classifying every control cycle and this improves
the optimality of the control decisions and reduces the controller overhead at the same time.
However, because of its coarse-grain nature the decisions tend to be sub-optimal leaving further
improvements possible.

By combining WLC and MLR modeling, the WLC+MLR method makes use of the WLC technique
to provide a coarse-grain pre-decision which is then potentially refined through MLR modeling for
further IPS/Watt improvements. This results in quick decisions, vastly reduced MLR learning space
and more up to date MLR model results that approximate true optima much better.

By comparing with the ondemand governor, we seek a vehicle for indirect comparisons with
a relatively broad range of existing and upcoming research, as this governor is popular target for result
comparisons in most related types of work. To demonstrate the efficacy of this approach, we look
at the following example. Gupta [9] proposed a run-time approach consisting of a combination of
offline characterization and run-time classification. The thesis describes experimental results showing
an average increase of 81% in IPS/Watt compared to the ondemand governor for memory intensive
applications running alone. Results, such as this, can be compared with our results listed in Table 10.
Although the experimental scenarios may not be entirely like-for-like, much can be inferred as to
the effectiveness of different methods from this kind of indirect comparison. In this specific case,
the Gupta improvement figure of 81% is most appropriately compared with the fluid animate alone
figure in Table 10, where our approaches obtain over 120% of improvements.

Data collected from our large number of validation runs shows the RTM out-performing the Linux
ondemand governor by considerable margins on IPS/Watt, as shown in Table 10. The method can
be generalized to other optimization targets, such as throughput, energy-delay product, and any
energy and throughput trade-off metric. It is also possible to switch targets at RT. This will require
constructing multiple decision tables and switching between them during RT. This is a subject for
future work.

8. Conclusions

An optimization scheme targeting power-normalized performance was developed for controlling
concurrent application executions on platforms with multiple cores.

In the first instance, models are obtained off-line from experimental data. Explorations with
model simplification are shown to be successful as by and large optimal results are obtained from
using these models in RT control algorithms compared with existing Linux governors. In many cases,
the improvements obtained are quite significant.

A run-time workload classification management approach is proposed for multiple concurrent
applications of diverse workloads running on heterogeneous multi-core platforms. The approach is
demonstrated by a governor aimed at improving system energy efficiency (IPS/Watt). This governor
classifies workloads according to their CPU and memory signatures and makes decisions on core
allocation and DVFS. Due to model-free approach, it leads to low RTM complexity (linear with
the number of applications and cores) and cost (lookup tables of limited size). The governor
implementation does not require application instrumentation, allowing for easy integration in existing
systems. Experiments show the governor provides significant energy efficiency advantage compared

J. Low Power Electron. Appl. 2020, 10, 25 22 of 25

to existing approaches. Detection of low-parallelizability improves the stability of the governor.
A synthetic benchmark with tunable memory use supports the characterization process.

This method is further improved with tuning the results of workload classification by
a learning-based optimization using multivariant linear regression. With the workload classification
having drastically reduced the modeling space, the regression-based learning has been shown to work
effectively. This RTM is demonstrated on both heterogeneous and homogeneous platforms.

For experimental purposes of homogeneous and heterogeneous systems, we demonstrated a novel
RT approach, capable of workload classification and power-aware performance adaptation under
sequential and concurrent application scenarios in heterogeneous multi-core systems. The approach
is based on power and performance models that can be obtained during RT by multivariate linear
regression based on low-complexity hypotheses of power and performance for a given operating
frequency. The approach is extensively evaluated using PARSEC-3.0 benchmark suite running on
the Odroid-XU3 heterogeneous platform.

A selection of experimental results was presented to illustrate the kinds of trade-offs in
a variety of concurrent application scenarios, core allocations, and DVFS points, highlighting
an improvement of power normalized performance which produced IPS/Watt improvements between
26% and 139% for a range of applications. It is expected that modern embedded and high-performance
system designers will benefit from the proposed approach in terms of a systematic power-aware
performance optimization under variable workload and application scenarios. Our future work will
include investigating the scalability of the approach to more complex platforms and higher levels
of concurrency.

Author Contributions: Conceptualization, all authors; methodology, all authors; software, A.R. (Ashur Rafiev)
and A.A.; validation, A.A., A.R. (Ashur Rafiev) and F.X.; formal analysis, F.X., A.R. (Ashur Rafiev) and A.A.;
investigation, A.A., A.R. (Ashur Rafiev) and F.X.; resources, A.Y. and A.R. (Alexander Romanovsky); data curation,
A.A.; writing–original draft preparation, A.A., A.R. (Ashur Rafiev) and F.X.; writing–review and editing, F.X. and
R.S.; visualization, A.A., F.X. and A.R. (Ashur Rafiev); supervision, A.Y., R.S., A.R. (Alexander Romanovsky) and
F.X.; project administration, A.Y., A.R. (Alexander Romanovsky), R.S. and F.X.; funding acquisition, A.Y., A.R.
(Alexander Romanovsky) and A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work is funded by the EPSRC (project PRiME, grant EP/K034448/1 and Project STRATA, grant
EP/N023641/1). Aalsaud is also supported by studentship funding from the Ministry of Iraqi Higher Education
and Scientific Research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Prakash, A.; Wang, S.; Irimiea, A.E.; Mitra, T. Energy-efficient execution of data-parallel applications
on heterogeneous mobile platforms. In Proceedings of the 2015 33rd IEEE International Conference on
Computer Design (ICCD), New York, NY, USA, 18–21 October 2015; pp. 208–215.

2. Plyaskin, R.; Masrur, A.; Geier, M.; Chakraborty, S.; Herkersdorf, A. High-level timing analysis of concurrent
applications on MPSoC platforms using memory-aware trace-driven simulations. In Proceedings of the 2010
18th IEEE/IFIP International Conference on VLSI and System-on-Chip, Madrid, Spain, 27–29 September
2010; pp. 229–234.

3. Shafik, R.; Yakovlev, A.; Das, S. Real-power computing. IEEE Trans. Comput. 2018, 67, 1445–1461. [CrossRef]
4. Borkar, S. Design challenges of technology scaling. IEEE Micro 1999, 19, 23–29. [CrossRef]
5. Orgerie, A.C.; Assuncao, M.D.D.; Lefevre, L. A survey on techniques for improving the energy efficiency of

large-scale distributed systems. ACM Comput. Surv. (CSUR) 2014, 46, 47. [CrossRef]
6. Aalsaud, A.; Shafik, R.; Rafiev, A.; Xia, F.; Yang, S.; Yakovlev, A. Power–aware performance adaptation

of concurrent applications in heterogeneous many-core systems. In Proceedings of the 2016 International
Symposium on Low Power Electronics and Design, San Francisco, CA, USA, 8–10 August 2016; pp. 368–373.

7. Mittal, S. A survey of techniques for improving energy efficiency in embedded computing systems. Int. J.
Comput. Aided Eng. Technol. 2014, 6, 440–459. [CrossRef]

8. Intel Corporation. Timeline of Processors; Intel Corporation: Santa Clara, CA, USA, 2012.

http://dx.doi.org/10.1109/TC.2018.2822697
http://dx.doi.org/10.1109/40.782564
http://dx.doi.org/10.1145/2532637
http://dx.doi.org/10.1504/IJCAET.2014.065419

J. Low Power Electron. Appl. 2020, 10, 25 23 of 25

9. Gupta, U. Power-Performance Modeling and Adaptive Management of Heterogeneous Mobile Platforms.
Ph.D. Thesis, Arizona State University, Tempe, AZ, USA, 2018.

10. Rafiev, A.; Al-Hayanni, M.; Xia, F.; Shafik, R.; Romanovsky, A.; Yakovlev, A. Speedup and Power Scaling
Models for Heterogeneous Many-Core Systems. IEEE Trans. Multi-Scale Comput. Syst. 2018, 4, 436–449.
[CrossRef]

11. Shafik, R.A.; Al-Hashimi, B.M.; Kundu, S.; Ejlali, A. Soft Error-Aware Voltage Scaling Technique for Power
Minimization in Application-Specific Multiprocessor System-on-Chip. JOLPE 2009, 5, 145–156. [CrossRef]

12. Torrey, A.; Cleman, J.; Miller, P. Comparing interactive scheduling in Linux. Softw. Pract. Exp.
2007, 34, 347–364. [CrossRef]

13. Reddy, B.K.; Singh, A.K.; Biswas, D.; Merrett, G.V.; Al-Hashimi, B.M. Inter-cluster Thread-to-core Mapping
and DVFS on Heterogeneous Multi-cores. IEEE Trans. Multi-Scale Comput. Syst. 2018, 4, 369–382. [CrossRef]

14. Petrucci, V.; Loques, O.; Mossé, D. Lucky scheduling for energy-efficient heterogeneous multi-core systems.
In Proceedings of the 2012 USENIX conference on Power-Aware Computing and Systems, Hollywood, CA,
USA, 7 October 2012; p. 7.

15. Nabina, A.; Nunez-Yanez, J.L. Adaptive voltage scaling in a dynamically reconfigurable FPGA-based
platform. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 2012, 5, 20. [CrossRef]

16. Wang, Y.; Pedram, M. Model-Free Reinforcement Learning and Bayesian Classification in System-Level
Power Management. IEEE Trans. Comput. 2016, 65, 3713–3726. [CrossRef]

17. Goraczko, M.; Liu, J.; Lymberopoulos, D.; Matic, S.; Priyantha, B.; Zhao, F. Energy-optimal software
partitioning in heterogeneous multiprocessor embedded systems. In Proceedings of the 45th Annual Design
Automation Conference, Anaheim, CA, USA, 8–13 June 2008; pp. 191–196.

18. Luo, J.; Jha, N.K. Power-efficient scheduling for heterogeneous distributed real-time embedded systems.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2007, 26, 1161–1170. [CrossRef]

19. Yang, S.; Shafik, R.A.; Merrett, G.V.; Stott, E.; Levine, J.M.; Davis, J.; Al-Hashimi, B.M. Adaptive energy
minimization of embedded heterogeneous systems using regression-based learning. In Proceedings of the
2015 25th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS),
Salvador, Brazil, 1–4 September 2015; pp. 103–110.

20. Wang, A.; Chandrakasan, A. A 180-mV subthreshold FFT processor using a minimum energy design
methodology. IEEE J. Solid-State Circuits 2005, 40, 310–319. [CrossRef]

21. Ma, K.; Li, X.; Chen, M.; Wang, X. Scalable power control for many-core architectures running multi-threaded
applications. ACM SIGARCH Comput. Archit. News 2011, 39, 449–460. [CrossRef]

22. Xu, Z.; Tu, Y.C.; Wang, X. Exploring power-performance trade-offs in database systems. In Proceedings
of the 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010), Long Beach, CA, USA,
1–6 March 2010; pp. 485–496.

23. Rafiev, A.; Iliasov, A.; Romanovsky, A.; Mokhov, A.; Xia, F.; Yakovlev, A. Studying the Interplay of
Concurrency, Performance, Energy and Reliability with ArchOn—An Architecture-Open Resource-Driven
Cross-Layer Modelling Framework. In Proceedings of the 2014 14th International Conference on Application
of Concurrency to System Design, Tunis La Marsa, Tunisia, 23–27 June 2014; pp. 122–131.

24. Wong, H.; Aamodt, T.M. The Performance Potential for Single Application Heterogeneous Systems.
In Proceedings of the 8th Workshop on Duplicating, Deconstructing, and Debunking, Austin, TX, USA,
21 June 2009.

25. Goh, L.K.; Veeravalli, B.; Viswanathan, S. Design of fast and efficient energy-aware gradient-based
scheduling algorithms heterogeneous embedded multiprocessor systems. IEEE Trans. Parallel Distrib.
Syst. 2009, 20, 1–12.

26. Ben Atitallah, R.; Senn, E.; Chillet, D.; Lanoe, M.; Blouin, D. An efficient framework for power-aware design
of heterogeneous MPSoC. IEEE Trans. Ind. Inform. 2013, 9, 487–501. [CrossRef]

27. Hankendi, C.; Coskun, A.K. Adaptive power and resource management techniques for multi-threaded
workloads. In Proceedings of the 2013 IEEE International Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum, Cambridge, MA, USA, 20–24 May 2013; pp. 2302–2305.

28. Shafik, R.A.; Yang, S.; Das, A.; Maeda-Nunez, L.A.; Merrett, G.V.; Al-Hashimi, B.M. Learning transfer-based
adaptive energy minimization in embedded systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
2016, 35, 877–890. [CrossRef]

http://dx.doi.org/10.1109/TMSCS.2018.2791531
http://dx.doi.org/10.1166/jolpe.2009.1016
http://dx.doi.org/10.1002/spe.772
http://dx.doi.org/10.1109/TMSCS.2017.2755619
http://dx.doi.org/10.1145/2392616.2392618
http://dx.doi.org/10.1109/TC.2016.2543219
http://dx.doi.org/10.1109/TCAD.2006.885736
http://dx.doi.org/10.1109/JSSC.2004.837945
http://dx.doi.org/10.1145/2024723.2000117
http://dx.doi.org/10.1109/TII.2012.2198657
http://dx.doi.org/10.1109/TCAD.2015.2481867

J. Low Power Electron. Appl. 2020, 10, 25 24 of 25

29. Das, A.; Kumar, A.; Veeravalli, B.; Shafik, R.; Merrett, G.; Al-Hashimi, B. Workload uncertainty
characterization and adaptive frequency scaling for energy minimization of embedded systems.
In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE),
Grenoble, France, 9–13 March 2015; pp. 43–48.

30. Chen, X.; Zhang, G.; Wang, H.; Wu, R.; Wu, P.; Zhang, L. MRP: Mix real cores and pseudo cores for
FPGA-based chip-multiprocessor simulation. In Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, Grenoble, France, 9–13 March 2015; pp. 211–216.

31. Cochran, R.; Hankendi, C.; Coskun, A.K.; Reda, S. Pack & Cap: Adaptive DVFS and thread packing under
power caps. In Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture,
Porto Alegre, Brazil, 3–7 December 2011; pp. 175–185.

32. Sarma, S.; Muck, T.; Bathen, L.A.; Dutt, N.; Nicolau, A. SmartBalance: A sensing-driven linux load balancer
for energy efficiency of heterogeneous MPSoCs. In Proceedings of the 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), San Francisco, CA, USA, 8–12 June 2015; pp. 1–6.

33. Mück, T.; Sarma, S.; Dutt, N. Run-DMC: Run-time dynamic heterogeneous multicore performance and power
estimation for energy efficiency. In Proceedings of the 10th International Conference on Hardware/Software
Codesign and System Synthesis, Amsterdam, The Netherlands, 4–9 October 2015; pp. 173–182.

34. Travers, M.; Shafik, R.; Xia, F. Power-Normalized Performance Optimization of Concurrent Many-Core
Applications. In Proceedings of the 2016 16th International Conference on Application of Concurrency to
System Design (ACSD), Torun, Poland, 19–24 June 2016; pp. 94–103.

35. Kyrkou, C.; Bouganis, C.S.; Theocharides, T.; Polycarpou, M.M. Embedded hardware-efficient real-time
classification with cascade support vector machines. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 99–112.
[CrossRef]

36. Reddy, B.K.; Merrett, G.V.; Al-Hashimi, B.M.; Singh, A.K. Online concurrent workload classification for
multi-core energy management. In Proceedings of the 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 621–624.

37. Bitirgen, R.; Ipek, E.; Martinez, J.F. Coordinated management of multiple interacting resources in chip
multiprocessors: A machine learning approach. In Proceedings of the 2008 41st IEEE/ACM International
Symposium on Microarchitecture, Lake Como, Italy, 8–12 November 2008; pp. 318–329.

38. Van Craeynest, K.; Jaleel, A.; Eeckhout, L.; Narvaez, P.; Emer, J. Scheduling heterogeneous multi-cores
through performance impact estimation (PIE). In Proceedings of the 2012 39th Annual International
Symposium on Computer Architecture (ISCA), Portland, OR, USA, 9–13 June 2012; pp. 213–224.

39. Wen, Y.; Wang, Z.; O’boyle, M.F. Smart multi-task scheduling for OpenCL programs on CPU/GPU
heterogeneous platforms. In Proceedings of the 2014 21st International Conference on High Performance
Computing (HiPC), Dona Paula, India, 17–20 December 2014; pp. 1–10.

40. Dey, S.; Singh, A.; Wang, X.; McDonald-Maier, K. User Interaction Aware Reinforcement Learning for Power
and Thermal Efficiency of CPU-GPU Mobile MPSoCs. In Proceedings of the 2020 Design, Automation &
Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2020.

41. Pasricha, S.; Ayoub, R.; Kishinevsky, M.; Mandal, S.K.; Ogras, U.Y. A Survey on Energy Management for
Mobile and IoT Devices. IEEE Des. Test 2020. [CrossRef]

42. Aalsaud, A.; Rafiev, A.; Xia, F.; Shafik, R.; Yakovlev, A. Model-free run-time management of concurrent
workloads for energy-efficient many-core heterogeneous systems. In Proceedings of the 2018 28th
International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS),
Platja d’Aro, Spain, 2–4 July 2018; pp. 206–213.

43. Likwid—Light Weight Performance Tools. Available online: http://github.com/RRZE-HPC/likwid/wiki
(accessed on 20 June 2020).

44. Hähnel, M.; Döbel, B.; Völp, M.; Härtig, H. Measuring energy consumption for short code paths using RAPL.
ACM Sigmetrics Perform. Eval. Rev. 2012, 40, 13–17. [CrossRef]

45. Kumar, S.; Djie, M.; van Leuken, R. Low Overhead Message Passing for High Performance Many-Core
Processors. In Proceedings of the 2013 First International Symposium on Computing and Networking,
Matsuyama, Japan, 4–6 December 2013; pp. 345–351. [CrossRef]

46. Odroid XU3. Available online: https://www.hardkernel.com/shop/odroid-xu3/ (accessed on
11 August 2020).

http://dx.doi.org/10.1109/TNNLS.2015.2428738
http://dx.doi.org/10.1109/MDAT.2020.2976669
http://github.com/RRZE-HPC/likwid/wiki
http://dx.doi.org/10.1145/2425248.2425252
http://dx.doi.org/10.1109/CANDAR.2013.62
https://www.hardkernel.com/shop/odroid-xu3/

J. Low Power Electron. Appl. 2020, 10, 25 25 of 25

47. Skalicky, S.; Lopez, S.; Lukowiak, M.; Schmidt, A.G. A Parallelizing MATLAB Compiler Framework and Run
time for Heterogeneous Systems. In Proceedings of the 2015 IEEE 17th International Conference on High
Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems,
New York, NY, USA, 24–26 August 2015; pp. 232–237.

48. Bienia, C.; Li, K. PARSEC 2.0: A New Benchmark Suite for Chip-Multiprocessors. Available online:
http://www-mount.ece.umn.edu/~jjyi/MoBS/2009/program/02E-Bienia.pdf (accessed on 20 June 2020).

49. Walker, M.J.; Diestelhorst, S.; Hansson, A.; Das, A.K.; Yang, S.; Al-Hashimi, B.M.; Merrett, G.V. Accurate
and stable run-time power modeling for mobile and embedded cpus. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 2017, 36, 106–119. [CrossRef]

50. Mthreads Benchmark. Available online: https://github.com/ashurrafiev/PThreads (accessed on
20 June 2020).

51. Gupta, U.; Patil, C.A.; Bhat, G.; Mishra, P.; Ogras, U.Y. Dypo: Dynamic pareto-optimal configuration
selection for heterogeneous mpsocs. ACM Trans. Embed. Comput. Syst. (TECS) 2017, 16, 1–20. [CrossRef]

52. PARSEC Benchmark Suite. Available online: https://parsec.cs.princeton.edu/ (accessed on 20 June 2020).
53. Singh, A.K.; Leech, C.; Reddy, B.K.; Al-Hashimi, B.M.; Merrett, G.V. Learning-based run-time power

and energy management of multi/many-core systems: Current and future trends. J. Low Power Electron.
2017, 13, 310–325. [CrossRef]

54. Pallipadi, V.; Starikovskiy, A. The ondemand governor. In Proceedings of the Linux Symposium, Ottawa,
ON, Canada, 19–22 July 2006; pp. 215–230.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www-mount.ece.umn.edu/~jjyi/MoBS/2009/program/02E-Bienia.pdf
http://dx.doi.org/10.1109/TCAD.2016.2562920
https://github.com/ashurrafiev/PThreads
http://dx.doi.org/10.1145/3126530
https://parsec.cs.princeton.edu/
http://dx.doi.org/10.1166/jolpe.2017.1492
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Methodology
	System Fundamentals
	Homogeneous System
	Heterogeneous System
	Workload Applications
	Performance Counters

	Workload Classification RTM
	Workload Classification Taxonomy
	Run-time Management Based on Workload Classification
	Workload Classification
	Control Decision Making

	Low-Complexity Run-time with WLC and MLR
	Experimental Results
	Workload Classification-Only Results
	A Case Study of Concurrent Applications
	RTM Stability, Robustness and Control Decision Cycle Selection
	Comparative Evaluation of the WLC-Only RTM

	Comparative Results between Our Three RTM Types
	MLR-Only RTM Results
	WLC-Only and WLC Combined with MLR RTM Results

	Conclusions
	References

